

Technical and Market Integration of Hydroelectric Energy

Affordable Renewable Energy for the Future

IPRO 343 – Fall 2006 Team www.iit.edu/~ipro343f06

ILLINOIS INSTITUTE

OF TECHNOLOGY

Technical and Market Integration of Hydroelectric Energy

Outline

Introduction

- Objective
- Feasibility Study
- Technical Design
- Environmental Assessment
- Conclusion

Introduction to Hydroelectric Energy

• Conventional power plants are responsible for:

- 67 % of Sulfur Dioxide (SO₂) emissions
- 23 % of Nitrogen Oxide (NO_x) emissions
- 40 % of Carbon Dioxide (CO₂) emissions
- \circ Renewable Energy and Emission Free
- Kinetic & Potential Energy to Electrical Energy
- Main Parts
 - Turbine
 - Generator
 - Powerhouse

ILLINOIS INSTITUTE

Technical and Market Integration of Hydroelectric Energy

Scale of Hydroelectric Power Plants

 Large-scale hydroelectric plants require large dams, high civil works, and huge investment.

 IPRO approach is focused on small-scale plants, with low costs and minimum environmental impacts

Technical and Market Integration of Hydroelectric Energy

IPRO 343 Goals

\circ Objective

- To design a small hydroelectric power plant at an existing dam on the Fox River
- o Sub Teams
 - Design
 - Environment
 - Marketing

ILLINOIS INSTITUTE

Technical and Market Integration of Hydroelectric Energy

Elgin Dam, Elgin IL

uninnin nin

Flow Duration Curve

• Elgin Dam (Elgin, IL)

OF TECHNOLOGY

Technical and Market Integration of Hydroelectric Energy

Stolp Island East Dam, Aurora IL

Flow Duration Curve

• Stolp Island East Dam (Aurora, IL)

Technical and Market Integration of Hydroelectric Energy

RETScreen Software

NUM

Feasibility Study Inputs

Dam Height Elgin Dam: 13 ft Stolp Island East: 8 ft Gross Head • Elgin Dam: 7.2 ft Stolp Island East: 7 ft Electricity Price: 0.051\$/kWh Costs: U\$\$ 2,000,000.00 • Grants & Tax Credits

Feasibility Study Results

Technical Parameters	Elgin	Stolp Island East
Design Flow	1237 cft	992 cft
Maximum Plant Output	566 kW	630 kW
Annual Energy Production	3,071,000 kWh	3,502,000 kWh

Economic Indicator	Elgin	Stolp Island East
Simple Payback	12.5 yr	9.9 yr
Year-to-positive cash flow	6.5 yr	4.1 yr
Net Present Value - NPV	\$ 274,234.00	\$ 518,807.00

Technical and Market Integration of Hydroelectric Energy

Feasibility Study Sensitivity Analysis

Year-to-Positive Cash Flow at Elgin Dam

Technical and Market Integration of Hydroelectric Energy

IPRO 343

Feasibility Study Sensitivity Analysis

Year-to-Positive Cash Flow at Stolp Island East Dam

Technical and Market Integration of Hydroelectric Energy

IPRO 343

Power Market Impact

Tools: Security Constrained Location: TDC-570 bus in Unit Commitment (SCUC) the ComEd Power system

ILLINOIS INSTITUTE

Technical Design

\circ Siphon Turbine

- Perfect for Small Hydro
- Minimum dam modifications
- Minimum civil work
- Choice for the Elgin site

ILLINOIS INSTITUTE

Technical Design

Preliminary Design for Elgin (Siphon Turbine)

Technical and Market Integration of Hydroelectric Energy

Technical Design

- Compact Bulb
 Turbine
 - Significant civil work
 - Small and minimum applications
 - Suitable for Aurora site

ILLINOIS INSTITUTE

Technical and Market Integration of Hydroelectric Energy

Technical Design

Preliminary Design for Stolp Island East (Bulb Turbine)

Technical and Market Integration of Hydroelectric Energy

ILLINOIS INSTITUTE

Impacts on Water Quality

and the second second

Impacts on Recreational Activities

1

Catch and Release Only Fishing

Conclusions

Achievements

- Designed low-head small hydro at Elgin and Stolp Island East
 - Economically profitable
 - Technically efficient and feasible
 - Environment friendly
 - CO₂: 1,690,000 lbs SO₂: 3,330 lbs
 - NO_x: 1,030 llbs Fuel: 36,000 MBTU
- Starting point of a massive application of small hydro in Illinois and around the country

ILLINOIS INSTITUTE

Conclusions

• Future Work

- Communicating this project to the general public and seeking political support
- Learning the permitting process and applying for grants
- Contacting manufacturers and contractors to obtain more accurate price quotation
- Obtaining more detailed site dimensions and fine-tuning the technical designs
- Continuing this project with an EnPRO for actual implementation

ILLINOIS INSTITUTE

Acknowledgments

 \circ Special Thanks to:

- Dr. Alexander Tseng Sponsor of this IPRO
- Dr. Mohammad Shahidehpour Chairman of the ECE department
- Dr. Zuyi Li

Assistant Professor of the ECE department

Peter Schiel

City Engineer, Kankakee IL

Dan Feltman

New Development Coordinator, Aurora IL

Questions?

Technical and Market Integration of Hydroelectric Energy