The Artificial ncreas 0

Group Members

- Elena Davis MBB * Venkata Ravuri CHEE
- Jennifer Miller BIO * Kirthi Reddy EE
- Maje Nazim MBB * Vidya Shivakumar MBB
- Sapna Patel MBB Ryan Tanner CS
- Shital Patel EE
 Aurimas Vinckevicius –
- Yagna Pathak BME MBB

3 0 8

Breakdown of BackgrBuresentation

- Project Plan/Strategy
- Accomplishments
- Analysis
- Conclusions

3

08

Diabetes

- Body does not make or properly use insulin
- Insulin is a hormone required for the metabolism of sugars
- It is estimated that 20 million Americans
 have diabetes

Types of Diabetes Type 2

"Juvenile"
 The body
 The body
 Insulin
 produces
 resistance
 causes
 usable insulin
 insulin to be less
 useful

Adverse Effects of Diabetes

Hyperglycemia

Hypoglycemia

- High bloodglucose
- Effects develop slowly
- Include: ocular neuropathy, poor circulation, and heart problems

- Low blood glucose
 Medical emergency called 'Insulin
- Shock'

Results very quickly in slowed breathing, coma and even death

Monitoring and Blood glucose/insulin Levels

- Venepuncture
- Painful and patient compliance suffers

Non-Invasive
 techniques must be
 developed

Steve Almburg

30

Project Design and Goals Phase 1 Phase 2

- Research Aesthetics
- Prototype Design Patents
- Market Analysis
 Customer
 Analysis

Previous Work

Spring 2004 - Spring 2005

- Focused primarily on monitoring
 - Combined vacuum, ultrasound, and reverse iontophoresis

**

The Artificial Pancreos

Our Work

"Possibility to Actuality"

True Artificial Pancreas

- Monitoring
- Delivery
- The Link

How it Works 1. Monitor Blood/Glucose Level

2. Determine Amount of Insulin Needed

3. Deliver Insulin

Let B be the basal amount given every 10 minutes. Let x be the glucose points in the blood at a certain time Let y be the small amount of bolus given (0.05?)Let z be the amount of points lowered by y $[(X_0 - X_1) = z]$ Let A be the number of points that must be lowered (A = X-100) Let C be the number of boluses needed to lower the glucose level to normal (A/z = C)

- 1. Administer B
- 2. measure X after ten minutes
- 3. store value of X in an array
 - a. if X is between 100-110,
 - i. administer y
 - ii. calculate A
 - iii. measure X every minute for next ten minutes
 - iv. store each X in array
 - v. average or RMS X values for ten minute interval
 - vi. calculate z
 - vii. calculate C
 - viii. administer C units of y
 - ix. store C + 1 in an array
 - b. if X is less than 60,
 - i. administer glucose injection (Jude)
 - ii. measure X after ten minutes
 - iii. store X in array
 - iv. loop
 - c. If other, start program over at step 1

- **Better Control**
- Flexibility
- More Freedom
- Outward signs of Diabetes

 \mathbf{X}

The Artificial Pancreos

Other Insulin Delivery Methor Insulin pens

Inhaled delivery

Ideal Pump Candidates

- Have realistic expectations
- Ability to problem solve
- Accepting of the disease
- Self motivated
- Mature

Comparison of Insulin

Pump	Deltec	MiniMed	IPRO 308 - Artificial Pancreas
Non-Invasive	No	No	Yes
Glucose Monitoring System and Insulin Pump together	Can be attached to the pump	Yes	Yes
Waterproof	Yes	No	Yes
Can be used on airplanes	Yes	No	Yes

Comparison of Insulin

Pun	Nini Med's Paradigm	MiniMed's Guardian	Dexcom STS	IPRO 308 Artificial Pancreas
Batteries for monitor	No separate monitor	2 AAA batteries	Chargeable batteries that need recharging every 5 days	Lithium ion rechargeabl e
Communicat e With the insulin pump	Yes, with Paradigm 522 & 722	No	No	Yes

The Past, The Present, The Past, The Past, The Past, The Past, The Present, The Past, The Past,

Non - Invasive Glucose Monitoring

Present

 Non-Invasive Glucose Monitoring and Insulin Delivery

Future

Aesthetics, Features, Patents and Grant Proposals, BME Competition

R

308

Acknowledgments

We would sincerely like to thank:

- Dr. Emmanuel Opara
- Mr. Ray Deboth
- Mr. Steve Almburg
- Dr. Lou Philipson
- Dr. Ganash Raman
- Dr. Myron Gottlieb
- Mr. Jude Kieltyka

