IPRO 324-Power Measurement in Road Bicycles

"No Strain, No Gain..."

Final Presentation December 4th, 2009

Team Organization

- Mechanical
 - Team Leader
 - Celeste Wegrzyn
 - Team Members
 - Ross Allen
 - Sara Claxton
 - Gregory Herbert

- Electrical
 - Team Leader
 - Dan Shaffer
 - Team Members
 - Luis Adrianzen
 - Chris Antonio
 - Mark Callan
 - Patrick Tagny Diesse
 - Matthew Gaylord

Why Power Measurement?

- Measures output of power into the bicycle
 - Instant feedback
 - Cyclists can train at different levels
 - Strain gauges on power meter
 - Calculation of applied torque
 - Better than just measuring heart rate

What is Power?

Force (lbs)	Angle (°)	RPM	Torque (ft-lb)	Power (Watt)
90	125	60	41.72	355.48
65	35	60	21.10	179.77
120	70	45	63.82	407.80

• Power is the work per unit time

- Power is computed from the torque applied to the crank and the rate of pedaling
- Torque is rotational force applied to the axis of rotation through a lever arm

Background

- Existing products are too expensive
 - Cost of current products
 - Power Tap (\$999.00)
 - SRM (\$2,607.80)
 - Quarq CinQo (\$1,495.00)

Crankset Power Measurement Setup

- Strain Gages and Angle Sensor
- Power Measurement Circuit
- Wireless Transmission Protocol
 - ANT+
- Bicycle Computer
 - Garmin Edge 705

Chain Rings

Crank Arm

Our Approach

- Use the strain in the crankset (spider) to find torque
- Torque increases linearly with the strain
- Strains can be multiplied by coefficients to find torque at different crank angles
- Strain gauges are used to find strain by finding change in resistance through voltage drop across Wheatstone bridge

Mechanical Team Objectives

- Revise test stand setup from a vertical to horizontal configuration
- Obtain additional data from modified test stand setup
- Design mounting system of circuit
- Obtain a bicycle for road testing
- Acquire road test data

Mechanical Setup

- 4 full bridges of strain gauges are used
- P3 to measure strain

• Calibration free weights to apply load

Mechanical Team Obstacles

- Non-linearity and non-zero return in data
- Delays in obtaining bicycle
- Attachment of components to crank
- Integrating electrical and mechanical designs

Mechanical Obstacles

Small Chain Ring, Left Pedal, 112.5°, Gauge 2

Mechanical Obstacles

Mechanical Results

Small Chain Ring, Left Pedal, 357.5°, Gauges 2 & 4

Mechanical Results

- Strain-Power coefficients calculated from testing
- Designed and manufactured circuitry housing
- Integrated components to bike

$T = c_2 V_2 + c_4 V_4$

Angle (°)	22.5	67.5	112.5	157.5	202.5	247.5	292.5	337.5
C ₂	-38766	-64004	-71699	21496	14641	-9841	-14880	-11904
C ₄	-42122	-11667	-24068	-20482	-91663	-59697	-44909	-42161

Electrical Team Objectives

- Improve overall power efficiency of circuit
- Miniaturize and package electronics to conform to working space of crank set
- Prepare schematic diagram for PCB layout
- Debug algorithm calculating applied torque at crank set
- Integrate the angle sensor into the torque calculation

Electrical Team Obstacles

- Miniaturization of the circuit board to fit on the crank set
- Source code for the chip needed to be updated to reflect coefficients from mechanical testing
- Design of the PCB layout and assembly process

Electrical Results

- Power measurement circuit
 - 3V battery and 1V voltage regulator giving constant voltage
 - Miniaturized circuit to meet the size constraints

Electrical Results

• Source code

Integrated new
coefficients into the
code

Integrated angle sensor into the program algorithm

Conclusion

• Prototype

- Developed miniaturized circuit
- Calculated strain-power coefficients
- Manufactured circuitry housing
- Obtained bicycle
- Future work
 - Package product
 - Road Testing
 - Finite Element Analysis (FEA)
 - Optimize battery life

Acknowledgements

- Blue City Cycle
- Professor Dietmar Rempfer
- Professor Sheldon Mostovoy

