

Descriptive Virtualized Reality Environment for Visual Guidance

Team

Team Members

- Akta Agheda
- Chirag Bhatt
- Moummar Bhatty
- Safiya Bhojawala
- Aziz Bodal
- Taewhan Kim
- Arun Mathew
- Luqman Soorma
- Prasad Ullal

Advisor – Prof. Gady Agam

Introduction

Need for this system Provide a degree of independence to visually impaired Safety

Strategy

- Conducted research
- Divided into sub groups

Three modules communicate with each other through a network socket interface

Range Sensors

User Interface

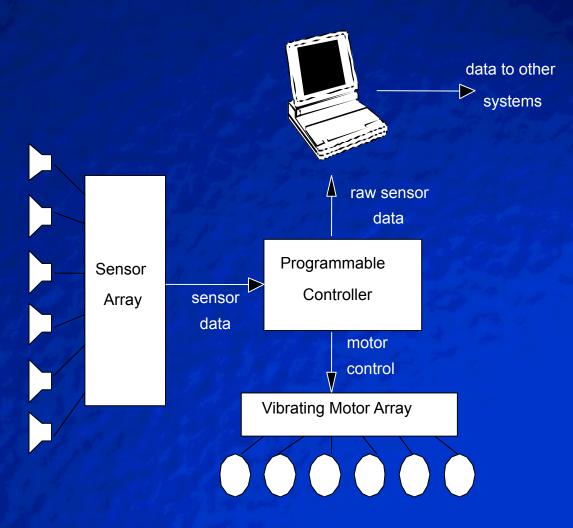
Vision System

Obstacle Avoidance System

Object Detection and Ranging using Sonar Sensors

Introduction

Need for range sensing


 Object avoidance
 Hazard recognition (speeding vehicles)
 Distance determination

 Real-time feedback system

 Haptic interface (vibrating motors)
 Auditory feedback through voice synthesis

System Overview

Sonar Range Sensors Programmable Controller Laptop Processing System Vibrating Motor Feedback

System Description - I

Sonar Range Sensors
 Polaroid 7000 Range Sensors

 Max range of 35 feet
 Accuracy of +/- 0.4 inch

 Arrangement

- 6 sensors, 60° apart
- Placed on belt worn by user

Interface

 Connected to programmable controller via data cable

System Description - II

- Programmable ControllerOOPic
- Functions
 - Read sensor data
 - Estimate object distance, speed
 - Determine collision probability
 - Activate appropriate motor
 - Communicate with computing unit
- Programming

System Description - III

Vibrating Motors
DCM 154 – Used in pager type applications
Activation depending on signal sent from programmable controller

System Description - IV

Laptop Processing System

- Software System Features
 - Linux based
 - Read sensor data via RS 232
 - Process speed and distance data
 - Determine emergency situations
 - Respond to information requests from other sub-systems
 - Send emergency signals to other subsystems

Accomplishments

- Designed structural system
- Partially implemented our design
- Laid foundation for future development

Difficulties

- Limited time for system construction
- Limited technical know how of embedded systems

Future Plans

- Completing and improving a working system
- Testing system in real world situations

Stereo Vision using Cameras

Goal:

To build an artificial vision system using high – level sensor: Camera

Introduction

Two cameras placed on either shoulder of the user.
One directed horizontally and the other placed at an angle.

Cameras are connected to a laptop.

Objectives

Detection of moving objects.

- Determine the size and position of the object in the image.
- Locate rectangular shapes in an image.
- Locate obstacle/step in the path of the user.
- Detect & recognize street signs.
- Report information to other sub-groups

Image Filter

Difference

Rank Order , Filter

Accomplishments

- Image enhancement
 Filtered out noise
 Detect region of movement
- Analysis

Future Steps

 Edge detection using enhanced images.
 Research

 Laser – line method.
 Hough Transform

Determine relative size and shape of object.
Implement Hough Transform.
Detect man-made obstacles.

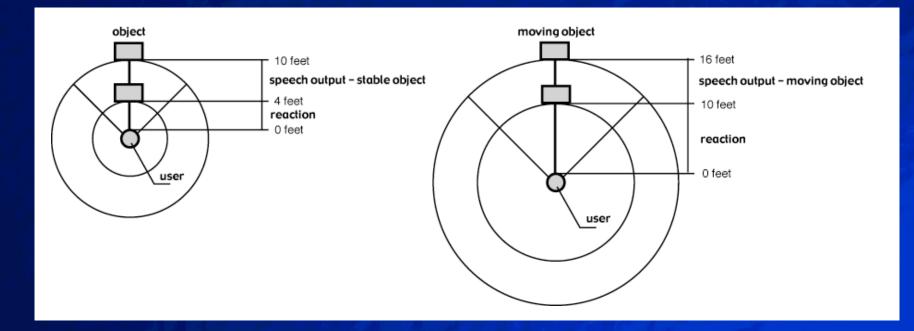
User Interface

Creating a system tailored to the needs of the visually impaired

User Research

Research Method

- User interview


- Observation

Key Insights

- Object information user needs
- Priority of object properties to be detected
- Existing way of object detection and suggestion for voice interface
- Benefit of using non-speech output as well as voice output
- Problems and issues for object detection

Analysis - 1

Distance for Voice Feedback

Feedback for Stable Object

Feedback for Moving Object - normal walking speed

Accomplishments

Voice Interface Contents

- Voice output contents

OBJECT		ENVIRONMENT
MOVING OBJ	STABLE OBJ	GROUND
Object identity Direction Distance Size Color Texture	Object identity Location Distance Size Color Texture	Ground division Ground section Ground level

- Voice output : speech + non-speech

		Speech	Non - speech
Purpose	Warning		0
	Description	0	
	Guidance	0	0
	Detection	0	0
Information	Location	0	
	Object identity	0	
	Direction	0	
	Distance	0	0
	Size	0	
	Speed	0	0
	Color	0	
	Texture	0	

- Voice input : requesting information

Input	Function
Command	
object	Repeat previously detected object identity
distance	Repeat previously detected object's distance
direction	Repeat previously detected object's direction
speed	Repeat previously detected object's speed
repeat	Repeat previously detected object's
	information (object, distance, direction, and
	speed)

- Voice input : manipulating system

Input	Function
Command	
detect on	Turning on voice interface
detect off	Turning off voice interface
stop	Stop / pause notifying information
resume	Resume notifying information
silent on	Turning off voice feedback, start silent mode
	using quiet sound for detecting object in
	specific situation such as conversation
	(information in silent mode causes limited
	object information – it'll just notify existence
	of object as well as distance from
	differentiating pitch between beeps)
silent off	Turning off silent mode
alarm on	Turning on warning mode
alarm off	Turning off warning mode
volume up	Turning feedback volume up
volume down	Turning feedback volume down

Analysis - 2

Speech & Non-speech Contents

SPEECH

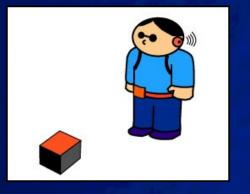
NON-SPEECH

notifying each object information
input command from user as voice input
guide for voice interface manipulation using as specific feedback mode

alarming / silent

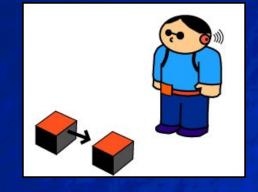
mode

partition between each


 using as user-defined feedback

whole information structure

Scenario


Scenario of Use

- Stable object

Voice output structure: start of information / object identity / location / distance / end of information Voice output content: " beep / box / 11o'clock / 5feet / beep "

- Moving object

Voice output structure: start of information / object identity / direction / distance / end of information Voice output content: " beep / box / 11 to left / 7feet / beep "

- Ground

Voice output structure: start of information / 'ground' / ground status / distance / end of information Voice output content: " beep / ground / pavement / 5feet / beep "

Voice-user interface

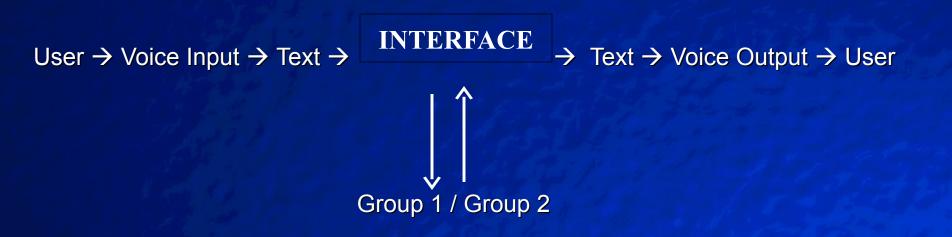
Main() VUinterface.cpp

VoiceSyn class

VoiceSyn() void readInput(G1 cmdPort) void readInput(G3 cmdPort) void readInput(G2 cmdPort) void say(apstring message) float distance, time, speed, directionH, directionV,size; char text[20]; apstring newMessage const char beep

VoiceRec class

VoiceRec() void convertVoice(file) void readCmd() void sendCmd(G1 cmdPort) void sendCmd(G2 cmdPort) void sendCmd(G3 cmdPort)


Voice-user Interface

The following speech synthesis software were identified, and reviewed:

Festival

- Screader 1.8
- Via-voice TTS SDK for Linux (by IBM)
 EmacSpeak
 - Say

Interface Design

In addition, the sensors (Group 1) and the camera/OCR (Group 2) will be able to communicate with each other.

Voice Recognition

IBM ViaVoice Speech Recognition (ASR) SDK for Linux V3

The SDK provides the necessary tools to develop applications that incorporate speech recognition, both dictation and command and control, using the Linux for x86s operating system. It includes a robust set of application programming interfaces (APIs) that allow Linux applications to access speech recognition resources. This new version of the SDK includes a User Guru GUI sample along with source data and open source for the top level GUI from the IBM ViaVoice Dictation for Linux Product.

Project accomplishments

 Each sub group

 Team experience

 Real world problems
 Communication and co-ordination
 Cross-disciplinary experience

 Acknowledgements