
Process For Remediating PCB Contaminated Soils

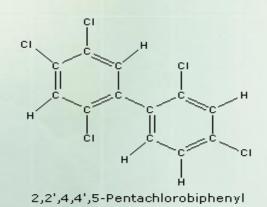
IPRO 345

<u>Chemical Engineering</u>: Dolapo Popoola, Katya Barragan Perez, Robert Rivera, Ahlam Hmadouch, LaShawna Taylor, Charlotte Okwudi, Suman Bir

Other Disciplines:

Sotiel Polena, Vito Bussman, Justin Kirk, Jon Witthoeft

Faculty: Dr Lindahl


Objectives of IPRO 345

- Review research papers and articles on PCB
 - Define PCB chemistry
 - Document industrial usage of PCB
- Design a mobile fluidized bed operation to remediate the soil
 - Use a computer-aided process simulation system (HYSIS) to model the design
- Determine equipment size, process capital and operating costs

Background on PCB

- Polychlorinated biphenyls (PCB) or Aroclor, are synthetic chemical compounds consisting of chlorine, carbon and hydrogen
- Used as an insulating fluid in electrical equipment until 1977
- Previously manufactured transformers and capacitors with lifetimes of 30+ years still contain fluids made with PCB's
- Due to previously unregulated disposal of PCB, a large quantity was improperly dispersed into the environment
- Upon exposure into the environment, PCB is not biodegradable

The Danger of PCB

- The U.S. EPA classifies PCB as a carcinogen
- Other effects are to:
 - Various body systems such as the immune system
 - Birth Weight
 - Head circumference
 - Gestational age
 - Neonatal behavior
- Means of Exposure to PCB:
 - Inhalation
 - Skin contact
 - Consuming fish from contaminated waters

Regulations for the disposal of PCB in the U.S.

- Disposal of PCB materials that are still in service is controlled by federal regulations
- The Food and Drug Administration (FDA) has issued permissible levels of PCBs in food and packaging
- Releases > 1lb must be reported annually and entered into the Toxic Release Inventory (TRI)
- Companies must be granted an approval before performing their disposal activities

Options for remediating PCB from soil

- Incineration
- Excavation and land filling
- Dechlorination
- Supercritical Fluid Extraction

Thermal Desorption

Thermal Desorption

What is Thermal Desorption?

- Process of applying heat to a contaminated material to bring the contaminants into the gas stream
- Gas stream is then treated prior to discharge to the environment

Methodology

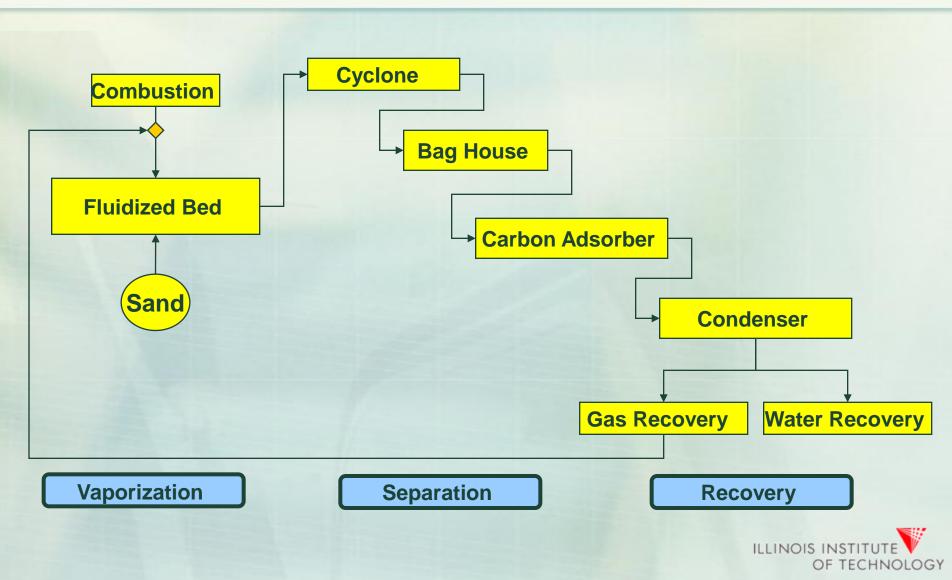
- Combustion gas is the transfer medium for the vaporized components
- Fluidized bed is the contact chamber for the solid particles and the combustion gas

Effectiveness of Thermal Desorption

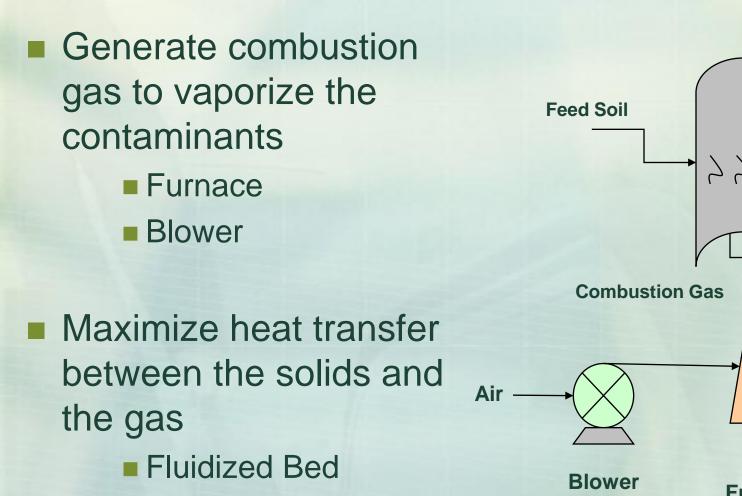
		Effectiveness			
C	ontaminant Groups	Soil	Sludge	Sediments	Filter Cakes
Organic	Halogenated volatiles	1	2	2	1
-	Halogenated semivolatiles	1	1	2	1
	Nonhalogenated volatiles	1	2	2	1
	Nonhalogenated semivolatiles	1	2	2	1
	PCBs	1	2	1	2
	Pesticides	1	2	2	2
	Dioxins/Furans	1	2	2	2
	Organic Cyanides	2	2	2	2
	Organic Corrosives	3	3	3	3
Inorganic	Volatile metals	1	2	2	2
	Nonvolatile metals	3	3	3	3
	Asbestos	3	3	3	3
	Radioactive Materials	3	3	3	3
	Inorganic Corrosives	3	3	3	3
	Inorganic Cyanides	3	3	3	3
Reactive	Oxidizers	3	3	3	3
	Reducers	3	3	3	3

Key:

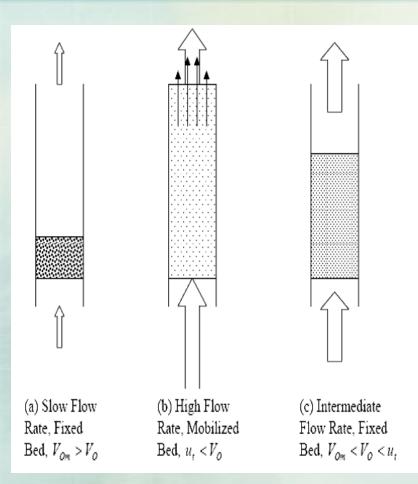
1 - Demonstrated Effectiveness: Successful treatability at some scale completed.


2 - Potential Effectiveness: Expert opinion that the technology will work.

3 - No Expected Effectiveness: Expert opinion that the technology will not work.


Source: U.S. EPA, 1991. Engineering Bulletin: Thermal Desorption Treatment. EPA/540/2-91/008.

Thermal Desorption Flow Diagram

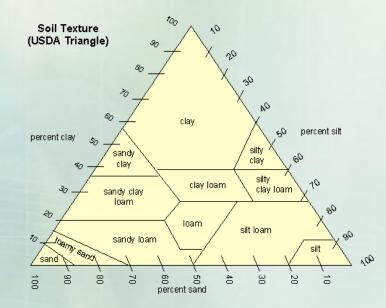

Vaporization

Effluent Gas 777 **Treated** Solids, **Methane Furnace** ILLINOIS IN OF TECHNOLOGY

Fluidized Bed

- Solid particles are suspended in upward rising gas
- Fluidization of the particles
 depends on the velocity of
 the incoming combustion
 gas
 - Minimum fluidization velocity
 - Terminal velocity

Design Parameters


Sand Distribution:

- Bulk Density = 1.3g/cm3
- Variable Size: 10% clay; 5% Silt; 85% Sand
- Porosity = 0.35
- Fluidized Bed
 - T= 400F, P=20psig
 - Gas Velocity, V

 $0.389m/s \le V \le 10m/s$

Assumptions

- Adiabatic furnace
- Perfect sphericity of the sand particles

Design Calculations

Furnace:

 Design combustion reaction to supply the required heat and gas loads

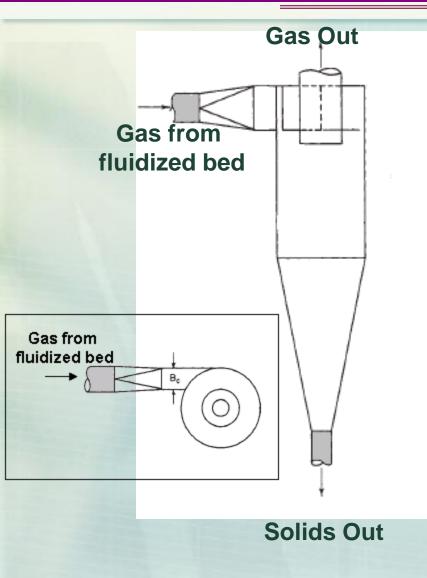
Fluidized Bed

- The minimum Fluidization Velocity, $V_m = 0.389$ m/s
- The Particle Diameter, d_p=32.7µm
- The Gas density, $\rho = 4.59.E-4$
- The vessel Diameter, D=2.52m
- The heat required to vaporize PCB, Q=2.7.E6 KJ/hr

Types of Dust-Collection Equipment

Gravity Settling Chamber

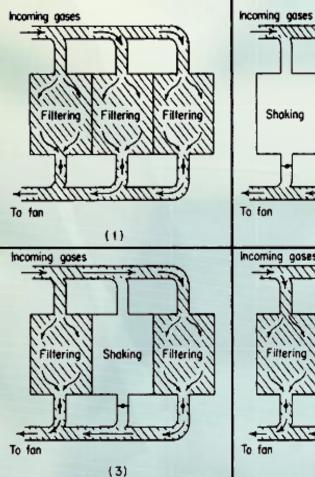
- Low power consumption
- Large and Bulky
- Particle range 40-100 um

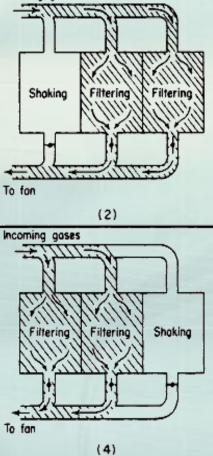

- Uses centrifugal force
- More efficient under heavy loads

Cyclone

Particle range 15-50 um

Physical Separations Stage 1: Cyclone


- Three parallel cyclones
- Mean particle diameter: 18 microns
- Pressure drop was 7.573E-06 kPa
- Efficiency was 90.0%.


$$D_{pth} = \sqrt{\frac{9\mu_g B_c}{\pi N_s v_{in}(\rho_p - \rho_g)}}$$

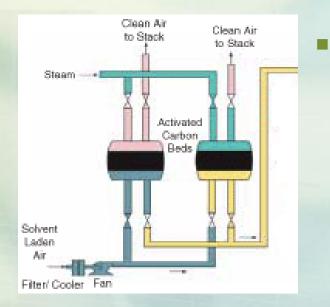
0.2000
0.5000
1.500
0.5000
0.5000
0.3750
4.803 m
4.000

INOIS INSTITUTE V OF TECHNOLOGY

Physical Separations Stage 2: Bag House

Inlet Mass Flow: 2535 kg/hr

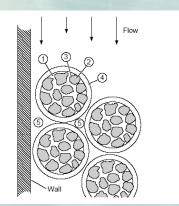
Vapor Effluent: 2525 kg/hr


Solid Effluent: 10.04 kg/hr

Material Nextel (454-482)

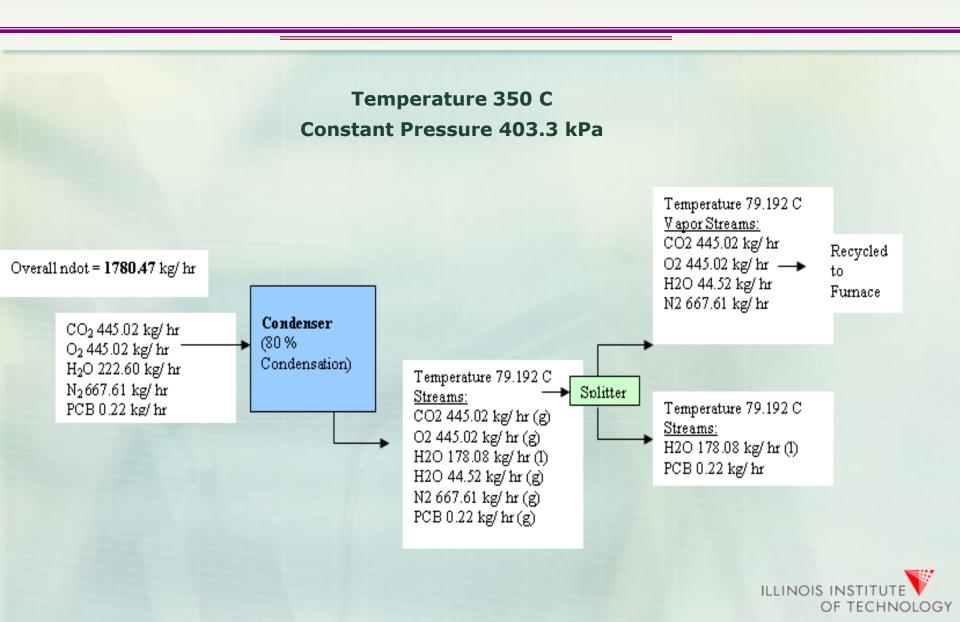
Max gas velocity	5.0E-03	
Bag filter area	1.480 m ²	
Clean bag pressure drop	0.2400 kPa	
Dirty bag pressure drop	2.000 kPa	
Bag diameter	0.30 m	
Bags per cell	78	
Bag spacing	0.02 m	

ILLINOIS INSTITUTE OF TECHNOLOGY


Adsorber

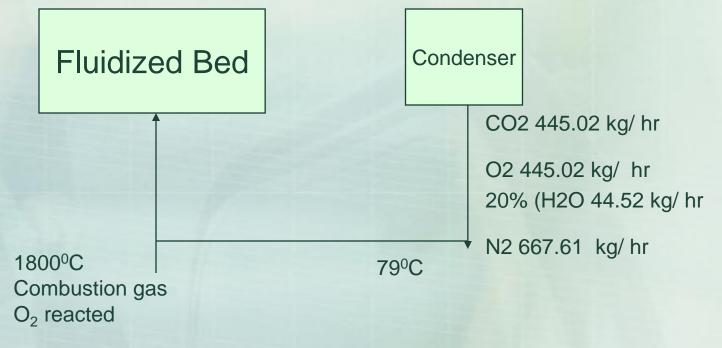
Activated Carbon

- Hydrophobic
- Recovery efficiency greater than 99 %
- Low operating cost
- Long operating life
- Accumulation per unit surface area is small


- Design
 - Langmuir Isotherm
 - Adsorbed phase is a unimolecular layer
 - At equilibrium, rate of adsorption equals rate of desorption from surface

Internal porosity	60%
Void fraction	0.4
Bulk density	20 lbm/Ft^3
Pore diameter	1.4 nm
Total Volume of Cilinder	56.55 ft^3
Volume of solute in cilinder	7.6 ft^3
Surface area	14.96 ft^2

Condenser

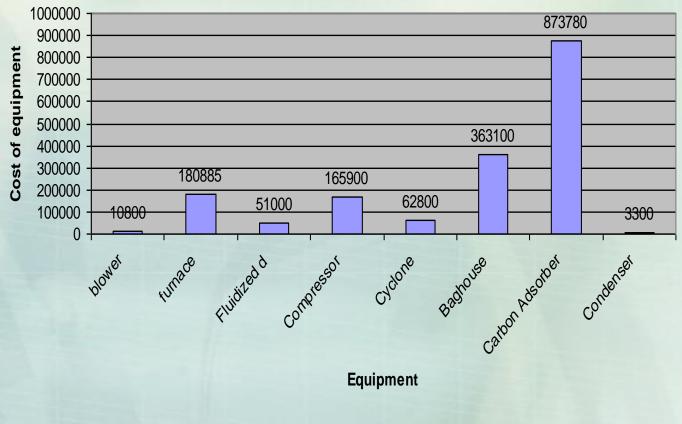


Recycle

CO₂, 445.02 kg/ hr
 O₂, 445.02 kg/ hr

H₂O, 44.52 kg/ hr
 N₂, 667.61 kg/ hr

Cost Analysis


Capital Cost (Monthly)

Equipment	Unit Cost	Number required	Total cost including Installation (\$)
Blower	3600	1	10,800
Furnace	60,285	1	180,885
Fluidized bed	17,000	1	51,000
Compressor	55,300	1	165,900
Cyclone	10,400	2	62,800
Baghouse	12,100	1	363,100
Carbon Adsorber	291,260	1	873,780
Condenser	1,100	1	3,300
TOTAL			\$1,711,565

Capital Cost Comparison

Captical Cost Analysis

Fixed Cost

Waste Water Treatment (lb/yr) Landfill (sand) (lb/yr)		250,000 0
Unit Cost (bed truck)	50,450	
2 flat bed trucks		100,900
Purchased Components Methane Air Carbon		\$2.12/lb \$.06/lb \$2.06/lb

Utility Cost

Electricity \$0.06/Kwh

Source: Department of Energy Fact Sheets

		Utility Cost(\$)/hr
Splitter	44Kw	2.64
Cooler	223Kw	13.38
Cyclone	200kw	12
Baghouse	208KW	12.84

Total Annual Treatment Cost

Capital Cost/yr Fixed Cost Variable Cost

Annual Cost

\$20,538,780 \$27,360,515 \$2,582,045

\$50,481,340

Hazard Analysis

Physical hazards Elevated noise levels Control: PPE Chemical hazards PCB waste Dust Control: Enclosed disposal unit Wetting the sand

Safety Issues

- Process Chemicals
- Dust
- Fire and Explosion
 - Leaking of fuel from damaged storage containers or pipelines

Control: Forbid smoking and open flames in the area

Noise

- Working near air blowers and pumps

<u>Control</u>: Identify and mark areas requiring hearing protection

Conclusion and Summary

After clean-up, only 1% of PCB remain

Mobile design

- Plant can be transported to each site
- Flat bed trucks are used to achieve this purpose

Acknowledgments

Dr Lindahl
Dr Javad Abbasian
Dr Nader Aderangi
Dr Krishna Pagilla

Questions

