

Collaborative Mobile Robot
Surveyors

•Sterling Stuart Stein
•Case Cantrell
•Aaron Collver
•Michael Reed
•Chris Meyers

•Sheryl Lau
•Chance Yohman
•William Roberts
•Garret Stephenson
•Robert Malas

Odometry and Motion Control

• Examine the need for error correction

• Develop means for measuring the
distance the robot has traveled

• Create algorithm to dynamically adjust the
signals sent to the motors to compensate
for deviations

Proportional

Integral

Differential

Algorithm (PID)

Proportional

• To respond quicker to deviations.
• Increases overshoot, decrease steady-state error.

 Integral

• Decreases rise time like
Proportional Control

• Increase overshoot

• Eliminates steady-state
error

 Differential
• Decreases overshoot
• Introduces a small steady-

state error

Optical Encoders

• How fast the robot is
going is determined by
reflected pulses

• The distance traveled can
be determined from
number of rotations
detected

• Direction can be detected
based upon which
detector is activated first

Future Suggestions

• Tweak PID algorithm for accuracy

• Examine need for 4 sets of optical
encoders

• Evaluate the need for other technologies

Pick-a-Point Algorithm

• Moves at 90 degree
angles in order to
support grid map
system

• Moves around
obstacles by placing
them on its left side

• Uses straight-line
path to guide its
motion

Map Generation

• Map grid is divided into
6” squares

• Two sensors located in
the front and one on
the front of each side
can each view 1 tile of
the map.

• Map updates as robot
moves and finds
objects during Pick-A-
Point Algorithm

Path Planning
• With a pre-generated map, the
robot can move about without
worry of running into obstacles.

• First, determine multiple paths
for getting around an obstacle.

• Second, determine the
optimal path around the
obstacle path around the
obstacle (traverses the least
distance on way to
destination.)

• Third, continue doing so
around each obstacle until
destination is reached. At
this point, the quickest path
to the destination around the
obstacles has been
determined.

• Finally, robot travels the
points calculated to its
destination.

Sonar Mapping

• Our robotic surveyor is
equipped with sonar,
mounted on a servo
motor.

• The sonar has a
transmitter, which sends
out ultrasonic pings, and
a receiver, which detects
the ultrasound that is
reflected off of objects.

• This sonar is used by the
robot to extend it’s
mapping and location
abilities.

• The servo motor is
controlled by a modulated-
width pulse.

• Different pulse width turns
the motor to different
angles.

• The sonar is activated with
a simple electronic Hi/Low
signal.

• Once it is activated, it sends
out a single ultrasonic
pulse, and waits to receive
an echo.

• The robot counts the time
required for the return
pulse.

• This time can be translated
into the distance to the
nearest object.

1. In this picture, the
robot is at the X-
marked place, the
green areas represent
objects.

2. The robot’s base
station tells the robot
to start a sonar scan.

3. The angle from which
an echo is received is
not exact, but areas
can be ruled out as
‘empty’ from the data.

4. These data are
collected and used to
create a polar map
representation of the
area around the robot.

5. The polar map from
the sonar data is
transformed into a
Cartesian map.

6. This map is merged
with the robot’s global
map, and is used to
help route planning.

1. In this picture, the
robot is at the X-
marked place, the
green areas represent
objects.

2. The robot’s base
station tells the robot
to start a sonar scan.

3. The angle from which
an echo is received is
not exact, but areas
can be ruled out as
‘empty’ from the data.

4. These data are
collected and used to
create a polar map
representation of the
area around the robot.

5. The polar map from
the sonar data is
transformed into a
Cartesian map.

6. This map is merged
with the robot’s global
map, and is used to
help route planning.

Operating System & Loader
design

• The development of a procedure for
loading data and applications into RAM
through Wireless Ethernet (WiFi)

• Created a Virtual Machine (VM) to
incorporate loader and facilitate integration
with other groups.

• Written in Dynamic C

The operating system was programmed

on a RabbitCore RCM3000

VM Operation Modes

Idle State

Path Planning State Localization State

Initial State

VM State

Desired Capabilities of the Virtual Machine

• Direct VM state where the user interacts
 directly with the VM to upload, download,
 or select an application to run.

• Direct path planning and self localization
 states to where the control of the robot is
 turned over to its client mode

	Collaborative Mobile Robot Surveyors
	Odometry and Motion Control
	Slide 3
	Optical Encoders
	Future Suggestions
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

