ZERO COMMUNIITY

IPRO 323

ADAM BOHAC, DAVID BRADY, JUAN BUENO, DANIEL COUGHLIN, LOWELL DEPALMA, JUAN GONZALEZ, JOSH GROSS, CARLOS HERNANDEZ, JENNIFER IVERSEN, KEANEN MCKINLEY, MICHAEL MOCERI, NISHANT MODI, ANTHONY WISNIEWSKI, BRYAN ZACHARIAS

Mission

- Create a zero energy housing module which can expand to an entire community
- Encourage Chicago suburbs to reassess standards
- Influence sustainable planning of future communities

Team Development

- First semester for IPRO 323
- Create research base
- Team Organization
 - Team Leader
 - Subgroups
 - Individual Roles

Team Structure

Team Performance

- No project history
- Goals
 - Use new and existing technology to create a home that had zero net energy consumption
 - Design homes in a replicable module that can expand to an entire community
 - Make homes more efficient and comfortable
 - Examine established zoning and building regulations
 - Establish new guidelines for planning innovative sustainable communities
 - Document and present findings to Chicago area suburbs

Project Work

- Collaboration of each subgroup
- Demographics
- Average vs. Prototype Home
- Criteria
 - LEED
 - Energy Star

Problem Solving Techniques

Problems

- Multitude of systems
- Using credible sources
- Simulating solutions
- Sharing information
- Efficiency v. Price
- Solutions
 - Google Docs
 - eQUEST
 - Standardization of units

Specific Techniques

Google Docs

- Lists all systems by subgroup
- Reduces overlapping research
- Accessible to all group members
- Simulating solutions
 - eQUEST
 - Compare to average
 - Compare systems
- Standardization of units
 - Compare costs
 - Monetary
 - Energy

Problem Solving

- Cooperative process
 - All subgroups participate equally
 - Subgroups constantly advise one another
- Design for efficiency
 - Process based upon sustainability
 - Emphasis on reducing energy use
- Feedback loop

IPRO 323

ZERO COMMUNIITY

 Solution is refined and reanalyzed with new information

Demographics

Statistic	Oak Park	Evanston
Average Household Size	2.26	2.27
Average Family Size	3.06	3.03
Median Age	36	32
Median Income/Household	\$74,614	\$69,303
Median Income/Family	\$103,840	\$102,580
Per Capita Income	\$36,340	\$33,645
Children Under 18	29.5%	25.4
Married Couples	42.1%	40.4
Population	52,524	74,239
Families	12, 970	15,952

***ľ**Ťi

Zoning Analysis

ZERO COMMUNIITY

Requirement	Oak Park	Evanston
Zoning District	R-5/2-family	R-4/2-family
Minimum Lot Size	5,000/ duplex	2,500/d.u.
Max Building Height	35 feet	35 feet or 2.5 stories
Max Impervious	65%	55%
Front Setback	20 feet	27 feet
Side Setback	5 feet	5 feet
Rear Setback	25 feet	25 feet

Similar Code

Average Home

- > 3,000 square feet
- 2–Stories
- Wood–Stud construction
- Poorly insulated
- Small windows
- Inefficient use of space
- Does not take advantage of natural light or ventilation
- Antiquated mechanical systems and appliances

Prototype Site Concept

Typical block

- Narrow lots
- North-South alleys
- Restricted solar access
- Less daylight

Proposed Checkerboard

- Repurposed alley
- Large shared green space
- Increased solar access
- Improved ventilation

Module Planning...

Higher density with more green space

Full Site Planning...

Enhanced CommunIITy through shared site features and green space

Shared Plumbing Wall

Common Basement

Circulation and Stack Ventilation

IPRO 323 ZERO COMMUNIITY

Bathrooms

ZERO COMMUNIITY

Building Stats

- 2 Dwelling units
 - 2 Bedroom
 - @ 1500 sqft
 - 3 Bedroom
 - @ 2000 sqft
- Total 3500 sqft

ZERO COMMUNIITY

- Ventilation:
 - Operable windows near floor
 - Clear-stories in bedrooms
 - Open-riser stair
 - Damper at top of stair

- Green Roof:
 - Evaporative cooling

ا و و و و و و و و

Light-shelf/Insulating Shutter:

- Day: natural light brought deeper into rooms, reducing dependence <
 on electric lighting, LED bulbs used when needed
- Night: shutter covers glass to reduce heat loss

Light-shelf/Insulating Shutter:

- Day: natural light brought deeper into rooms, reducing dependence on electric lighting, LED bulbs used when needed
- Night: shutter covers glass to reduce heat loss

Floor Plans

ا و و و و و و و و

Floor Plans

IPRO 323

ZERO COMMUNIITY

Second Floor Plan

1259 SF

Third Floor Plan

375 SF

و و و و و و و و و

Structural Insulated Panels (SIPs)

IPRO 323 ZERO COMMUNIITY

ا و و و و و و و و و

Structural Insulated Panels (SIPs)

- High R-Value
- Low air infiltration
- Can provide 50% annual energy savings
- Improves indoor air quality
- Reduces construction waste
- Made from sustainable, low cost, materials
- Requires 24% less energy to produce than fiberglass insulation

IPRO 323

ZERO COMMUNIITY

* Tests show that in the "worst case commonly found of procedures for installing batt insulation" the performance drops to R-11. Figure courtesy of APA.

Gas-Filled Windows

IPRO 323

ZERO COMMUNIITY

- Low-E gas reduces heat transfer
- Applicable to standard windows
- Non-toxic, transparent, odorless
- Argon: low cost (~\$0.12/ft³)

	Average Home	Prototype Home
	Single Pane	Triple Pane Argon
Heat Transfer (kW)	7313	29
Yearly Cost	\$6,854.00	\$27.18

Reduces heat transfer by $\sim 99\% \rightarrow \rightarrow \rightarrow \$$

Green Roof

- Reduces water runoff
- Reduces heat island
- Protects roofing from sun and environment increasing roof life
- Reduces heat gain from sun
- Cools building due to evapo-transpiration
- Attractive

IPRO 323

ZERO COMMUNIITY

Sustainable Finishes

- Use recycled or naturally abundant materials
- Require less energy to produce
- Improve indoor air quality

IPRO 323

ZERO COMMUNIITY

Active Systems Utilized

- Geothermal Heat Pump
- Radiant Floors
- Grey Water System
- Solar Thermal
- Photovoltaic Panels

Geothermal

Vertical Loop

IPRO 323

ZERO COMMUNIITY

- Disturbs less surface area
- Ideal for densely populated areas
- Drilled 150–300 ft deep
 - Low maintenance cost
 - Protection from weather and vandalism
- Temperatures are more stable

Radiant Floors

- Better than Forced Air Heating
 - Doesn't use air as a heating medium
 - Directly heats objects
- Perceived temperature is higher
- Heating components are built directly into the flooring
- Works on the principle that heat rises

Grey Water Systems

Reduces water waste

IPRO 323

ZERO COMMUNIITY

Not to be confused with "black water"

Solar Thermal

- Closed loop drainback system
- Freeze tolerant
- Low maintenance
- Low profile and lightweight

IPRO 323

ZERO COMMUNIITY

Shared Wall

- Shared wet wall
- Hot water collected
 - Water
 - Spaces

IPRO 323

ZERO COMMUNIITY

- Green roof filters rain
 - Grey water
 - Landscaping
- Integrated systems reduce waste

Photovoltaic Panels

IPRO 323 ZERO COMMUNIITY

ا و و و و و و و و و

ا و و و و و و و و و

PV Economics

MONTHLY PRODUCTION

(210 W ea. unit) x (48 units)x (10/24 hours of sunlight)x (720 hrs/mo)

= 3019 KW*hr per month

MONTHLY ELECTRIC BILL SAVINGS

(\$.107 Kw*hr) x (3019 Kw*hr)

= \$323.03 per month

PAYBACK TIME

(\$42566.00) / (\$323.03 per mo.)x (12 mo/year)

~ 11 years

TOTAL COST = \$42566.00

IPRO 323 ZERO COMMUNIITY

MATERIALS 4% DC DISCONNECT .7% AC DISCONNECT .4% METER UP-CHAR

PV Panels \$25026 FV Panels \$25026 57% 57% 57% 57% S7000.00 NSTALLATION \$10800

***İ**Ťi

Average Home

TOTAL YEARLY ELECTRIC CONSUMPTION

21,200 kWh

TOTAL YEARLY GAS CONSUMPTION

26,400 kWh (converted from Btu)

Area Lighting Task Lighting Misc. Equipment

IPRO 323

ZERO COMMUNIITY

Water Heating Ht Pump Supp. Space Heating Refrigeration Heat Rejection Space Cooling

Prototype Energy Consumption

ANNUAL ELECTRIC CONSUMPTION

15,300 kWh

ANNUAL GAS CONSUMPTION

0 kWh (converted from Btu)

IPRO 323

ZERO COMMUNIITY

kWh x 1000

kWh x 1000

IPRO 323 ZERO COMMUNIITY

IPRO 323 ZERO C<u>OMMUNIIT</u>Y

Prototype Energy Consumption

ANNUAL ELECTRIC CONSMPTION

15,300 kWh

ANNUAL GAS CONSUMPTION

0 kWh (converted from Btu)

Area Lighting Task Lighting Misc. Equipment

ZERO COMMUNIITY

IPRO 323

Exterior Usage Pumps & Aux. Ventilation Fans Water Heating Space Cooling Space Heating AVERAGE VS. PROTOTYPE AVERAGE ANNUAL USAGE 47,600 kWh PROTOTYPE ANNUAL USAGE

15,300 kWh

SAVINGS **32,300 kWh** @ \$0.107 **\$3,456**/year OVER A 30 YEAR MORTGAGE **\$188,611**

Carbon Offset

One pound of coal produces 1.22 kWh

COAL SAVED BY PROTOTYPE kWh SAVED 32,300 /1.22 POUNDS OF COAL 26,475 lbs coal/ year

Conclusion

Multidisciplinary approach **Design for efficiency** Enhance green space and community **Reduce infrastructure costs** Reduce energy consumption Produce all energy on site (no gas) Use sustainable materials and methods Greatly reduce carbon emissions

