

HYBRID ELECTRIC VEHICLES: Simulation, Design, & Implementation

Fall 2004 – IPRO 326 – Illinois Institute of Technology

AN INTRODUCTION TO IPRO 326

Presenter: **SADIA SADIQ** [Team Leader]

The lpro 326 TEAM

Faculty Advisor: Dr. Ali Emadi – ECE Department, F

Team Members:

Sadia Sadiq3rd year, ECEAli Naqvi4th yeaPaul Reinhard5th yeaMarta Bastrzyk3rd yeaThomas Hittie3rd yeaTheresa Hudik3rd yea

4th year, ECE 5th year, MMAE 3rd year, MMAE 3rd year, MMAE 3rd year, MMAE 3rd year, MMAE

Chad Johnson Mahdi Mohamma Jeffrey Stano Gregory Waliczek Tiana Washingtor

* Special thanks to IIT Ph.D. candidate Sheldon
 Williamson for his help with the Hybrid
 Bus Research and Simulations.

Objectives optimum HF for parallel and series configurations of Hummer H2

 Determine optimum HF for parallel and series configurations of HMMWV (High-

Mobility Multipurpose Wheeled Vehicle) M1097 A2

 Simulate a hybrid electric bus system scheduled to have practical

implementations in India by the end of the next year, 2005

Technical Team Organization

Presentation Outline

- An Introduction to Hybrid Electric Vehicles and Our
- **Technical Approach**
- HMMWV M1097 A2: Parallel CONFIGURATION
- HMMWV M1097 A2 : Series CONFIGURATION
- Hummer H2 : Parallel CONFIGURATION
- Hummer H2 : Series CONFIGURATION
- Hybrid Electric Bus System
- Conclusion

An Introduction To Hybrid Electric Vehicles & Our Technical Approach

Presenter: **PAUL REINHARD** [Technical Leader]

What is a Hybrid Electric Vehicle (HEV)?

- HEVs combine the internal combustion engine (ICE) with an electric motor
- Extra batteries to handle higher electric loading
- Benefits include: higher fuel economy (MPG), extended range, more environmentally friendly
- Can be integrated into a wide range of applications: personal transportation to military applications and commercial hauling
- There are two types of HEVs: SERIES and PARALLEL

Series HEV Configuration

Figure 2: ICE charges the batteries or powers the electric motor which drives the transmission.

Parallel HEV Configuration

Figure 3: ICE and electric motor can both drive the transmission.

The Hybridization Factor

- Ratio of the electric motor in comparison to the total vehicle power
- Optimum hybridization factor yields highest fuel economy for the vehicle
- Two test methods used for each series and parallel configurations, for both vehicles, to determine the optimum hybridization factor:
 - Parallel Configuration
 - Method 1: total vehicle power constant
 - Method 2: internal combustion engine power constant
 - Series Configuration
 - Method 1: motor power constant
 - Method 2: internal combustion engine power 10 constant

 All testing and simulations were done with

ADVISOR (Advanced Vehicle Simulator)

• Software used to simulate

hybrid electric,

Velicle Input Net Input Velicle Input Net Inpu

Figure 4

conventional, electric, and fuel

Tenese Dirites Cycles tested in this project:

1) Calculates fuel economy 1) Obbs (Urban Dynamometer Driving Schedule) – City emissions released,

addivide times, etc. for a

given/Verivered Every Fuel Economy Test) – Highway Drive Cycle

3) HL07 – "High Stress" Engineered Cycle that tests vehicles for various

accelerations over a range of speeds.

The HMMWV M1097 A2

HMMWV detailed parameters:

1

•	HMMWV (M1097 A2)
1. Coefficient of Drag	0.5
2. Vehicle Mass	5900 lbs
3. Vehicle Frontal Area	4902 in. sq.
4. Vehicle Wheel Base	130 in.
5. Vehicle Cargo Mass (Payload)	360 lbs.
6. Fraction of vehicle weight	43.70%
front axle when standing still	
7. Height of vehicle center-of- gravity	31.8 in.
above the road	
8. Transmission Weight	GM Turbo 400 (3L80)
Pableine Weight	756 lbs

.12

The HUMMER H2

• H2 detailed parameters:

HUMMER (H2)		
1. Coefficient of Drag	0.57	
2. Vehicle Mass	6400 lbs	
3. Vehicle Frontal Area	6094.4 in sq. (w/o mirrors)	
4. Vehicle Wheel Base	122.8 in.	
5. Vehicle Cargo Mass (Payload)	255 lbs.	
6. Fraction of vehicle weight	46.50%	
front axle when standing still		
7. Height of vehicle center- of-gravity	34.0 in.	
above the road		
Table &. Transmission Weight	Hydromatic 4L65-E 184 Ibs	
9. Engine Weight	Vortec 6000 0 L V8 565 lbs	

HMMWV (High-Mobility Multipurpose Wheeled Vehicle) M1097 A2:

PARALLEL CONFIGURATION

Presenter: **Tiana Washington** Team Members: Thomas Hittie & Theresa Hudik

Simulation Methods

- 1) Constant Motor Power
 - Engine power is scaled from 100% to 30%, and the motor power is scaled from 0% to 70% in increments of 5%
- 2) Varying Motor Power
 - Motor power is scaled from 0% to 70% in increments of 5%, and the engine

power was kept constant at 100%

Note:

The hybrid vehicle runs with the least possible number of battery modules to meet the UDDS cycle.

Fuel Economy Results – METHOD 1

- Method 1:
 - Best MPG for the City Cycle was reached when the engine was scaled down to 50kW (50.5%) with 29 battery modules and HF = 0.50
 - Best MPG for the Highway Cycle was also reached when the engine was scaled down to 50kW (50.5%) with 29 battery modules and HF = 0.50cv

2	9 ballery mo		
	MPG	15.2	23.2
		43.4%	23.4%
	Improvem Table <mark>&nt</mark>		

Fuel Economy Chart – METHOD 1

Figure 5: Variation in miles per gallon (mpg) over the range of engine power (kW)

Fuel Economy Results – METHOD 2

Method 2:

- Best MPG for the City Cycle was reached when the motor was scaled up to 40kW (40%) with 23 battery modules and HF = 0.40
- Best MPG for the Highway Cycle was also reached when the motor was scaled up to 40kW (40%) with 23 battery modules and HEPS.40 HWY

e	ry modules a	na Gides .40	HWY
	MPG	9.90	18.90
	Improvem ent	-6.60%	0.53%
	Table 4		

Fuel Economy Chart – METHOD 2

Fuel Economy - Method 2

Figure 6: Variation in miles per gallon (mpg) over the range of engine p

					Fuel Eco [mp	onomy g]
	HF	0-60	0-50	Max	City	Highw
		mph	mph	Speed		ay
Conventio	N/	10.70	33.4s	80.5	10.6	18.8
nal	A	S		mph		
5 Hybrid	0.5	9.60s	18.5s	95.6	15.2	23.2
Chethod 1.	0			mph		
 Both the c 	erfoi	mance a	and fue	economy	of Method	1 ^{18.9}
Method 2	Par	allel HM	MWV in	creased v	vhen comp	ared
with conventional values.						

 However only the performance, not the fuel economy, of Method 2 hybridized Parallel HMMWV increased. HMMWV (High-Mobility Multipurpose Wheeled Vehicle) M1097 A2:

SERIES CONFIGURATION

Presenter: **Marta Bastrzyk** Team Members: Jeffrey Stano & Gregory Waliczek

Simulation Methods

- 1) Constant Motor Power
 - Engine and generator are scaled from 100% to 30% in increments of 5%
- 2) Varying Motor Power
 - Motor power is scaled from 60% to 140% in increments

Note:

The hybrid vehicle runs with the least possible number of battery modules to meet the UDDS cycle.

Fuel Economy Results – METHOD 1

Method 1:

- Best MPG for the City Cycle was reached when the engine and generator were scaled down to 99kW (85%) with 19 battery modules and HF = 0.15
- Best MPG for the Highway Cycle was reached when the engine and generator were scaled down to 35kW (30%) with 25 battery modules and HErry 0.7h

O)		ery UIDBBG es a	
	MPG	20.6	44.9
		90.7%	138%
	Improvem Table <mark>ent</mark>		

Fuel Economy Chart – METHOD 1

Fuel Economy Method 1

Figure 7: Variation in miles per gallons (mpg) over the range of engine p

Fuel Economy Results – METHOD 2

Method 2:

7

- Best MPG for the City Cycle was reached when the motor was scaled down 82kW (70%) with 19 battery modules and HF = 0.30
- Best MPG for the Highway Cycle was reached when the motor was scaled down to 82kW (70%) with 19 battery modules and HEPS 05 HWY

ery modules a	ua Aidea .02	HWY
MPG	20.5	19.1
Improvem ent	89.8%	1.6%
Table		

Fuel Economy Chart – METHOD 2

Fuel Economy Method 2

Figure 8: Variation in miles per gallon (mpg) over the range of engine po

26

					Fuel Eco [mp	onomy g]
	HF	0-60	0-50	Max	City	Highw
		mph	mph	Speed		ay
Conventio	N/	9.50s	27.8s	87.8	10.8	18.8
nal	A			mph		
8 Hybrid	0.2	6.40s	17.9s	80.6	20.2	19.4
Method 1	0			mph		
Copclမှုနှုံစုn:	0.0	7.00s	18.7s	80.7	19.0	20.5
B Methedpe r	fo f m	ance and	d fuel ec	on onply of	the hybrid	ized
HMMWV	M109	97 A2 res	sult in			

high increase when compared with conventional values.

PARALLEL CONFIGURATION

Presenter: **Thomas Hittie** Team Members: Chad Johnson & Tiana Washington

Simulation Methods

- 1) Constant Total Power
 - Engine was scaled from 100% to 30%, and motor was scaled from 0% to 70% in increments of 5%
- 2) Constant Engine Power
 - Motor power was scaled from 5kW to 70kW in incremen

Note:

The hybrid vehicle runs with the least possible number of battery modules to meet the UDDS cycle.

Fuel Economy Results – METHOD 1

- Method 1:
 - Best MPG for the City Cycle was reached when the engine and motor were scaled down to 104kW and 156kW respectively, with 10 battery modules and HF = 0.60
 - Best MPG for the Highway Cycle was reached when the engine and motor were scaled down 169kW and 91kW respectively, with 9 battery modules 0.35
 MPG 14.2 16.7
 MPG 47.9% 21.0%
 Improvem Table ent

Fuel Economy Chart – METHOD 1

Fuel Economy Method 1

Figure 9: Variation in miles per gallon (mpg) over the range of

31

Fuel Economy Results – METHOD 2

Method 2:

- Best MPG for the City Cycle was reached when the motor was greater than 10kW
- Best MPG for the Highway Cycle was reached when the motor was at 70kW with 19 battery modules and HF = 0.212

	UDDS	HWY
MPG	10.9	19.1
Improvem ent	13.5%	18.8%

Fuel Economy Chart – METHOD 2

Fuel Economy Method 2

Figure 10: Variation in miles per gallon (mpg) over the range o

33

Hybrid VS. Conventional

					Fuel Eco [mp	onomy g]
	HF	0-60	0-50	Max	City	Highw
		прп	прп	Sheen		ay
Conventio nal	N/A	9.80s	17.9s	101.2 mph	9.60	13.8
Hybrid ^{Table 11} Wethod 1	0.0 5	10.3s	18.2s	101.7 mph	11.1	15.8
Coheldsfon: _Method 2	0.2	9.50s	17.5s	115.3	10.9	16.4
HUMMER H2, except at max speed of						
Method 2, is negligible, while both methods dramatically						
increase f	uel ec	conomy				34

SERIES CONFIGURATION

Presenter: **Jeffrey Stano** Team Members: Marta Bastrzyk & Gregory Waliczek

Simulation Methods

- 1) Constant Motor Power
 - Engine and generator are scaled from 100% to 30% in increments of 5%
- 2) Varying Motor Power
 - Motor power is scaled from 60% to 140% in increments

Note:

The hybrid vehicle runs with the least possible number of battery modules to meet the UDDS cycle.

Fuel Economy Results – METHOD 1

- Method 1:
 - Best MPG for the City Cycle was reached when the engine and generator were scaled down to 169kW (65%) with 34 battery modules and HF = 0.35
 - Best MPG for the Highway Cycle was reached when the engine and generator were scaled down to 156kW (60%) with 36 battery modules and HE = 0.7h

) C		ery UID Deges a	
	MPG	21.6	18.0
ľ		118%	26%
	Improvem Table <mark>đr</mark> t		

Fuel Economy Chart – METHOD 1

Fuel Economy Method 1

Figure 11: Variation in miles per gallon (mpg) over the range of

38

Fuel Economy Results – METHOD 2

Method 2:

- Best MPG for the City Cycle was reached when the motor was scaled up to 273kW (105%) with 14 battery modules and HF = 0.05
- Best MPG for the Highway Cycle was reached when the motor was scaled down to 325kW (125%) with 15 battery modules and HEB.20 HWY

ery modules a	ua Gidea .70	HWY
MPG	5.8	6.3
Improvem ent	-41%	-56%
Table 13		

Fuel Economy Chart – METHOD 2

Fuel Economy Method 2

Figure 12: Variation in miles per gallon (mpg) over the range of e

					Fuel Economy [mpg]	
	HF	0-60 mph	¼ mi	Max Speed	City	Highw ay
Conventio nal	N/ A	9.8s	17.9s	101.2 mph	9.90	14.3
Hybrid Method 1	0.3 5	14.1s	19.6s	96.5 mph	21.6	17.6
Conclusion: Hybrid Fwelteconor	0.2 1y ₀ of	31.6s the hybr	23.8s idized S	72.2 eries Hur	5.70 nmer H2 ir	6.30 Icreased

for Method 2. Performance decreased for both methods when compared with conventional

values.

Hybrid Electric Bus Systems:

Research and Simulations

Presenter: Mahdi Mohammad Team Member: Ali Naqvi

Simulation Method

- Varying Motor Power
 - Motor power was increased from 0% to 70% of 150kW in increments of 5%

Fuel Economy Results

 Best MPG was obtained when the motor was scaled to 53kW (35%) with 50 battery modules and HF = 0.35

HF	UDDS	HWY
0.35	5.90	7.20

Table 15

Mileage VS. Motor Power

Figure 13: Variation in miles per gallon (mpg) over the range of eng

Hybrid VS. Conventional

Vehicle Type	HF	CITY MPG	HWY MPG
Conventional	-	4.9	5.5
Hybrid	0.35	5.9	7.2
% T MPROVEME NT	-	20%	31%

Conclusion:

The performance of the hybridized electric BUS quite increased when compared with

conventional values.

Future Work and Conclusion Ipro 326 – Fall 2004

Presenter: **SADIA SADIQ** [Team Leader]

Tasks Accomplished

Hybrid HMMWV M1097 A2 Research and Simulation:

•

Table 17

 Hybrid HUMMER H2 Research and Simulation:

		фінан
PARALLEL:	Method 1	0.05
	Method 2	0.21
SER ES	Method 1	0.35
	Method 2	0.20

Table 18

Future Work

- Next steps to propel this IPRO include:
 - Determine optimum HF for parallel and series configurations of BRAND NEW Hummer H3, and compare results with values obtained for current H2.
 - Continue research on the Hybrid Electric Bus System, and work on its practical implementation by the end of the next year, 2005.
 - Optimize the Control Strategy utilized in this project₄₉

Any Questions?

Don't forget to check us out at: http://www.iit.edu/~ipro326

Thank You.

