EnPRO 356 Spring 2005

Mercury Pollution Prevention Technologies

Matthew Dabney Noël Wessely Chris MacDougall Wen-Ya (Mia) Chang Byung Kim Khiem Nguyen

Advisor: Dr. Myron Gottlieb

Overview

- Problem & Solution
- Regulations
- Virtual Sorbent Bed
- Competitors
- Market Size & Strategy
- Financials
- Risks & Assumptions
- Path Forward

Problem

- Mercury is a persistent, bio-accumulative nerve toxin.
 - In high doses, mercury kills.
- Four (4) tablespoons of mercury distributed among the <u>entire population of Canada</u> (32 million) would result in toxic levels of mercury.
- Coal Plants are releasing 48 Tons of mercury every year in the <u>United States alone</u>
- U.S. EPA states that a safe dosage is: 0.1 µg/kg body weight/day

Solution

- The United States has announced new regulation
 - Released March 15th, 2005
- These regulations require a reduction in coalfired power plant emissions
- Advanced technology will be used to achieve emission reduction

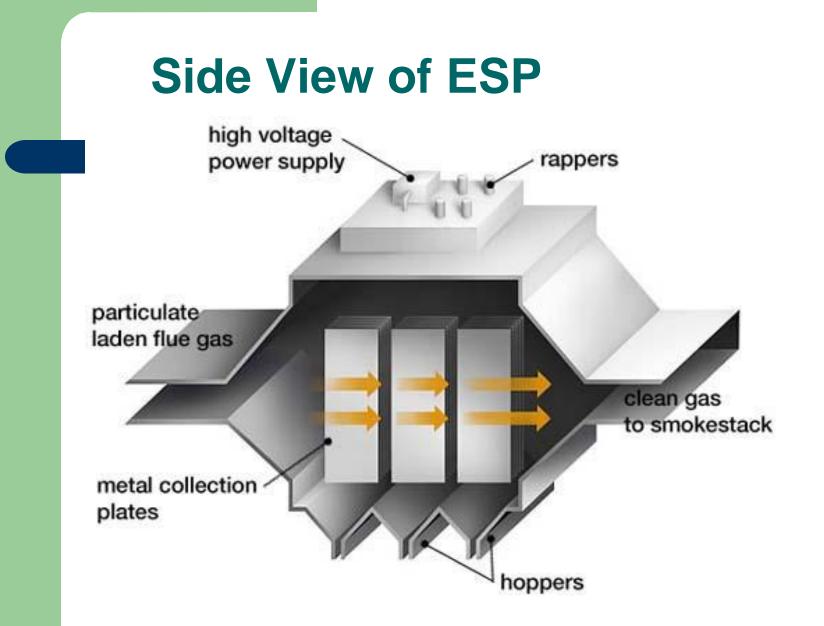
Regulations

Regulations - The Clean Air Mercury Rule (CAMR)

- 1st phase cap of 38 tons per year in 2010
 - 21% decrease in emissions
- 2nd phase cap of 15 tons per year in 2018
 - 69% decrease in emissions
- CAMR applies to a wide range of generating units
- No provisions for "grandfathering" for age

Regulations - The Clean Air Mercury Rule (CAMR)

- Cap-and-trade system for reducing emissions
- Emissions limits (per generating unit):
 - Bittuminous coal: 21×10⁻⁶ lb/MW-h
 - Subbituminous coal
 - Wet FGD: 42×10⁻⁶ lb/MW·h
 - Dry FGD: 78×10⁻⁶ lb/MW-h
 - Lignite coal: 145×10⁻⁶ lb/MW-h


The Opportunity

- EPA only defined emissions limits and not the technology
- Any technology that can meet the regulations effectively is needed
- The VSB shows promise as a leading candidate

Virtual Sorbent Bed

Virtual Sorbent Bed (VSB) Background

- The VSB is a new technology designed to capture mercury in power plants
- Works as an addition to an existing technology, the Electrostatic Precipitator (ESP)
- Currently, 70% of all power plants already have <u>ESP's installed</u> in them.

Diagram of How the VSB Works

Advantages

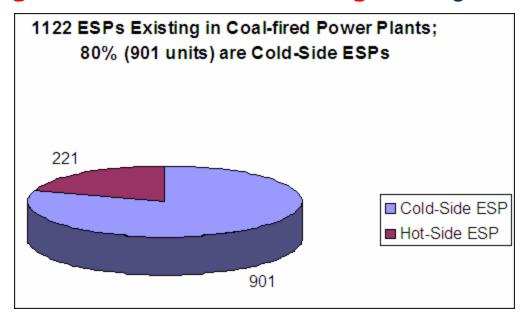
- <u>Cost</u>: modifying existing ESP's should be cheaper than adding entirely new equipment
- <u>Efficiency</u>: activated carbon based technologies are the most efficient technologies currently practiced.
- <u>Compatibility</u>: expected to work well with most power plants on the market.
- <u>Size</u>: small size makes it easier to install, space constraints less of an issue
- <u>Cross-flow pathway</u> of the activated carbon results in greater contact with the Hg-contaminated gas

Competitors

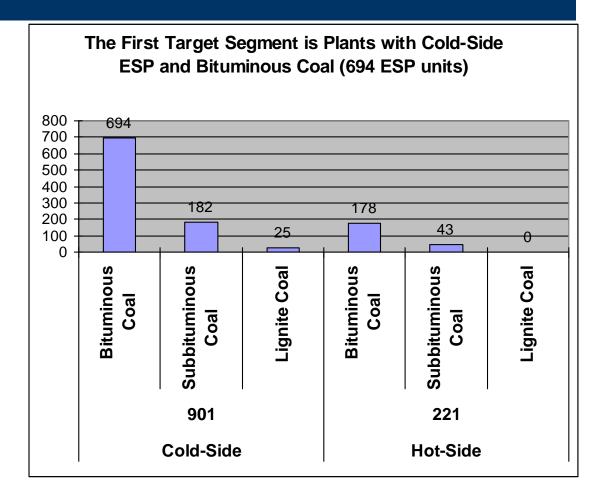
Top Competitors

Technology type	Efficiency
FGD+C-ESP	80
FF+ESP	90
Fabric Filter (FF)	70
Spray Dryers Absorbers (SDA) +FF	98
Electro-Catalytic Oxidation (ECO) Powerspan	80+
MerCap™	95

Table of Advantages/Disadvantages


Technology type	Cost	Ease of Implementation	Retrofittable	Proven
VSB	\checkmark	√	\checkmark	X
FGD+C-ESP	~	X	√	√
FF+ESP	X	X	~	√
Fabric Filter (FF)	~	√	X	√
Spray Dryers Absorbers (SDA) +FF	X	~	X	√
Electro-Catalytic Oxidation (ECO)	DNK	DNK	X	X
MerCap™	DNK	DNK	√	X

DNK = Do not know


Market Size

Market Size

The **Virtual Sorbent Bed** (VSB) is an attractive mercury pollution prevention technology for existing electrostatic precipitators (ESP), since these two technologies are compatible and can create **significant economical savings** through cooperation.

Market Segments

Strategy and Financials

EnPRO's Market Strategy


- Patenting and Licensing
- Partner with an Architectural Engineering Firm and/or an ESP manufacturer
 - Need specialized knowledge and additional resources.
 - Changes target market and how it is reached
 - Selling to distributor not to end-user

Financials - Approximations

Strategy	Percentage	Total	Present Value
Licensing - Low End	2%	\$2,110,000.00	\$787,391.07
-Little Development			
-As Is			
Licensing - Medium End	3%	\$3,165,000.00	\$1,181,086.60
-Minor Development			
-Little Continued Work			
Licensing - High End	5%	\$5,275,000.00	\$1,968,477.66
-Development			
-Exclusive License			

- Assumed \$500,000 Additional Value Added/ Unit
- Over 20 years

Risks and Assumptions

Risk Analysis

Technological Risks

- Sound in theory, but limited engineering data
 - Prototype design
 - Limited testing
- Unknown VSB efficiency
 - Estimate based on Activated Carbon control technology
- Unconfirmed VSB costs
 - Installation, Operating, Maintenance
- Developing in time for market demand
 - Market demand in 2010 and 2018
- Effects on other equipments' operations
 - Impact on the present role of the ESP
 - Operation of power plant's system overall

Risks (Cont')

Marketing & Economic Risks

- Marketing based on concept
 - Sell VSB to clients with limited operational data
- Marketing late, compared to other competitors
 - "First come first serve"
- Managing mercury (Hg) as a by-product/waste
 - VSB focuses on removing Hg, not managing

Other Risks

- Unknown VSB dimension and space consumption
- VSB operates safely
- Sufficient funding to successfully develop VSB

Assumptions

Regulatory

Coal-fired power companies will respond to mercury regulation

Technological

- VSB has high efficiency (90+)
 - Based on Activated Carbon technology
- VSB will develop in time for the market
 - Operating VSB unit for 2010 market
 - Fully tested and verified for 2018 market
- VSB will not affect the functions of other power plants' equipments, including ESP

Assumptions (Cont.)

Economic

- Resource & Market size are limited
 - Costly to invest in any control technology
- Primary VSB market: Plants with ESP installed
- VSB unit price is \$500,000
- Coal supply will continue to be available and in demand

Other Assumptions

- VSB is entering a very competitive market
- Profit and risks will determine the market strategy (i.e. licensing)

Path Forward

- Further Development of the Technology
- Additional Investigation into Financials
- Project should be continued
- Partner with chemical Engineering Capstone
- Marketing and Partnering

Questions

