Intermodal Container Transport System Solutions for Chicago

IPRO - 307

Introduction

THE NEED:

- Transportation of Tonnage
 - ^o Truck, 69%
 - Rail, 13.3%
 - Rail Intermodal, 1.3%
- Demand, Tonnage is Up
- Environmental

THE VALUE:

- Reducing:
 - Trucks on highways
 - Carbon footprint

Introduction PROBLEM:

- Supply, Trucking Fleet is Down
 - · 2007, -2.6%
 - Company Failures
 Hand Life Stude
 - Hard Life Style
- Lack of Transportation Capacity
 Land Limits

OBJECTIVES:

- +50% Capacity = +50% Pollution
- "Increase capacity with out increasing pollution"
 - Improve Slip Seating
 - Maximize Land Capacity
 - Utilize New Technologies to Improve Efficiencies

PROJECTION: +50% Demand in 10yrs Capacity needs to improve in order to meet the demand

Team Development & Performance VALUES & MISSION:

- Ethics Test
 - "What Permits Do We Need"
 - "Increase capacity with out increasing pollution"

Communication

Honest Feedback

ORGANIZATION:

- Two Teams
 - Assign Responsibilities
 Not Tasks
 - Not Tasks
- Peer Review
 - Utilize Diversity
 - Discussions

Responsibilities

Name	Major	Task Responsibility
Xavier Alacron	Civil Engineering	Sub-Group 2 Team Leader; CNG station design, along with safety and efficiency improvements.
Kwong Cheung	Civil Engineering	Research and collection of data for transportation nationwide
Michal Kaska	Mechanical Engineering	Sub-Group 1 Team Leader; In charge of emission mandates, wind turbine implementation, and project management.
Irina Magdel	Civil Engineering	CNG distribution and storage research.
Linh Nguyen	Architecture	In charge of obtaining permit requirements for construction of wind turbine.
Bradley Suik	Mechanical Engineering	Development of the "flipper" for yard truck traffic improvement.
Daniel Fuentes	Architecture	Site analysis -zoning and habituation- to increase yard capacity
Andrew Kedzuch	Architecture Mechanical Engineering	Wind turbine assembly and circuit design as well as intermediary with Zero Energy IPRO.
Plamen Marinov	Mechanical Engineering	Design of new locking mechanism or coupling device for joining stacked containers together.
Christopher Brewin	Mechanical Engineering	Wind turbine assembly and installation; CNG engine conversion research for yard equipment.
Krzysztof Slomiany	Mechanical Engineering	In charge of emission mandates, wind turbine implementation, project management, master schedule maker
Tomasz Lis	Architecture	Expansion process for the facility; 'leveling floor space' concepts and design

Since Fall 2004

Automated Shipping Containers

Grid-Rail (GRAIL) Over Head Lattice Concept

Inter-Yard Structure Concept

Buildout

- Recommended environmentally friendly intermodal design
- Uses grid structure with quantifiable layout

Warehouse and Energy Solutions

- Zero excavation-no dirt is moved offsite due to possible contaminations
- Energy reducing features including wind power, skylights and light sensors

Environmental Improvements

Air Emissions

Edge California Environmental Innection Appropriate Records the Enrinescenses distributions The critical Solvers the descript particulate media backly. The Critical is shown at the media backly the Critical is shown at the media backle the Critical is shown at the the media and the facility, as they want to critic or asket media met the Datas media by

4015,225 Mits in 2000*
 70% screen (1:500,000 eg %) land area
 with average (1:800,000 eg %) di constanter stratage
 # fattass. 1:22 manes (11/200)
 # Mil-ano, Coarses
 rotati-indader comentativity

intervential peri intervential participation of a state of a state

Cm-site Filtration Clagram The EPN states has the nation road muscif, the hard, constant the imaging of water contennants. It is accortance the Kitration system content the state of the termination of the discretions in failure and the termination advanced in their isoteness. When the borowants the water is further tracked with goard line and is finally advanced to least in the the goard line and is finally advanced to least into the goard line.

Water Reter

- Improved water retention
- Site specific improvements
- Improvements in air quality based on current standards

Bridge Design

- Meets needs of people and cars
- Two sided concept based design
 - eu uesign

Preliminary Investigation

Norfolk Southern Yard Visit:

- Gathered Hard Data
- Discussed Future Projections
 5yr Plan
- Observed Processes

- General Yard Layout
- & Functions

Trucking Time-space Diagram

Trucker • Unaided

Final Transfer

from chassis

- Crane
- Rail

Reduces Idle Time

- Reduced Labor Costs
- Improved Traffic Flow

Inter-Box Connecter

Natural Gas

- Environmentally Friendly
- Availability
 - Energy Independence
- Minimizes Disruption

- Diesel
- Bio Fuel

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

CNG Station

Benefits:

- •Road Tax License•No Interference•Availability
- •Rebates
- LNG vs. CNG
- Utilizes Parking Space
- Generates Income

Gas Inlet

CNG Engines RATIONALITY:

• Cost

- Cleaner emissions
- Made in the USA
- On site refueling
- Simplicity

PROCEDURE:

• Fuel system:

• Future

• Engines

Windmill

Integration:

- Light Towers
 - Power Lights
 - 100ft

Collaboration:

- Zero Energy Lab
 - Implementation
 - Grid Interconnection
 - Wind Velocity Test

Land Capacity

- Improved Traffic Flow
 - 50% Yard Expansion
 - Added Entrance / Exit
 - Proposals
- Land Limitations
 - Vertical vs. Horizontal Growth
 - Austell Facility
 - (1/2 Traffic & 2x Size)

Floored Parking: •Not feasible •Cost & Strength

Don't Miss Our Model

Conclusions

"Increase capacity with out increasing pollution"

Flow capacity can be increased through innovation and growth with out damaging the environment and its resources.

 Flipper, IBC, CNG Station, CNG Engines, Windmills

FUTURE WORK:

- Look into Solar Power
- Monitor Lighting Opportunities
- Develop Ideal Site Conditions

Accomplishments

- IBC Model
 - 3D in PRO-E
 - Animation
- Flipper Model
 - Physical Model
 - 3D cutting software
- Working Windmill
 - Collaboration with Zero Energy
- Over 17 Presentation
 - Peer Reviewed
- CNG Proposal
 - Station & Engine
- Land Expansion Proposal (x2)

IMPACTS: •Environmental •Energy Independence •Pollution Particulate •Community •Traffic •Market •Supply & Demand •10yr Projection •Norfolk Southern •Land Expansion

Thanks To:

MiJack (Sponsor) Norfolk Southern Zero Energy Lab Advisors: Laurence Rohter, P.E. Peter Mirabella Professor Sid Guralnick

