IPRO 356 Final Report Spring 2011

The Michael Reese Campus: An Interprofessional Urban Development Problem

Project Sponsor: CB Richard Ellis, Jones Lang LaSalle, City of Chicago and other stakeholders Faculty: Mark Snyder, Steve Beck, Andy Longinow

Executive Summary

IPRO 356 is a team of students from multiple disciplines tasked with the goal of designing a second anchor for the Michael Reese campus to accompany the planned continued care community designed by the previous semester's IPRO. The anchor will help meet the needs of the community as well as improve the economic condition of the current surrounding area by bringing jobs, people, and revenue to the Michael Reese site. The team will help in a revitalization of Chicago's south side.

The presented solution is a concert hall with world class acoustics, seating accommodations for 3,400 people, and convertability for seasonal change. The development of a concert hall would be a feasible solution in terms of profitibility and would be appealing to a lessee because of its desirable acoustics, unique design, and its low lease rate. Future plans for the development of the master plan of the Michael Reese campus would include a third anchor, then further development of the area with housing and retail.

Organization and Approach

In order to efficiently use the time given to accomplish the objective, the team decided to split into two teams who worked concurrently on the project. The Business team estimated the economic feasibility of the project, the costs of constructing the design, and the payback period for the project to become profitable. The Design team was involved in using market research compiled by the Business team to design a profitable concert hall. The Design team was also involved in the creation of media involved in promoting the project.

The tasks assigned to the Business team throughout the semester are as follows:

-Become familiarized with the Michael Reese site including background history, existing structures, and historical considerations.

-Perform market research of existing businesses surrounding the site to find potential business opportunities. -Assess the needs of the community

-Develop a list of potential businesses that could be profitable with consideration to the surrounding area.

-Create a business plan with the Design team's input.

-Estimate the construction costs of the Design team's initial designs.

-Perform profit estimations and payback periods of the design.

The tasks assigned to the Design team throughout the semester are as follows:

-Use market research and business plan developed by the business team to create an initial design.

-Create schematic design drawings and a rough site plan.

-Create architectural drawings.

-Perform structural analysis on design and estimate amount of materials needed.

-Refine design to incorporate sustainable design techniques.

-Create renderings of a finished product.

-Create presentation media to market the design to judges and potential interested parties.

Analysis and Findings

The analysis and studies of each of the teams, as well as subteams, can be found in summaries below.

Business Team

The Business Team's task was to determine if the development of a concert hall at this site would be economically feasible. Costs and Revenues were calculated through the use of square foot estimates for the cost of construction, and use of the pro forma for other economic costs and benefits. This was done keeping in mind that the facility will be leased out. The business model was created solely for the developer; considerations for the profitability of the venue for the lessee were neglected due to the fact that some requirements for those calculations fall out of the scope and ability of the class. The following assumptions were made when carrying out calculations:

 \cdot The development costs were found using the \$200/sq. ft. value from the parametric estimate plus contingencies.

• The yearly lease rate used was approximately \$36/sq. ft which falls well below the range

of \$45/sq. ft - \$48/sq. ft. for similar venues as confirmed by a realtor

 \cdot The lessee is responsible for all expenses

• The facility will hold at least 3 shows per week leading to approximately 150 shows/year. The lessee will charge \$20 per parking space for each show and the investors will get 50% share

·All other values in pro forma are acceptable values

Conclusion/Findings

The conclusion was reached that the development of a concert hall is a viable choice in terms of its profitability. The cost of construction was calculated to be around \$27,561,535. A yearly lease of \$3,000,000 would provide investors with an expected Annual Rate of Return of 23%. It is expected that the facility would be profitable starting from the first year of its operation. The facility would be attractive to lessees due to its extraordinary acoustics, ease of access and stunning lake view and most importantly, a low lease rate of \$35/sq ft. Before construction of this project could be started an in depth analysis of the feasibility on the lessee's part would need to be undertaken. To ensure profitability for the lessee it will be necessary to talk to venue operators to verify if the lease rate is reasonable. It will also be necessary to find investors and investigate how much they are willing to pay upfront, which could alter the Annual Rate of Return. However, the current Annual Rate of Return of 23% could allow the lease to be significantly lowered, while still providing investors with an acceptable Rate of Return.

Design Team

Attending a musical performance should be an experience that affects the audience in more aspects than just acoustically. The design for the concert hall focuses on a few very important aspects: the convertibility of the indoor/outdoor environment, aesthetically pleasing view of the lake and skyline meant to accompany the musical performances, as well as materiality that emphasizes the instruments and warmth of the building on the interior and stresses the urban environment on the exterior. These design decisions allow for a sensual experience for the user, as well as practical and functional uses of the building. The overall massing and shaping of the building relates to the acoustical quality of the space, as well as the seating slope and spatial requirements for code.

Using an operable window wall system by NanaWall (see appendix), the concert hall can be opened up in the summer, while being closed and insulated in the winter. This allows the concert hall to be functional in all seasons, yet still attracts that summer concert crowd that can be so profitable. The windows are insulted to avoid extra HVAC costs, as well as acoustically acceptable in our space.

The most unique aspect of the concert hall is the view behind the stage. Because the site for the facility is located lake side, the design takes advantage of this and directs the audience's attention to the stage and its natural backdrop. Day time performances would offer a view of the skyline, while nighttime performances would be decorated with fireworks from navy pier.

The materiality of the interior space includes reclaimed wood, which is a cheap and environmentally friendly approach to interior cladding, heavy duty premium fire retardant cloth for the seats, as well as acoustically aimed materials for the lobby and other interior spaces. The wood adds warmth to the main hall, which is mostly exposed because of the window walls. The exterior material is made of metal insulated panels made by Kingspan (see appendix), which allows it to blend in with it's urban environment. All materials used are cost friendly and very applicable to this facility.

BALCONY

FIRST FLOOR

Acoustics

A major marketable factor of our concert hall would be acoustics. In order to ensure that the acoustics of our hall would be superior to any other concert hall in Chicago, a model was created in CATT Acoustics, a room prediction program developed by Swedish acoustical engineers and used by many consultants today. The model includes the shape and dimensions of the building, as well as any surface properties of materials used in the hall. Sound source and receiver information was then input into program along with environmental conditions in order to calculate the acoustical factors deemed necessary in a good concert hall.

IPRO 356 FACTORS

The factors that make a good concert hall can be objective; however there are a number of quantitative factors that many concert halls considered to be the best in the world share. Among these are reverberation times, early decay times, initial time delay gaps, and loudness, all of which can be calculated using the CATT acoustic software.

REVERBERATION TIME

Reverberation can be described as the continuation of a sound in a room after the instrument that produced it has ceased playing it. Reverberation time is dependent on the size and surfaces of the room. Acoustical waves will radiate from an instrument and reflect from every surface they encounter until they reach the listener providing the continuation of the sound. This in effect produces a fullness of tone since reverberant sound fills in the spaces between notes. The best concert halls in the world typically have a reverberation time between 1.8 to 2.1 seconds.

EARLY DECAY TIME

Early decay time, also known as early reverberation time, is the amount of time it takes for a sound to decay 10 decibels rather than become fully inaudible. Early decay time is a better factor in determining a hall's acoustic properties due to the rapidity of sound typically played in orchestral music. Typical halls have an occupied early decay time between 1.4 to 2.0 seconds.

INITIAL TIME DELAY GAP

Initial time delay gap is a factor used to describe the intimacy of a room. By placing a listener in the center of the room and a source at the front, the room's ITDG can then be calculated. It is the time it takes for the listener to first hear a sound produced by the source. The ITDG of a room is highly dependent on the shape of the room. Typical box shaped rooms will have an ITDG of 25 ms or less, while fan shaped rooms like our concert hall will have a greater ITDG.

LOUDNESS

The loudness of a room can be affected by four architectural features. The distance between the listener and the source, surfaces that reflect early sound energy to the audience, the volume of the room, and the number of absorptive elements in the room. It is typically desirable to keep all of these elements low, except for reflective surfaces. In order to ensure a good loudness in a concert hall, audience distances, room volume, and absorption should be kept to a minimum, while still having strong reflective surfaces.

RESULTS

The results gained from the CATT analysis of our building can be found in the appendix. The most telling of these numbers though, is the fact that our reverberation time (T30) and early decay time (EDT) are found to be acceptable and superior to other halls in Chicago. The ITDG of 80 ms calculated is common for fan shaped halls of this side, and while not the most enticing of numbers, is unchangeable without significantly changing the size and shape of the room. The loudness (G) of the room is also in an acceptable range.

NOISE CRITERION

The concept of noise criterion curves was developed in 1957 by Beranek in order to establish satisfactory conditions for speech intelligibility. They are expressed as a series of curves defined in 5 dB intervals, and are related to the overall A-weighted sound level inside the room. Factors affecting the NC level of a room range from background traffic noise to environmental sounds, however the biggest contributing factor is usually noise generated from HVAC equipment in and around the room. ASHRAE recommends an NC level of 5 to 15 for a concert hall. For the intents of our concert hall, where some background noise in desirable, we will be aiming for a NC level of 15.

NOISE SOURCES

In the analysis of our building, we identified three main sources of noise that would affect our noise criterion. Being as close to a main road like Lake Shore Drive as we are, as well as having a Metra line run parallel to our site, traffic noise would have to be estimated. In terms of HVAC, low velocity diffusers would need to be selected, and the noise produced from HVAC equipment inside and outside of the building would have to be mitigated.

TRAFFIC NOISE

While it would be ideal to take direct sound level readings from the site, the closure of the site makes that an impossible task. Instead, a prediction equation developed by the National Cooperative Highway Research Program was used to predict the equivalent sound power level that would be produced from traffic at our site. The equation can be written as: Leq = $42.3 + 10.2\log(Vc + 6Vt) - 13.9\log D + 0.13S$

where Vc is the volume of automobiles per hour, Vt is the volume of commercial trucks per hour, D is the distance from source to site, and S is the average speed of traffic flow per hour. By using values common for a Chicago road the size of Lake Shore Drive, an Leq of 62 dB is estimated. This value was further verified by taking a sound level reading at a spot close to the site. In order to mitigate this sound, a medium sized berm of 7 feet is suggested to be constructed at the edge of the site. This would be able to provide a drop of 10-15 dB drop of sound. The rest of the traffic noise still reaching the site can be attenuated by ensuring that the constructed walls have an STC or Sound Transmission Class of 50 or higher.

HVAC NOISE

In order to mitigate noise produced by HVAC equipment inside the building, proper selection and isolation of the equipment is necessary. Low velocity diffusers having an NC below 10 would be ideal. The mechanical room located in the basement of the building would need to have a floating floor in order to isolate vibration into the main concert hall. Any equipment located under the main stage would have to have similar treatment. The chiller placed on the outside of the building would have to have a sound wall built around it. A suggested practice would be a wall made from wire mesh filled with rubble from the demolished Michael Reese buildings. This would be able to produce enough attenuation while allowing materials from the site's previous buildings to be used.

Structure

There were very many criteria that we accounted for in the design and analysis in our concert hall. The main problems that we faced were the incredibly large spans that had to go unbraced because of the need to have an open feel concert hall, and to not obstruct views of customers, designing our building with the acoustics in mind, and finding the most economical way to design everything.

The main overlying concept to our concert hall is that the building will be made out of steel with concrete slabs as the floors. The entire parking garage structure underneath the building will be concrete as well. All designs were made with calculations from ASCE and the largest factored LRFD load combinations were used. SAP2000 was used to model our design.

One of the main problems was designing a roof system that could span over 200 feet. After many options, we concluded that using a Vulcraft truss system we could use them every eight feet to carry all of the roof dead load, live load, snow/rain load, wind loads (uplift), and any other weights including catwalks, etc. This truss system would be very deep but when checked with the supplied capacity tables it was proven to be sufficient.

The roof tributary area changed because our concert hall spanned 360 feet but the width changed from 200 feet to 120 feet. Therefore our calculations were done in an excel spreadsheet and made to withstand any loads for any part of the building. All calculations are attached in the Appendix. Since the tributary area decreases on each truss, we reduced the size of the trusses according to area for a more economical design. Deflections were made to be less than 1/360 the span length based on ASCE code.

A lot of consideration was taken into having 90 foot long columns near the stage of our concert hall. It was recommended by a structural engineer to brace the structure in all directions in order to alleviate moment on the columns throughout the span from deflection induced by lateral loads. In the Appendix there are section drawings explaining the analysis done for the largest column spans. The end frame of the building will be taking half of the wind loading onto the building. This as a result, of transfers all of the wind load onto the exterior columns. This was the suggestion of the structural engineer and has proven to be very effective. Exterior columns will be very large, but all of the remaining columns will be a smaller size.

Wind loading was considered when analyzing our building according to ASCE 7-05. The building was modeled in SAP2000 and the largest combination of uplift, suction, and wind blowing in every possible direction was considered.

Some recommendations we would like to make for future optimization of the structure, I would consider redesigning the stage layout so that we can lower the 90ft height by atleast 10ft to decrease our kL/r effect. Another recommendation would be to use prestressed concrete slabs for all of the floor systems rather than concrete on steel deck.

Conclusion

The project started with a plan that included many amenities – condos, retail, restaurants, a theater and a park. In comparison to the Roosevelt Collection, in which the project was being based off of, the Bronzeville area does not come close to the South Loop/UIC area in terms of demographics or current luxuries or services. Before building residential or retail space, people need to be brought to the area first. Thus, the semi-outdoor theater was chosen as the second anchor. The comparison to Ravinia meant that the competition was 30 miles away, in Highland Park. In order to be more accommodating than Ravinia, the theater was made to be used all year round, thus also making it comparable to theaters located in the Loop.Being located in Bronzeville meant much more room to build, allowing for the theater to be the best in the Chicago area. Analysis and proper design allowed the theater to theoretically be rated one of the top ten theaters in the world. With market research, the building could make profit immediately even with lower ticket and parking prices. With great teamwork, we were able to design a theater that we believe could impress interested parties and investors.

IPRO 356

Table of Contents

Appendix A Team Members Gantt Chart Appendix B Site Diagrams Appendix C Heating Cooling Loads Mechanical Systems Diagram Appendix D Renderings Appendix E Spec Sheets Appendix F Acoustics Appendix G Structural Analysis Appendix H Pro Forma

IPRO 356 APPENDIX A

Team Members

Anam Abro Kevin Brenner Jose Cuevas Hye Sun Jeong

Brieg Anderson Damon Brown Howard Ferrari Michael Muyco

Tadeusz Bobak Peter Cretiu Michelle Jarosz Samantha Spencer

Gantt Chart

	JANUARY	FEBRUARY	MARCH	APRIL
TASKS	1/11 1/13 1/18 1/20 1/25 1/27	2/1 2/3 2/8 2/10 2/15 2/17 2/22 2/24	3/1 3/3 3/8 3/10 3/15 3/17 3/22 3/24 3/29 3/31	4/5 4/7 4/12 4/14 4/19 4/21 4/26 4/28
Midterm				
Final Presentation				
Project Plan				
Research Site and Surrounding Area				
Market Research				
Background Information on 1st Anchor				
Zoning and Building Code Research				
Create a Schematic Design				(
Estimates on Building Type				
Engineer a Structural System				
Create a Business Plan				
Create a Budget Tool and Performa				
Design Refinement				
Update and Redevelop a Master Plan				
Presentation, Brochure and Poster				

IPRO 356 **APPENDIX B** Site Diagrams

SITE

- 37-acre site of the former Michael Reese Hospital
- Bordered on east by Lake Shore Drive with views of the lake
- and downtown Chicago
- Purchased by the city in 2009 for \$86 million
 Currently nearly all of the buildings lay demolished
 Previous IPRO semester planned a continuing care facility to be built of the site with 900 units.
- 1.1 114 2224

TRANSPORTATION

IPRO 356 APPENDIX B (cont.)

Site Diagrams

VIEWS

LOCATION

Spring 2011

IPRO 356 APPENDIX B (cont.)

Site Diagrams

INDOOR & OUTDOOR COMPETITION

ENJOY THE CONCERT WITH CHICAGO 'S LAKE VIEW

Longitudinal / Site Section

o 50h 300h

Spring 2011

APPENDIX C

Heating Cooling Loads

FinalLoads Name Of Building: Building Building Location Details Building City: Chicago Chare International Airport Building State: Illinois Latitude: 42.0 BUILDING SUMMER CONDITIONS Dry_Bulb Temperature: 88.0 F Daily Range: 19.6 F Met Bulb Temperature: 73.0 F Clearness: 1.0000 Ground Reflectivity: 0.2 Atm. Pressure: 14.6 PSI Wind Direction: 270.0 degrees clockwise from North Wind Speed: 12.1 mph BUILDING MINTER CONDITIONS Dry Bulb Temperature: -0.9 F Daily Range: 0.0 Net Bulb Temperature: -6.0 F Clearness: 0.0000 Ground Reflectivity: 0.2 Atm. Pressure: 14.6 PSI Mind Direction: 270.0 degrees clockwise from North Wind Speed: 10.1 mph ZONE NAME: zone ROOM MALL DETAILS: MALL NAME: north Mall Tilt: 90.0 Facing Direction: 0 SM Absorbtivity in: 0.9 SM Absorbtivity Out: 0.9 LM Emissivity In: 0.9 Area: 10241.1 ftA2 LM Emissivity Out: 0.9 [Does not include surface conductances] Mall Layer Details Layer Name: Facing Brick 3" Sp Heat: 0.2 Btu/[lb.F] Thickness: 3.0 in Den 1 Conductivity: 6.0 Btu.in/[hr.ftA2.F] Density: 100.0 (1b/ft^3) R-Value: 0.500 [Hr.ftA2.F]/Btu Layer Name: Air Gap 2 7 Sp Heat: 0.2 Btu/[lb.F] Conductivity: 2.0 Btu.in/[hr.ftA2.F] Thickness: 2.0 in Density: (R-Value: 1.000 [Hr.ftA2.F]/Btu Layer Name: Insulation 3 Density: 0.1 (1b/ftÅ3) 3 Sp Heat: 0.2 Btu/[lb.F] Thickness: 3.0 in D Conductivity: 0.3 Btu.in/[hr.ftA2.F] Density: 5.7 (1b/ft³) R-Value: 9.997 [Hr.ftA2.F]/Btu Layer Name: Concrete Block 6 4 Sp Heat: 0.2 Btu/[lb.F] Conductivity: 1.4 Btu.in/[hr.ftA2.F] Thickness: 6.0 in Density: 59.0 (1b/ft^3) R-Value: 4.166 [Hr.ftA2.F]/Btu Layer Name: Plaster 0.55 5 Sp Heat: 0.2 Btu/[lb.F] Thickness: 0.5 in D Conductivity: 1.4 Btu.in/[hr.ftA2.F] Density: 59.0 (1b/ft^3) R-Value: 0.382 [Hr.ftA2.F]/Btu MALL NAME: East Mall Tilt: 90.0 Facing Direction: 90 SM Absorbtivity in: 0.9 SH Absorbtivity Out: 0.9 LM Emissivity Out: 0.9 LM Emissivity In: 0.9 Page 1

Heating Cooling Loads

```
FinalLoads
Area: 20083.1 ftA2
Mall U-Factor:0.062 Btu/[Hr.ftA2.F]
                                              [Does not include surface conductances]
Mall Layer Details
    Layer Name: Facing Brick 3"
1
    Sp Heat: 0.2 Btu/[lb.F]
Thickness: 3.0 in De
                                          Conductivity: 6.0 Btu.in/[hr.ftA2.F]
                                Density: 100.0 (lb/ft/3)
    R-Value: 0.500 [Hr.ftA2.F]/Btu
Layer Name: Air Gap 2"
2
    Sp Heat: 0.2 Btu/[lb.F]
Thickness: 2.0 in Do
                                          Conductivity: 2.0 Btu.in/[hr.ftA2.F]
                          Density: 0.1 (lb/ft<sup>3</sup>3)
    R-Value: 1.000 [Hr.ftA2.F]/Btu
    Layer Name: Insulation 3"
3
    Sp Heat: 0.2 Btu/[lb.F]
Thrickness: 3.0 in D
                                          Conductivity: 0.3 Btu.in/[hr.ftA2.F]
                            Density: 5.7 (lb/ftĀ3)
    R-Value: 9.997 [Hr.ftA2.F]/Btu
    Layer Name: Concrete Block 6"
4
    Sp Heat: 0.2 Btu/[lb.F]
                                          Conductivity: 1.4 Btu.in/[hr.ftA2.F]
    Thrickness: 6.0 in
                                Density: 59.0 (lb/ftA3)
    R-Value: 4.166 [Hr.ftA2.F]/Btu
Layer Name: Plaster 0.55
5
    Sp Heat: 0.2 Btu/[lb.F]
Thickness: 0.5 in D
                               F] Conductivity: 1.4 Btu.in/[hr.ftA2.F]
Density: 59.0 (lb/ftA3)
                 0.382 [Hr.ftA2.F]/Btu
    R-Value:
MALL NAME: Mest Mall
                     Facing Direction: 270
Tilt: 50.0
SM Absorbtivity in: 0.9
                                       SM Absorbtivity Out: 0.9
LM Emissivity In: 0.9
Area: 10041.5 ft42
                                     LM Emissivity Out: 0.9
Mall U-Factor:0.062 Btu/[Hr.ftA2.F] [Does not include surface conductances]
Mall Layer Details
    Layer Name: Facing Brick 3"
1
    Sp Heat: 0.2 Btu/[lb.F]
Thrickness: 3.0 in D
                                          Conductivity: 6.0 Btu.in/[hr.ftA2.F]
                                Density: 100.0 (lb/ft/3)
    R-Value: 0.500 [Hr.ftA2.F]/Btu
Layer Name: Air Gap 2
2
    Sp Heat: 0.2 Btu/[b.F] Conductivity: 
Thickness: 2.0 in Density: 0.1 (lb/ftA3)
R-Value: 1.000 [Hr.ftA2.F]/Btu
                                         Conductivity: 2.0 Btu.in/[hr.ftA2.F]
    Layer Name: Insulation 3"
а.
    Sp Heat: 0.2 Btu/[lb.F] Conductivity: (
Thickness: 3.0 in Density: 5.7 (lb/ftA3)
R-Value: 9.997 [Hr.ftA2.F]/Btu
                                          Conductivity: 0.3 Btu.in/[hr.ftA2.F]
    Layer Name: Concrete Block 6
4
    Sp Heat: 0.2 Btu/[lb.F] Conductivity: 1
Thickness: 6.0 in Density: 59.0 (lb/ft/3)
R-Value: 4.166 [Hr.ft/2.F]/Btu
                                          Conductivity: 1.4 Btu.in/[hr.ftA2.F]
    Layer Name: Plaster 0.55"
5
    Sp Heat: 0.2 Btu/[lb.F]
Thickness: 0.5 in De
                                          Conductivity: 1.4 Btu.in/[hr.ftA2.F]
                            Density: 59.0 (lb/ftA3)
                 0.382 [Hr.ftA2.F]/Btu
    R-Value:
MALL NAME: South Mall
Tilt: 50.0
               Facing Direction: 180
                                       SM Absorbtivity Out: 0.9
SM Absorbtivity in: 0.9
LM Emissivity In: 0.9
                                     LM Emissivity Out: 0.9
Area: 6675.5 ftA2
Mall U-Factor:0.062 Btu/[Hr.ftA2.F] [Does not include surface conductances]
Mall Layer Details
    Layer Name: Facing Brick 3"
1
    Spilleat: 0.2 Btu/[lb.F]
Thrickness: 3.0 in De
                                          Conductivity: 6.0 Btu.in/[hr.ft42.F]
                                Density: 100.0 (lb/ftA3)
                 0.500 [Hr.ftA2.F]/Btu
    R-Value:
                                              Page 2
```

Heating Cooling Loads

FinalLoads Layer Name: Air Gap 2" Z Sp Heat: 0.2 Btu/[lb.F] Co Thickness: 2.0 in Density: (R-Value: 1.000 [Hr.ftA2.F]/Btu Conductivity: 2.0 Btu.in/[hr.ftA2.F] Density: 0.1 (lb/ftÅ3) Layer Name: Insulation 3" 3 Sp Heat: 0.2 Btu/[lb.F] Thrickness: 3.0 in D Conductivity: 0.3 Btu.in/[hr.ftA2.F] Density: 5.7 (lb/ftÅ3) R-Value: 9.997 [Hr.ftA2.F]/Btu 4 Layer Name: Concrete Block 6 SpiHeat: 0.2 Btu/[lb.F] Thickness: 6.0 in D Conductivity: 1.4 Btu.in/[hr.ftA2.F] Density: 59.0 (lb/ftA3) R-Value: 4.166 [Hr.ftA2.F]/Btu Layer Name: Plaster 0.55 5 SpiHeat: 0.2 Btu/[lb.F] Thrickness: 0.5 in D Conductivity: 1.4 Btu.in/[hr.ftA2.F] Density: 59.0 (lb/ftA3) R-Value: 0.382 [Hr.ftA2.F]/Btu MALL NAME: Roof Tilt: 0.0 Facing Direction: 0 SM Absorbtivity in: 0.9 SH Absorbtivity Gut: 0.9 LM Emissivity In: 0.9 Area: 62013.5 ftA2 LM Emissivity Out: 0.9 Mall U-Factor:0.045 Btu/[Hr.ftA2.F] [Does not include surface conductances] Mall Layer Details 1 Layer Name: Nembrane 0.4" Sp Heat: 0.4 Btu Thickness: 0.4 in 0.4 Btu/[lb.F] Conductivity: 2.3 Btu.in/[hr.ftA2.F] Density: 70.0 (lb/ftA3) R-Value: 0.175 [Hr.ftA2.F]/Btu Layer Name: Insulation 6" 2 Sp Heat: 0.2 Btu/[lb.F] Thickness: 6.0 in D Conductivity: 0.3 Btu.in/[hr.ftA2.F] Density: 2.0 (lb/ftÅ3) R-Value: 19.995 [Hr.ftA2.F]/Btu Layer Name: Steel Pan 0.08" з. Sp Heat: 0.1 Btu/[lb.F] Co Thickness: 0.1 in Density: 4 R-Value: 0.000 [Hr.ftA2.F]/Btu Layer Name: Ceiling Air Space 39" Sp Heat: 0.2 Btu/[lb.F] Co Thickness: 39.0 in Density: D-Value: 1 000 EVE 542 Cl/Dto Conductivity: 312.0 Btu.in/[hr.ft42.F] Density: 480.8 (1b/ft^3) 4 Conductivity: 39.0 Btu.in/[hr.ftA2.F] Density: 0.1 (lb/ft^3) R-Value: 1.000 [Hr.ftA2.F]/Btu Layer Name: Ceiling Tile 0.4 5 Sp Heat: 0.1 Btu/[lb.F] Thrickness: 0.4 in De Conductivity: 0.5 Btu.in/[hr.ftA2.F] Density: 23.0 (lb/ftA3) 0.833 [Hr.ftA2.F]/Btu R-Value: MALL NAME: Floor Tilt: 180.0 Facing Direction: 0 SM Absorbtivity in: 0.9 SM Absorbtivity Gut: 0.9 LM Emissivity In: 0.9 Area: 62013.5 ftA2 LM Emissivity Out: 0.9 Mall U-Factor:0.353 Btu/[Hr.ft42.F] [Does not include surface conductances] Mall Layer Details Layer Name: Ceiling Tile 0.4" Sp Heat: 0.1 Btu/[lb.F] Co Thickness: 0.4 in Density: 2 R-Value: 0.833 [Hr.ftA2.F]/Btu 1 Conductivity: 0.5 Btu.in/[hr.ft42.F] Density: 23.0 (lb/ftA3) Layer Name: Ceiling Air Space 39" Sp Heat: 0.2 Btu/[lb.F] C Thickness: 39.0 in Density: 2 Conductivity: 39.0 Btu.in/[hr.ftA2.F] Density: 0.1 (lb/ftA3) R-Value: 1.000 [Hr.ftA2.F]/Btu Layer Name: Cast Concrete & з. Sp Heat: 0.2 Btu/[lb.F] lb.F] Conductivity: 12.0 Btu.in/[hr.ftA2.F] Density: 143.9 (]b/ftA3) Thrickmess: 8.0 in

Page 3

Heating Cooling Loads

FinalLoads R-Value: 0.666 [Hr.ftA2.F]/Btu 4 Layer Name: Screed 2.75" Sp Heat: 0.2 Btu/[lb.F] Conductivity: 9.7 Btu.in/[hr.ftA2.F] Thickness: 2.7 in Density: 120.0 (lb/ftA3) R-Value: 0.283 [Hr.ftA2.F]/Btu 5 Layer Name: Vinyl Tiles 0.2" Sp Heat: 0.3 Btu/[lb.F] Conductivity: 4.2 Btu.in/[hr.ftA2.F] Thickness: 0.2 in Density: 50.0 (lb/ftA3) R-Value: 0.048 [Hr.ftA2.F]/Btu

#Reating Load Calculations#

ZONE NAME: zone

ROOM Hour	NAME:	RoomTot	1	RoomSen	Т	RocaLat	l Supply
		Heat.Load		Heat.Load		Heat . Load	AirFloeRate
	I	(Btu/hr)	I	(Btu/hr)	I	(Btu/hr)	Í (CRO)
1		1722896.6		1722896.6		0.0	0.0
2		1722894.5		1722894.5		0.0	0.0
3		1722893.8		1722893.8		0.0	0.0
4		1722852.8		1722852.8		0.0	0.0
5		1722851.4		1722851.4		0.0	0.0
6		1722850.1		1722850.1		0.0	0.0
7		1722888.7		1722888.7		0.0	0.0
8		1722887.4		1722887.4		0.0	0.0
		1722886.7		1722886.7		0.0	0.0
10		1722886.0		1722886.0		0.0	0.0
11		1722885.3		1722885.3		0.0	0.0
12		1722884.6		1722884.6		0.0	0.0
13		1722883.3		1722883.3		0.0	0.0
14		1722882.6		1722882.6		0.0	0.0
15		1722881.6		1722881.6		0.0	0.0
16		1722880.5		1722880.5		0.0	0.0
17		1722880.2		1722880.2		0.0	0.0
18		1722879.8		1722879.8		0.0	0.0
19		1722879.5		1722879.5		0.0	0.0
20		1722879.2		1722879.2		0.0	0.0
21		1722879.2		1722879.2		0.0	0.0
22		1722879.2		1722879.2		0.0	0.0
23		1722877.8		1722877.8		0.0	0.0
24		1722877.1		1722877.1		0.0	0.0
8L	14						

Room	Calcul	ations	
			-

heak	load			
1	1722896.6	1722896.6	0.0	0.0

#Cooling Load Calculations#

ZONE NAME: zona

IPRO 356 APPENDIX C (cont.)

Heating Cooling Loads

Room Calculations

FinalLoads

ROOM	NAME:	auch torn un					
Hour		RoomTot		RoosSen		RoomLat	Supply
		Clg.Load		Clg.Load		Clg.Load	AirFloeRate
	Í	(Btu/hr)	Í	(Btu/hr)	Í	(Btu/hr)	Í (CRO)
1		918448.0		918448.0		0.0	91616.4
2		855579.5		855579.5		0.0	85345.2
3		802423.9		802423.9		0.0	80042.9
- Ă		755815.0		755815.0		0.0	75393.5
5		714844.7		714844.7		0.0	71306.7
Ğ		679529.5		679529.5		0.0	67784.0
7		881454.7		881454.7		0.0	87526.3
8		1274701.4		1274701.4		0.0	127153.2
		1610688.2		1610688.2		0.0	160668.3
10		1844234.1		1844234.1		0.0	183964.8
11		1965178.2		1965178.2		0.0	196029.2
12		2008761.1		2008761.1		0.0	200376.6
13		2013564.5		2013564.5		0.0	200855.8
14		1977958.6		1977958.6		0.0	197304.0
15		1951409.1		1951409.1		0.0	194655.7
16		2064425.1		2064425.1		0.0	205929.2
17		2276948.4		2276948.4		0.0	227128.8
18		2436419.1		2436419.1		0.0	243036.1
19		2415085.9		2415085.9		0.0	240508.0
20		1997563.2		1997563.2		0.0	199259.6
21		1488508.2		1488508.2		0.0	148480.7
22		1248140.0		1248140.0		0.0	124503.7
23		1098988.8		1098988.8		0.0	109625.6
24		995908.2		995908.2		0.0	99 343.2
Peak	load						
18		2436419.1		2436419.1		0.0	243036.1

**Actual material properties for the siding used for the building mere unknown. A similar R-value mas used for these calculations.

Mechanical Systems Diagram

HVAC

Spring 2011

IPRO 356 APPENDIX D Renderings

EXTERIOR RENDERING

EXTERIOR RENDERING

IPRO 356 APPENDIX D (cont.)

Renderings

INTERIOR RENDERING

Renderings

INTERIOR RENDERING

IPRO 356 APPENDIX E Spec Sheets

KINGSPAN INSULATED PANELS

Optimo Series Insulated Wall Panel System Performance Critera:

1. Structural Test: Structural performance shall be verifiable by witnessed structural testing for simulated wind loads in accordance with ASTM E72 and E330. Deflection criteria shall be [L/180] [insert project specific deflection criteria].

 Fatigue Test: There shall be no evidence of metal/insulation interface detarnination when the panel is tested by simulated wind loads (positive and negative loads), when applied for two million alternate cycles of L/160 deflection.

3. Freeze / Heat Cycling Test: Panels shall exhibit no delamination, surface bisters, permanent bowing or deformation when subjected to cyclic temperature extremes of -20°F to +180°F temperatures for twenty one, eight-hour cycles.

4. Water Penetration: There shall be no uncontrolled water penetration through the panel ^{*}joints at a pressure differential of 20 psf, when tested in accordance with ASTM E331.

5. Air Infiltration: Air infiltration through the panel shall not exceed 0.001 cfm/sf at 20 psf air pressure differential when tested in accordance with ASTM E283.

6. Humidity Test: Panels shall exhibit no delamination or metal interface corrosion when

subjected to +140°F temperature and 100% relative humidity for a total of 1200 hours (50 days).

 Autoclave Test: Panels shall exhibit no detamination or shrinkage/melting of the foam core from the metal skins after being subjected in an autoclave to a pressure of 2psig (13.8kPa) at a temperature of +218°F (+103°C) for a period of 2 1/2 hours.

8. Panels shall have a minimum sound transmission coefficient (STC) of 22 when tested in accordance with ASTM E90 and rated in accordance with ASTM E413.

9. Panel Fire Tests:

 a. Fire Endurance Test – 10 minutes: Panels remained in place with joint slitch fastening per CAN/ULC-S101.

 b. Fire Endurance Test – 15 minutes: Panels remained in place with joint slitch fastening per CAN/ULC-S101.

10. Flame Spread and Smoke Developed Tests on exposed Insulating Core:

a. Flame Spread: Less than 25.

- b. Smoke Developed: Less than 250.
- c. Tests performed in accordance with CANAULC-S102 and ASTM EB4.

KINGSPAN INSULATED PANELS

11. Fire Test Response Characteristics: Steel-faced panels with polyisocyanurate (ISO) core shall fully comply with Chapter 26 of International Building Code regarding the use of Foam Plastic. The following tests shall be available upon request for submission to the Authority Having Jurisdiction:

a. FM 4880: Class I rated per FM Global, panels are approved for use without a ther mal barrier and do not create a requirement for automatic sprinkler protection.
b. ASTM E64 Surface Burning Characteristics; Finished panel shall have a Flame Spread = 5, and Smolte Developed = 125.

c. NFPA 285 Intermediate Scale Multi-story Fire Evaluation; successfully passed acceptance criteria.

d. UL 263 Fire Resistive Rating; classified as a component of a fire-rated wall assembly for 1-hour and 2-hour rating Design No. U053 (rated assemblies include appropriate layers of fire-rated Type X Gypsum board).

e. ASTM D1929 Minimum Rash and Self Ignilion; established for foarn core. f. NERA 250 Retraited Host Contral: established for foarn core.

f. NFPA 259 Potential Heat Content; established for foarn core.

g. S101, S102, S127, S134 UL Canada fire test standards; successfully passed.
 12. Windborne Debris rating for Wall Panel:

a. Met requirements for high velocity hurricane zone with large missile impact when tested in accordance with FM Standard 4881.

13. Insulating Core: Polyisocyanurate (ISO) core, ASTM C591 Type IV, CFC and HCFC free, compliant with Montreal Protocol and Clean Air Act, with the following minimum physical properties:

a. Core is 90% closed cell when tested in accordance with ASTM D6226

b. Core shall provide a minimum R-value of 7.5 per inch thickness when tested in accordance with ASTM C518 at a mean temperature of 75°F (24°C)

c. Foam has a density of 2.2 to 2.8 pounds per cubic foot when tested in accordance with ASTM D1622

d. Compressive Stress:

1) Parallel to Rise: 42 psi

- Perpendicular to Rise: 24 psi
- 3) Tested in accordance to ASTM D1621
- e. Shear Stress: 17.5 psi when tested in accordance with ASTM C273
- f. Tensile Stress: 25 psi when tested in accordance with ASTM D1623
- g. Oven Aging at 200 degrees F:
 - 1) 1 day: +1% volume change
 - 2) 7 days: +3% volume change
 - 3) Tested according to ASTM D2126

h. Low Temperature Aging at -20 degrees F:

1) 1 day: 0% volume change

- 2) 7 days: 0% volume change
- 3) Tested according to ASTM D2126

IPRO 356 APPENDIX E (cont.) Spec Sheets

SL70 FOLDING NANAWALL

SL70 FOLDING NANAWALL

SL70 – Monumentally-sized, Thermally Broken Aluminum Folding Panel System NaneWall SL70 is a monumentally-sized, thermally broken aluminum folding panel system designed to provide an opening glass wall or storefront up to 36' wide. It is available in various configurations utilizing two to twelve panels. Ideal for applications where load bearing capability of the header is a concern. Heights up to 9'6' and panel widths up to 3'7' are possible.

Weather-Resistant and Very High Structural Performance

The system is engineered to provide weather-resistance and high structural performance, suitable for high-rise structures and buildings in hurricane areas. Inward-opening unit with raised all and with optional steel locking rod tested to AAMA HGD-CSS - no water entry even at 12 psf. This 3 panel 10'9" wide by 7'10" high unit tested to positive design pressure of 55 psf and negative design pressure of 90 psf.

Life Cycle Tested-AW

In European life cycle testing (more exacting than AAMA 910-93, with 10,000 cycles instead of 2,500 cycles), the inward opening SL70 had no damage to fasteners, hardware parts, or any other damage that caused the system to be inoperable, and air infiltration and water resistance tests did not exceed Gateway Performance Requirements for Hinged Glass Door, HGD-CSS.

NFRC-Approved Thermal Performance

The SL70 inswing and outswing models with raised sills have been rated, certified and labeled in accordance with NFRC 1001.

Acoustical Performance

The SL70 system has been tested by an independent acoustic lab for acoustical performance. The SL70 with insulated tempered glass achieved STC and Rw values of 32. The SL70 with STC 43 laminated glass achieved STC and Rw values of 31. The SL70 with STC 43 laminated glass achieved STC and Rw values of 41.

IPRO 356 APPENDIX F Acoustics

Spring 2011

IPRO 356 APPENDIX G (cont.) Structural Analysis

IPRO 356 APPENDIX G (cont.) Structural Analysis

IPRO 356 APPENDIX G (cont.) Structural Analysis

Proj: 1980 35.6 Page: 4/7 Date: 4-20-201/ ILLINOIS INSTITUTE Cals by: TADEUSZ BOBAK Checked by: P= 49 TYP. COLUMN (STRONG AXIS BENDING) Section 3-3

Proj: 1PR0 356 Cals by: TADEUSZ BOBAK	Page: 7/7 Date: 4-20-2011 ILLINOIS INSTITUTE Checked by:
	Typ. 2nd Floor BRACE P= 18 P= 78
	Ron F (Wie As 1 Sect
	GIRDER T SAME (L SAME (L SAME (L SAME (L SAME (L) SAME (L
	ASE SAME
	Typ. INT. Column P= 118
	THP. EXT. COLUMNY M= 307 P= 50

Prepared By: TADEUSZ BOBAK

THE GEORGE SOLLITT CONSTRUCTION COMPANY GENERAL CONTRACTORS CONSTRUCTION MANAGERS

	CHICAGO		
LOAD COM BINATIONS			
The following 1 in SAP2000 from all com	oad combinations in order to binations.	nave been n obtain maxi	nodeled mum valus
$ \begin{array}{c c} 0 & 1.4 (DL) \\ \hline 0 & 1.2 (DL) + 1. \\ \hline \end{array} $	b(LL) + 0.5(b(LL) + 0.5(b(LL) + 0.5(b(LL) + 1.0(L b(R) + 1.0(L b(LL) + 0.8(L b(R) + 0.8(L b(LL) + 0.8(L)	$ \begin{array}{c} L(L,r) \\ R \\ L) \\ L) \\ L) \\ L) \\ L) \\ L) \\ L)$	S= 25psf
(9) 1. 2(02) + 1. NOTE: Although we st	b(w) + 1.0 (Ll) b(w) + 1.0	S (15pst < 25)	(pst) sthere
the when resist Beam moment	there is the the uplift of	have a greater ss gravity 100 force.	impact d to
Shear forces Axial forces Steel Columns	obtained by obtained by	largest values largest values	wardete
columns going on piles,	through parking	3 garage and	resting
NORTH CENTRAL AVENUE	WOOD DALE, ILLINOIS 60191	630-860-7333	FAX 630-860-734

.

Prepared By:	TADEUSC BOBAK
THE G	EORGE SOLLITT CONSTRUCTION COMPANY NERAL CONTRACTORS CONSTRUCTION MANAGERS CHICAGO
ROOF SYST	TEM DESIGN
LLr= 15 pst Rain/Snowr= as DL: Ro Nd	ipst of insulation p= 1.5 pcf fiberglass and sound insulation a DECK Type providing load limits of 66 pst (8ft. span)
an	d DL = 2.26pst (self wt)+ 1.5 t+3 (32m) = 0.0375 pst DL= 2.635 pst
L. Na	and on decles 1.2(2.635)+ 1.6(25)+ 20 = 63.16 >psf < 66pst ADEQUATE 2 DECK SYSTEM Also provides sound wefficient of 0.07
Tributary Area	guired to maintain sound in facility. Span of root changes so Tributary Area is calculated in Spread sheet.
	1.2DL + 1.6R yielded largest load on roof.
	To choose truss type and required capacity, 15/ft of truss were calculated in spreadsheet.
STEEL TR	At 200' SPAN; WN = 431.2 162/14 using self wt of Times = 90 16/14. check capacity:
ANALYSIS FOR MTILIZED RES SPREAD SHEET	SECTION I-I Try Vulciaft 10456H21 ULTS FROM max load @ 200'span = 464 165/ff WHICH ARAVIDED SLIF wt= 90 15/ft = assumption OK
LOADS FROM R	00F SYSTEM 464 155/Ft > 431.2 154Ft at 200' span
COLUMNS,	ADEQUATE DESIGN SPAN:
790 NORTH CENTRAL AVENUE	WOOD DALE, ILLINOIS 60191 630-860-7333 FAX 630-860-7347

790 NORTH CENTRAL AVENUE

WOOD DALE, ILLINOIS 60191

FAX 630-860-7347

Prepareol By: TADEUSZ BOBAK THE GEORGE SOLLITT CONSTRUCTION COMPANY CONSTRUCTION MANAGERS GENERAL CONTRACTORS CHICAGO ANALYSIS OF SECTION 3-3 BY A STRUCTURAL ENG. NOTE: IT WAS RECOMMENDED THE STRUCTURE IN ALL DIRECTIONS BRACE 70 TO ALLENATE MOMENT ON THE IN ORDER COLUMNS THROUGHONT THE SPAN FROM DEFLECTION INDUCED BY LATERAL LOADS. TO ANALYZE THIS IN SAP, THE FOLLOWING FOR SECTION 3-3: WE MODELE D TYP. FRAME ROOFSYSTEM We choose to use preliminary W14 setions as recommended height changes from by structural eng. since fabrication of lattice columns would be 82At to SOA. extremely costly. As a recommendation to future IPRO, I would try to decrease height of columns by adjusting SPAN CHANGES AS SEEN the design of the starge to IN SPREAD SHEET (SECTION 3-3) effective by reduce DL: (2.635psf x 8ft + 9013/4) = 0.11 Kip /ft RAIN/SNOW: 25pst × 8ft = 0.2kip/ft. W: (ASE I Neg, Pressue 10pst = 24ft (0.c.) = 0.24 Kip/ (4. (each dir) uplift 10pst x Bit = 0.08 kip/ft (ASE2 WIND AGAINST WINDOWS 20psf x 24 ft = 0.48 kip / ft. 790 NORTH CENTRAL AVENUE WOOD DALE, ILLINOIS 60191 630-860-7333 FAX 630-860-7347

Prepared By: TADISUSZ BOBAK

THE GEORGE SOLLITT CONSTRUCTION COMPANY GENERAL CONTRACTORS CONSTRUCTION MANAGERS

and the second secon

Section 4-4 ANALYSIS

THIS SECTION WILL BE TAKING HALF OF THE WIND LOAD ONTO THE BUILDING. THIS IS A RESULT, AS MENTIONED IN THE DESIGN OF SECTION 3-3, OF TRANSFERING ALL OF THE WIND LOAD ONTO THE EXTERIOR LOLUMNS. THIS WAS THE SUGGESTION OF THE STRUCTURAL ENG WHICH HAS PROVEN TO BE VERY EFFECTIVE. EXTERIOR WHICH HAS PROVEN TO BE VERY EFFECTIVE. EXTERIOR WHICH WILL BE VERY LARGE (PRELIMINARY W36×308 HOWEVER THIS WILL ALLOW ALL COLLIMNS ON PERPENDICULAR SPAN TO BE PRELIMINARY W14XAD. THIS WILL ALLOW THE BUILDING TO STAND WITHOUT USING A TREMENDUS AMOUNT OF STEEL).

DL = 0,11 kip/f+ (from Spicadsheet) RL= 25psfx 8(+= 0.2 kip/f+ WIND = Pressure from half of building: 20 psf x 150 Ft = 3 kip/ (+ Suc-lion 10psf × 150 FT= 1.5 kip/ft Upliff 10pst - 8 +1 = 0.08 hip/ft Negative pressure 10psf × 150 Ft = = 1.5 kip/ft. 790 NORTH CENTRAL AVENUE FAX 630-860-7347 WOOD DALE. ILLINOIS 60191 630-860-7333

Prepared By: TADEUSZ BOBAK

THE GEORGE SOLLITT CONSTRUCTION COMPANY GENERAL CONTRACTORS CONSTRUCTION MANAGERS

CHICAGO

SECTION 6-6 ANALYSIS

THIS SECTION TAKES THE OTHER MALF OF THE ENTIRE WIND LOAD IN THE E-W DIRECTION. ROOF: POINT LOADS: DL: 2,64 psf × 15f+ x 12 f+ = 0,48 kip RL: 2505f x 15ft x 12ft = 4.5 kip 2. d FLOOR: OL: (150 pet + = + 3pst) * 15f+ x12 (+= 11. 8 kip LL= 60 pstx 15 ft x 12 ft = 10.8 kip WIND: Pressure from half of building 20pstx150ft= 3kip/ft suction 10psfx 150 ft= 1.5kip/ft Uplift 10psf x 12 ft = 0.12 kip/f4 Negative Pressure 10pst x 150 ft = ±1.5 Eip/ ft A RECOMMENDATION TO FUTURE IPRO WOULD BE TO DECREASE LENGTH OF BUILDING , F POSSIBLE TO REDUCE WIND PRESSURE. 790 NORTH CENTRAL AVENUE WOOD DALE, ILLINOIS 60191 630-860-7333 FAX 630-860-7347

Spring 2011

Location (start at span= 200ft)	Ellective Width (II)	Span Lengtin (ft)	Influencial Ansa (sqft)	Tributary Anea (sqft)	Roof Dead Load (psi)	Truss Self Weight (Ibs/ff)	DL of Steel Truss Self Weight (kips)	Catwalk & Rigging DL (pst)	Total Dead Load on Columns (kips)
0.0	8.0	200.0	1600.0	800.0	2.6	90.0	18.0	0.0	22.2
8.0	8.0	197.6	1580.8	790.3	2.8	90.0	17.8	0.0	21.8
16.0	8.0	195.2	1581.2	780.8	2.6	90.0	17.8	0.0	21.7
24.0	8.0	192.7	1541.8	770.8	2.8	90.0	17.3	0.0	21.4
32.0	8.0	190.3	1522.4	761.2	28	90.0	17.1	0.0	21.1
40.0	8.0	187.9	1503.0	751.5	2.6	90.0	18.0	0.0	20.8
48.0	8.0	185.5	1483.8	741.8	28	90.0	16.7	0.0	20.6
56.0	8.0	183.0	1484.2	7321	28	90.09	18.5	0.0	20.3
64.0	8.0	180.6	1444.8	7224	2.6	90.0	16.3	0.0	20.1
72.0	8.0	178.2	1425.5	712.7	28	90.0	18.0	0.0	19.8
80.0	8.0	175.8	1406.1	703.0	2.6	90.09	15.8	0.0	19.5
88.0	8.0	173.3	1386.7	693.3	28	90.0	15.8	0.0	19.3
96.0	8.0	170.9	1387.3	683.8	28	90.0	15.4	0.0	19.0
104.0	8.0	168.5	1347.8	673.8	28	90.0	15.2	0.0	18.7
112.0	8.0	186.1	1328.5	664.2	28	90.09	14.8	0.0	18.4
120.0	8.0	183.8	1309.1	654.5	28	90.0	14.7	0.0	18.2
128.0	8.0	181.2	1289.7	644.8	28	90.0	14.5	0.0	17.8
136.0	8.0	158.8	1270.3	635.2	2.6	90.0	14.3	0.0	17.8
144.0	8.0	156.4	1250.8	625.5	2.6	90.09	14.1	0.0	17.4
152.0	8.0	153.9	1231.5	615.8	28	58.0	8.0	0.0	12.2
180.0	8.0	151.5	1212.1	608.1	2.8	58.0	8.8	0.0	12.0
168.0	8.0	149.1	1182.7	568.4	2.8	58.0	88	0.0	11.8
176.0	8.0	146.7	1173.3	596.7	2.6	58.0	8.5	0.0	11.8
184.0	8.0	144.2	1153.8	577.0	28	58.0	84	10.0	22.8
192.0	8.0	141.8	1134.5	567.3	28	58.0	8.2	10.0	22.8
200.0	8.0	139.4	1115.2	557.8	28	58.0	81	10.0	22.2
208.0	8.0	137.0	1085.8	547.8	2.6	58.0	7.8	10.0	21.8
216.0	8.0	134.5	1076.4	538.2	28	58.0	7.8	10.0	21.4
224.0	8.0	132.1	1057.0	528.5	2.6	58.0	7.7	10.0	21.0
232.0	8.0	129.7	1037.8	518.8	2.8	58.0	7.5	20.0	31.0
240.0	8.0	127.3	1018.2	509.1	2.8	58.0	7.4	20.0	30.4
248.0	8.0	124.8	988.8	499.4	2.8	58.0	7.2	20.0	29.8
256.0	8.0	122.4	979.4	489.7	2.6	58.0	7.1	20.0	29.3
264.0	8.0	120.0	960.0	480.0	2.8	58.0	7.0	20.0	28.7

Spring 2011

1 Column DL Point Load (kips)	Rain= Snow (pst)	Total Live Load on Columns (kips)	1 Column LL Point Load (kips)	1.6* R/S Load (Ibs/ft)	1.2* Dead Load (Ibs/ft)	Combined Factored Load on Truss (lbs/ft)	Vulcraft Truss System	Truss Deflections {in}
11.1	25.0	40.0	20.0	320.0	111.2	431.2	104SLH21	9 .6
11.0	25.0	39.5	19.8	320.0	111.2	431.2	104SLH21	9.5
10.8	25.0	39.0	19.5	320.0	111.2	431.2	104SLH21	5.4
10.7	25.0	38.5	19.3	320.0	111.2	431.2	104SLH21	5.3
10.6	25.0	38.1	19.0	320.0	111.2	431.2	104SLH21	9.1
10.4	25.0	37.6	18.8	320.0	111.2	431.2	104SLH21	9.0
10.3	25.0	37.1	18.5	320.0	111.2	431.2	104SLH21	8.9
10.2	25.0	36.6	18.3	320.0	111.2	431.2	104SLH21	8.8
10.0	25.0	36.1	18.1	320.0	111.2	431.2	104SLH21	8.7
9.9	25.0	35.6	17.8	320.0	111.2	431.2	104SLH21	8.6
9.8	25.0	35.2	17.6	320.0	111.2	431.2	104SLH21	\$.4
9.6	25.0	34.7	17.3	320.0	111.2	431.2	104SLH21	8.3
9.5	25.0	34.2	17.1	320.0	111.2	431.2	104SLH21	\$2
9.4	25.0	33.7	16.8	320.0	111.2	431.2	104SLH21	8.1
9.2	25.0	33.2	16.6	320.0	111.2	431.2	104SLH21	8.0
9.1	25.0	32.7	16.4	320.0	111.2	431.2	104SLH21	7.9
9.0	25.0	32.2	16.1	320.0	111.2	431.2	104SLH21	7.7
8.8	25.0	31.8	15.9	320.0	111.2	431.2	104SLH21	7.6
8.7	25.0	31.3	15.6	320.0	111.2	431.2	104SLH21	7.5
6.1	25.0	30.8	15.4	320.0	72.8	392.8	88SLH16	6.4
6.0	25.0	30.3	15.2	320.0	72.8	392.8	88SLH16	6.3
5.9	25.0	29.8	14.9	320.0	72.8	392.8	88SLH16	62
5.8	25.0	29.3	14.7	320.0	72.8	392.8	88SLH16	6.1
11.5	25.0	28.8	14.4	320.0	84.8	404.8	88SLH16	6.0
11.3	25.0	28.4	14.2	320.0	84.8	404.8	88SLH16	5.9
11.1	25.0	27.9	13.9	320.0	84.8	404.8	88SLH16	5.8
10.9	25.0	27.4	13.7	320.0	84.8	404.8	88SLH16	5.7
10.7	25.0	26.9	13.5	320.0	84.8	404.8	88SLH16	5.6
10.5	25.0	26.4	13.2	320.0	84.8	404.8	88SLH16	5.5
15.5	25.0	25.9	13.0	320.0	96.8	416.8	88SLH16	5.4
15.2	25.0	25.5	12.7	320.0	96.8	416.8	88SLH16	5.3
14.9	25.0	25.0	12.5	320.0	96.8	416.8	88SLH16	52
14.6	25.0	24.5	12.2	320.0	96.8	416.8	88SLH16	5.1
14.3	25.0	24.0	12.0	320.0	96.8	416.8	88SLH16	5.0

VULCRAFT SLH / GENERAL INFORMATION

VULCRAFT LOAD TABLE SUPER LONGSPAN STEEL JOISTS, SLH-SERIES

JANUARY 1, 1991

Based on a Maximum Allowable Tensile Stress of 30,000 psi

The black figures in the following table give the TOTAL safe uniformly-distributed load-carrying capacities, in pounds per linear foot, of SLH-Series Joists. The weight of DEAD loads, including the joists, must in all cases be deducted to determine the LIVE load-carrying capacities of the joists. The approximate DEAD load of the joists may be determined from the weights per linear foot shown in the tables. All loads shown are for roof construction only.

The red figures in this table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the red figures by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

"The sate load for the clear spans shown in the sheeded election is equal to (Sate Load) / (Clear Span + 0.67). [The added 0.57 feet (8 inches) is stepsized to obtain the proper length on which the Load Tables were developed.] In no case shall the safe uniform load, for clear spans least than the minimum clear span shown in the shaded area; excluding the uniform load calculated for the minimum clear span lined is the shaded area;

minimum clear spon listed in the shaded area.

America 180

This load table applies to joists with either parallel chords or standard pitched top chords. When top chords are pitched, the design capacities are determined by the nominal depth of the joists at the center of the span. Standard top chord pitch is 1/4 inch per foot. If pitch exceeds this standard, the load table does not apply. This load table may be used for parallel chord joists installed to a maximum slope of 1/2 inch per foot.

When holes are required in top or bottom chords, the carrying capacities must be reduced in proportion to reduction of chord areas.

The top chords are considered as being stayed laterally by the roof deck.

The approximate joist weights per linear foot shown in these table do not include accessories.

When erecting SLH joists, holsting cables shall not be released until all rows of bridging are completely

To solve for live loads for clear spans shown in the shaded week (or lesser clear spana), multiply the live load of the shortest clear spen shown in the Load tables by (the shortest clear span shown in the Load table + 0.67 feet)² and divise by (the actual clear span +.067 keet/. The live load shall not exceed the safe antonin load.

"For spans between those listed use a knear interpolation.

Joint Designation	In Lbs. per Linear Ft. Unists Only)	Depth In Inches	Sale Load In Lbs. Betwoo	j.					C	LEAR S	SPAN II	N FEET							
80SLH15	40	80	52,000	11	1 114	117	120	123	126	129	132	13	5 130	1 14					
80SLH16	46	80	62,500	32	296	421 275 509	401 255 485	383 238 461	366 220 430	350 206	335	32	307	295	5 28	9 14 3 272 7 135	2 26 131	0 153 1 244	228
80SLH17	53	80	72,200	373 647	817	221 587	297	278	257	240	224	383	306	350	336	5 322 168	2 30	289	271
90SLH18	60	80	81,600	451	416	388 662	358	332	303	288	289	252	427	410	393	185	063	340	319
0SLH19	67	80	96,200	518 853	812	441	409	380	254	330	526 508	288	482	463	444 237	427	410	384	361
0SLH20	75	80	107,000	078 964	833 921	493 882	458 845	#25 807	396 771	389 736	612 344 704	585 322 674	560 301	537 183	516 288	495 250	476	445	418
			88-119	120	100	.552	512	476	443	412	385	380	337	215	394	570	547	513	481
BSLH16	46	88	62.000	514	490	487	129	132	135	138	141	144	147	150	155	160	100	238	218
SSLH17	51	88	70,100	361 581	338 553	313	291 502	428 272 479	410 254 459	394 238 430	878 223	363 210	349 197	335 188	314 168	295	278	262	248
ISLH18	58	88	80,400	404 667	975 635	340 605	825 577	304	284	265	249	403	386	371 207	347 187	326	306 158	288	271
ISLH19	65	86 1	93,000	460 771	427 734	397 699	370 666	348	323	303	284	207	444 250	426 236	399 214	374	352	331	312
SLH20	76	88 1	07,000	121 189	684 854	460 821	420	392	367	343	322	302	513 284	492 267	461 243	432 221	405	382	360
SUH21	69 (98 ti	32,000 1 7	23 099 24	579 1045 673	530 996 626	502 950 584	469 907 545	438 867 509	410 829 477	385 794 4.67	639 381 762 420	614 340 731 385	590 320 702 372	553 290 657 307	520 254 618	489 241 579	461 220 544	435 202 513

66

4. 8

ŝ

5

5

ã

5

í,

5

5

LADATA

			Base	d on	a Ma	iximur	m Alle	owab	le Te	nsile	Stres	s of 3	30,00	0 psi				
	Approx. Wt.			T				_						_				_
Iniei	In Lbs. per	Depth	Safe Loa	d														
Designation	Linear PL	Inches	In Los Return						C	LEAR S	SPAN IN	FEET*						
			96-128	129	132	135	120	1.41	144	1.17	450							
96SLH17	52	96	70,000	540	517	496	474	456	438	421	405	380	160	165	170	175	180	1
OCCI LISO				389	363	339	318	298	280	263	247	224	204	186	170	158	281	2
96SLH18	58	96	78,800	608	583	569	535	513	493	475	457	430	405	381	360	340	322	1
96SLH19	86	08	04 000	443	413	386	362	340	319	300	282	258	232	212	194	178	163	11
	00	80	94,200	500	460	667	638	611	585	561	539	505	474	445	419	396	373	38
96SLH20	74	96	106.000	824	789	754	722	801	351	340	320	290	264	241	220	202	186	17
				569	531	498	485	438	409	385	362	320	200	504	475	448	423	40
96SLH21	90	96	133,000	1027	982	940	900	864	829	797	766	719	675	635	598	564	593	12
96SI H22	102		140.000	698	652	610	571	535	503	473	445	404	367	335	306	281	258	22
COLL LE	TUNE	80	149,000	811	757	1067	1028	991	957	921	886	832	782	736	694	656	520	58
			104-137	138	141	141	147	150	166	549	517	469	426	389	365	326	300	27
104SLH18	59	104	76,800	554	532	512	489	172	444	418	396	374	354	180	185	190	195	20
10401140				426	400	375	353	332	301	274	250	229	209	192	177	164	152	27
10450419	67	104	93,400	674	647	622	598	574	539	507	479	452	427	404	383	364	346	30
104SLH20	75	104	105 000	484	453	426	401	377	342	311	284	260	238	218	201	186	172	18
			100,000	548	513	114	688	661	621	583	548	516	487	460	435	413	391	37
104SLH21	90	104	132,000	956	917	881	847	813	782	352	821	293	289	247	228	210	195	18
				673	632	593	558	525	476	433	395	361	331	301	280	514	488	46
104SLH22	104	104	148,000	1071	1034	999	966	934	883	830	783	738	698	660	626	209	290	E2
10451 H23	100	104	100 000	783	734	689	648	610	553	503	459	420	385	353	326	301	278	28
CHOLIN2.	100	104	163,000	810	780	1096	1052	1009	945	887	834	785	741	700	662	628	696	56
		-	112-146	147	150	155	160	165	170	526	480	439	403	370	341	315	291	27
112LSH19	67	112	91,900	623	600	564	530	500	472	446	424	402	190	195	200	205	210	21
				466	439	398	362	330	302	276	255	234	216	200	186	172	314	30
1250420	76	112	104,000	710	688	649	610	575	543	514	488	463	440	417	398	379	361	34
12SLH21	91	112	131.000	628	497	450	410	374	342	313	288	268	245	227	210	195	181	18
			101,000	650	612	555	157	713	673	637	603	572	543	516	491	468	446	42
126LH22	104	112	147,000	999	967	918	871	824	778	736	697	327	301	279	259	240	224	200
1001 100				755	711	644	586	535	489	449	412	380	350	324	301	279	280	490
125LH23	110	112	162,000	1102	1067	1012	959	901	848	800	756	716	679	644	612	582	554	521
12SLH24	131	112	192 000	790	744	674	613	580	512	469	431	397	367	340	315	292	272	253
		112	196,000	957	0.04	817	7/2	1074	1014	959	909	862	819	778	741	706	673	642
		-	102-164	165	170	175	180	105	100	569	523	481	444	411	381	354	329	307
20SLH20	77	120	98,900	597	564	532	505	479	456	434	414	205	210	215	220	230	235	240
				430	393	361	332	306	282	261	242	225	209	195	182	329	315	300
20SLH21	92	120	123,000	748	706	667	632	509	570	542	516	492	469	448	428	410	332	376
2051 H22	104	100	144 000	530	485	444	409	376	347	321	298	277	258	240	224	209	198	184
OUL ILL	104	120	141,000	855	815	770	729	692	658	626	596	568	542	517	495	473	453	434
20SLH23	111	120	156,000	943	898	848	9/0	130	404	374	347	322	300	279	281	244	228	214
				644	590	541	497	458	423	391	369	626	596	569	543	519	496	475
20SLH24	132	120 1	185,000	1117	1062	1003	950	902	858	816	777	741	706	875	272 84E	255	238	224
NOCI LINE				781	715	855	603	555	512	474	440	408	380	354	330	309	210	274
USLH25	152	120 2	212,000	1284	1218	1152	1092	1036	984	936	891	850	811	775	741	709	678	650
				915	837	788	708	650 I	enn I	333	man 1	170	A					~~~

J

NUCOR

GIRDERS

67

Proj: Date: 5-1-2-11 ILLINOIS INSTITUTE Page: Cals by: TADEUS2 BOBAK Checked by: Concrete Slab + Steel Deck Design (hight weight concrete steel deck) LL = 60pst Try: VULCRAFT 3VLI18 for 15' spans Shear: live load limit = 75psf VL= 60 × 7.5 = 450 14181 VR= 60 = 7,5 = 450 16/14. Monox= 7.5 (450) - 60(7.5)2 = 1687.5 fa-16/fa. Weg = Smar = 8(1687.5) 152 Weg = 60 pst < 75 pst Adequate for moment. conservative - (221)(15) V may = 1657.5 161A $V_{cone} = (1.1)(f'e)^{k}(0.75)$ (0.75 reduction for light weight cone.) VEONE = 415.2 × (5"×12")/24 Voine = 2711 165/ft. Vdele= 2140 Balfl (given SOI Composite Decle Design Handlande) => SELECT VULCEAFT 3ULI 18 Composite Decle

Deck Type	Wt (PSF)	Noise Reduction Coefficient	Allowable Town lo.
B24	1.46	0.6	154-29
B22	1.78	0.6	124-25
B20	2.14	0.6	159-31
B19	2.49	0.6	186-36
B18	2.82	0.6	210-42
B16	3.54	0.6	264-54
F22	1.73	0.6	123-18
F20	2.09	0.6	151-23
F19	2.42	0.6	175-27
F18	2.74	0.6	198-31
A22	1.8	0.6	108-16
A20	2.16	0.6	132-20
A19	2.51	0.6	155-24
A18	2.84	0.6	175-27
N22	2.26	0.7	69-22
N20	2.71	0.7	90-29
N19	3.15	0.7	107-35
N18	3.56	0.7	122-40
N16	4.46	0.7	154-52
E26	1.06	0.7	330-29
E24	1.38	0.7	485-42
E22	1.67	0.7	629-55
E20	2.01	0.7	774-71
1.58PA	3.83-6.24	0.7	
3NPA	1011	0.8	
1.5VLPA	101	0.65	
2VLPA	3.59-5.83	0.7	
3VLPA	3.75-6.09	0.75	

SLAB INFORMATION

Total Slats	Theo, Concre	ste Volume	Recommended
Dopth, is.	Vd3 / 100 ft2	n^{3}/n^{2}	Welded Wire Fabric
5	1.08	0.292	6x8 - W1.4xW1.4
51/2	1.23	0.333	6x8 - W1.4xW1.4
6	1,39	0.375	6x8 - W1.4xW1.4
8.1/4	1.47	0.398	6x8 - W1.4xW1.4
6.1/2	1.54	0,417	6x6 - W2.1xW2.1
7	1.70	0.458	6xtl - W2.1xW2.1
7 1/4	1.77	0.470	6x6 - W2.1xW2.1
7 1/2	1.85	0.500	6x6 - W2.1xW2.1

Spring 2011

(N=14.15) LIGHTWEIGHT CONCRETE (110 PCF)

SLAB	DECK	SD	Max, Urshi Clear Span	ared			_			Su	Clear	ed Live Soan /#	Load Pt)F			_		-
DEPTH	TYPE	1.SPAN	2 SPWN	J SPAN	87-0	47-4	97-0	0'-1	10:0	10'-6	11'-0 1	115-8	12.0	12.6	1310	10:6	14'-0	14%6	15-0
	21/1.122	10'-2	12-4	12'-0	541	127	115	105	96	67	60	54	69	45	40				
6.00	TVLERE	11-11	16-2	1457	163	167	133	171	110	102	- 96	17	60	54	- 49		40	_	
(1=2.00)	IVLIDB	13'-4	15-7	157-7	185	168	150	138	124	114	105	97	90	84	79	52	47	43	_
35 PSF	IVLISE	13.9	16-1	16'-1	244	222	204	188	174	162	151	142	133	126	119	112	85	79	76
61623]	TVLUE	14-6	167-11	165-11	277	254	234	217	202	189	177	188	157	149	141	134	127	- 99	94
11	TVL02	8-8	111-2	12'-2	163	145	131	120	85	77	89	62	56	51	48	42			-
5.50	354.1211	11-5	13-7	14'-0	105	107	151	138	126	116	107	74	67	61	56	51	45	42	
(1=2.50)	IVLI19	12-8	15'-0	15-t	211	180	171	155	142	150	120	111	103	96	85	59	54	49	45
18 PSF	EVLITE	13'4	1517	15-7	278	253	232	214	198	184	172	161	152	143	135	100	97	91	85
	IVLI16	14-0	1614	10.5	316	289	267	247	230	215	202	190	179	170	181	153	146	114	107
	SATIST.	9-3	1019	11-8	101	163	147	107	96	86	78.	70	63	57	52	47	43		
6.00	31/1/12/11	10-8	13-1	127-6	209	188	170	155		130	93	84	78	60	63	62	32	47	43
(1-3.00)	IVLUB	1211	1458	16.8	. 237	212	192	174	159	146	135	126	116	80	73	67	61	66	51
44.PSF	IVLI18	12-11	187-2	151-2	312	284	201	240	223	207	193	191	170	161	124	116	109	102	06
	353,116	13'-7	151-0	16:-0	354	325	200	277	258	211	226	213	201	190	181	172	135	128	121
	1VL02	.97-1	10'-4	11'-8	191	172	155	113	101	91	82	76	67	60	55	60	45	- 41	1.00
6.25	3VL(20	10'-6	12-10	13'-3	221	198	179	183	140	137	98	88	80	75	88	60	55	50	- 45
(*1.25)	JVL/18	11%10	141-2	14'6	.250	224	202	184	158	154	142	131	93	84	77	70	64	59	54
46 PSF	TVLI18	12.9	18'-0	15'-0	329	300	275	253	235	218	204	191	150	199	131	122	115	108	101
	3VL/16	13-4	157-6	15-10	374	343	310	293	272	254	238	225	212	201	190	151	143	135	128
	3VL122	8-11	101-0	11-4	200	180	134	119	107	96	88	78	70	64	58	52	47	43	
E.50	TVL (20)	10'-4	12.7	13'-0	232	209	189	172	157	154	103	93	84	77	70	63	58	53	- 41
(t=3.50)	3VLI19	11-7	14'-0	1454	253	236	213	193	178	162	149	138	95	89	81	74	68	62	57
40 PSP	TVLITE	12-1	141-8	141-9	346	316	299	267	247	230	215	201	189	178	138	129	121	113	107
	TVLIII	13-0	15-2	15/-7	383	300	332	308	200	258	251	-200	223	211	200	159	150	142	134
	3VL82	8-5	8-1	10'-4	230	173	153	137	122	110	99	89	ŋ1	70	00	60	05	49	- 40
7.25	TVLER0	97-0	121-0	12-5	267	246	217	107	.146	121	110	107	87	0.0	80	73	-00	61	GE
(1=4.25)	3VL119	10-11	13'-4	13-0	302	271	244	222	203	186	137	124	152	102	93	45	78	71	60
55 PSF	IVLI18	12'-0	141-4	34'-4	398	362	332	306	284	264	248	231	217	169	158	: 148	139	130	122
	TUT HE	17.4	12.6	101-0	400	400	394	353	1270	307	288	274	1966	207	404	185	179	185	1.064

Note: 1. Minimum exterior bearing length required is 2.50 inches. Minimum interior bearing length required is 6.00 inches.

If these minimum lengths are not provided, web oripping must be checked.
 Always contact Vulcraft when using loads in excess of 200 pet. Such loads after result from concentrated, dynamic, or long term load cases for which reductions due to bond breakage, concrete creep, etc. should be evaluated.
 All the model second-load and under the provided light of 300 pet.

Proj: IPRO 356 Date: May 3, 201 ALINOIS INSTITUTE Page: 16 Checked by: Retaing Islall Cals by: Brieg Anderson Design of Abreing lot retaining wall: Assumptions; E= 3 000 pei Ka. Y== 40pst Eu= 60,000 pri 16 = 90/10 =0.36 conficent of soil fiction = 0.50 Ke = 1/6,36 = 2.78 Is = soil density = 110 pet Equivalent Minid Pressure = 40,05 f sail bearing cyanaty = 3,000 pst W== 300 psf title at=F. 101 2-5 1:0 weight at Soil on heel side Weight of footing of abill Weicht weight of soil on toc side = active soil pressure Ps = active surcharge pressure Re= Rossive so I pressure Its to tal height for comparing R = 10'+ 2'+ 5/2 = 12 42ft

Page: 2/6 Date: 5/3/11 KLINOIS INSTITUTE Proj: IPro 366 Cals by: Bricg Anderson Checked by: Return Mall Stability check CNO load toctors used and Monunit with respect to the CHULL (A) Distance from Monunit with respect to the CHULL (A) Pa top (CHULL (A)) = 3005 1/5 × 12.42=4.14 12, 29.2 stability check (No load foctors used) Ps-KawsH=a.36x300x12.42 1/2x12.42=6.21 8328. = 1341 E. 6.67×300 = 2001 647+19+11+2/12-524 -12685 F, 6.67×10'×110 = 7337 5,34 -39,18 8.67×2.42×150= 347 867=485 -13,689 -39,180 Fq. 0.83 ×10×150 = 1245 142 + 1/2×0.88+688 -1,467 63 Eq 1.7 ×1 ×110 -129 1/2×1117 +0,59 -26 Pa 113×3,42 = 4.14 -2,038 = 12 × Kax GCHS# + 1/2 V E 78 X 1/4 (3.47) - 17AS Without Smetharge I GAL = - 54912 2 = 1,958 16/FF With Surcharge ZF+F=13, 859 16/A ZF: a, +Fg as = -65, 597 $\frac{(E5)_{\text{suiding turbust}}}{\text{suich angle}} = \frac{M2T_1 + B}{2} = 0.5(11,858) + 1788 = 2.46 > 1.5 \text{ are}$ $\frac{(FS) \ \text{sliding u/}}{\text{surpluge}} = \frac{\mu(EF(+F_{2})+F_{2}) - \rho(EC(S,SSG)+(FB))}{B_{2} + P_{2}} - \rho(EC(S,SSG)+(FB)) - \rho(FS) - \rho(FS)$ (F.5.) overlaining = Efrai + Bith LEASTR +2038 0= 4.46 701.5 ok 12,972 Rulling 12,972 $\frac{(FS)}{(2,772+8,328)} = \frac{2F_{1}\alpha_{1} + F_{3}\alpha_{5} + P_{7}H/S}{R_{1}H/S + R_{1}H/2} = \frac{65,577+203R}{12,772+8,328} = 3.2 > 1.5$ Abit The rases with surcharge are more critical, ... we can sider Surcharge in calculations form this point forward.

÷.

Proj: #JPk Cals by: 7	0556 Sneg Anderson	Page: 3/6 Checked by	Date: *	5/8/11 клин 9.Wall =	
Teating C	check for be eats at com toothom	oring pressur puted witte	e Haothrig		
Unfactorial Force (10/Ar)	Distanction 4 (H)	Unfectioned Moment (Unifert)	ACJ load factor	Factoral	Factored Moment
R=3,085 R=63411	4.14	+12,727 +8,328	1.6	2,146	+ 20,455
F: 7.001	1.0'	-2,001	1.6	3,202	- 3,202
F.= 7,337	1.01	-7.337	1.2	8,809	-8,804
A= 3.147	0	0	12	3,776	0
F3= 6245	-2.96	3,436	1.2	1,494	4,12.5
Fy=129 .	5.75	+484	1.2	155	581
B-1788	1.14	2.038	1.4	2,961	-3,261
2H = +13A E= 13 64 13899 12 - fr Cl Note: h= for Remforcer 	544 $f = 0.78' < 13 f beA) = \frac{13,85}{3.47}thing site, we want Designrent Design$	$\frac{4}{6} = \frac{8.67}{6} = 1.41$ $\frac{9}{6} (1 + 6 \times \frac{0.98}{8.67})$ $\frac{1}{2} i' + perpendicus $ $\frac{1}{2} i' + perpendicus $ $\frac{1}{2} i' + perpendicus $	6 :. No)=2,681,79 (n direction) antilleuti	нриён 4 <3,000,05	1 ok
	Ra. E	1. a. = 10"	ß	sign Continu	ud

Proj: JPRO 356 Date: 5/3/1 BLINCHS INSTITUTE Page: 4/6 Cals by: Bries Anderson Checked by: Retaining Wall M. = 110 × [R. H /s + Par H. 12] = 16[40 × 10] × 10 + 0.36 × 300 × 10 × 10/2] Closed Bacter = 19,307 41614 6 Wer (Bung #5 bars, d= 10"= (3"+ 1/2 × 5/8) = 6,69" Assume p=09 R= (19,307×12 MA) 10.9 = 479 ps 17" (6-69)2 M: 4 = 60.000 = 23.53 0.854 1.85 × 5,000 2= 1 [1- [1- 1- 2×2353×479]=0.0089 AS= 26d= 0.0089 × 12× 6.69 =0.72 in 14 Spacing = 0.31 x12" = 5.6" = 0x + 5 @ 518" O.C. verity of a= A_A = 0.72x60,000 = 1.91" : x=a = 1.41 = 1.66" 0.851.66 0.85 x 3000x12 R 0.85 E = 0.005 609-166 = 0.009 > 0.005 : 0=0.9 1 For Ay = 60,000, DSi & #5 bars Min rembarcheni - (0.00126 hu (vertal)) 6 0.0020 6 hu Chonzonti (B) - 10+=0.0012 X12" ×10" = 0.14/2 = 0.07 107/14 : 000 #360 18" 0.0 (Asmin hant + 0002 x12x10 = A24/2 = 0.12 MAA : USE # 5 @12" O.C Shear Besign @ I form bottom of wall 1/4=1.6 [40x c10] 6.67/12 1/2 + 0.36 ×300(10-449)]= 4485 14/4 WE =0.75×2× 13,000×12×6,69=6,596 14/1+> 4,4851641 OKV Fasting Remforcement Viending All Million and Marken and A

Spring 2011

Proj: IPRO 356 Page: 0/6 Date: 5/3/11 OF TECHNOLOG Cals by: Brig Anderson Checked by: Refaining Wall Using factored forces ; eccentricity = e' 2' = 2 Mp = 23+96 = 1.83' < A = 1.46 - 10 Uplift $(A_{2})_{\nu} = \frac{2R_{2}}{A} \left[1 + \frac{64}{A} \right] = \frac{17431}{8.42} \left[1 + 6 \times \frac{1.33}{8.47} \right] = 3861 \text{ perf}$ Total Vertice Load from Soil above & by & by at footing = col = 4644 + 47 (dika) + 1.7 (di ka) = 1.4×300+ 1.2(10×10) +1.2(150×2.42) = 2236 DSF Total Venues land Norm Soil on Pasting & weight of footing in toe area ary = 1.2 (bs + hs) + 1.2 (be + hf) = 1.2 (10x1') + 1.2 (150 x2.42) = 568 psf 4= 6.67 4= 1.17' ash Bis = 160 + 3<u>861-16</u>0 + 6162" = 3,007 pst B67 W. AL 142= 160 + 3861-160 x 25" = 3362 pot (A), A, 28 (M.), + moment for In carrierers = ちゃんん - 「あいちゃ(をひ)+ ないをかくをひう 7734 647 1 160 627 667 5007 662 677 = 25,070 16 Ft At CMAIN Reinforcement (2) to) Deny \$ = 0.9 Required Mn = 25070x12 = 334,267 (Bing #5 hors d=25"-(3, c+ 1/2 + 5/8)=25.7" $\mathcal{R} = \frac{554267}{12(257)^2} = 42.2 \text{ psi } : \mathcal{P} = \underbrace{1}_{2513} \underbrace{1 - \int I - 2x27.53x + 2.2}_{60,000}$ 60,000 Use minimum Reinforcement Adra = 4/5 x 0.0007 x12 x 757 = 029ml : Use #5 @12" O.C Etapinheels (Ma) = Mament For & cantherer

Wind Lord All calculations are besen from ASCE 7-95 \$ 6.5.1 Q = 0.00256 Kaker V2 I (H/FT) Ka front in Table 63, V front in Fig. 6-1, I from in Table 6-2 Quant lever 20-35) = 0.00256 (.25) (1.0) (40) 2 (1.15)= 20.3718/6+2 2 (mar) = .00256 (1.24) (1.0) (mar) (1.15) = 29,5746/6+2 Lave = 24, 92 16/6+= Sinto. から 0 GH A. 9 -3 -4 -4 -8 -8 -3-3 (4) Toward walk or roof surface E (+) any from wall of post surface 6 H F Wall or Real land = Que Cp (16/2+3) 0 F E 6 14 B -7.48 -9.97 -9.97 -19.94 -19.94 -7.48 -7,42 Won/Roof Lood 22.43 WERST Case Sceneric Real Harris -159.53 W/C+ (up) = - 1614/6+ Capacity of Yuleraft SAH DL 5 213 p.28 Copnetly is edequated

Proj: IPRo 356 Cals by: Daman Brown	Page: Checked	Date: by:	ALLINOIS INSTITUTE
Section 1-1 Typ. Broce			
Po = 78 k	6	We selected a	Square HSS (0x10x 5/16)
/	Ve.	from table 4-	with AISC code.
10	2 31	BR=79.6K	Sea and aber
<u> </u>	Suit Sta	and K=1,0	the or span of profes
	613	79.6k > 78k	OK/
Sarra II To Al			
M - ISIN IL CA D - ITC K			
We will taket the lister	+ WIA anti-	start, sin a	tail and with 53
Kelo /= 24	and the second	during and a	STERN STERNE PERMANA
C. /c. = 2.11			
cully and			
ty=50ksi			
(KL) = 24 " (kl), 11,37			
$(f_s)_{r_p}$			
(KL) = langer of the d	2 = 24'		
Enter AISC Menant Takle 4-1	for WI2x53	Fy = 50 Ks1	
LRFD			
PL= O.P. = 261k > Pu= 1721	1		
P= 361 = 290k			
R			
d. M Dank St Cork	12453		
all a la l	174.022		
Conversi Liberad			
p= 8176' Lr: 28.2'	BF= 5.48		
PM= Co Lompx - CF(L)	-Lp)] =0Mp		
=1.67[292-5.48 Au	-8.76]] = 245R-8	+ 4 8494.64	
-	4 - the and	as Sicko	AL Z

Proj: Page: 2 Date: ILLINOIS INSTITUTE Cals by: Checked by: Section 1-1 Typ. Geam Lateral Support Mo = 4 K-ft Pu = 50 K The noment in this case is nogligible, so we then this member as just a steral brake-Kx+Ky=1.0 Lx=Ly=24' 142=24' Check in Table 41-41 Room AISC Manual (Ry=116KS;) Choose lightest section 1455 (0x6x3/6) Oln = 60.7K > 50K=P. Adequate / Section 1-1 Typ. Girders M.= 182K-84 Pu= 20K Moment will central su member is treated as a beam only. 6=24 4=36,9 6=7,1 Use W10+15 G#147 LIFLD X4p = OMn= ONp = 206K-ft > 182K-6+ OKV Section 2-2 Typ. Rouf Beam Mu= 20k St Use W2x35 OMox = 130 K-At Lr= 27' Lb= 24' Lp= 7.17' A lighter WS section would not meet the Requirements to avoid elastic lateral tarsiant backling. Therefore, the lightest with 4726766 was Chosen,

Page: 3 Proj: Date: ILLINOIS INSTITUTE Cals by: Damen Brown Checked by: Section 2-2 Beam M. = 1922 K-ft Lb=41' Try Walxan Cb>167 Lr=461' 4p= 10.7' -> Lr>26>26, CL>1.67 -> QAn = Any. \$Mp=\$Mu= 1990Kft > Mu=1932Kft OK Section 2-2 Column Mu=1310 K-8+ Pu=147 K $\frac{1}{dM_{px}=1400} k - CT = 36.3' + L_{z} = 35' + p = 10.4' \rightarrow M_{px} = \frac{1}{dM_{px}} = \frac{1}{M_{px}} = \frac{1$ Solart Walk147 On = Hook RY A. - 1310 h- Pt Ky+kx=1.0 Lx=Ly=35'. KL=35' Fx=9.17 Fy=2.95 (K) = 3502 142.57 > 4.71 Januar = 113.43 $\vec{F}_{ef} = 1877 \quad \vec{F}_{e} = 1877 \quad \frac{\gamma_{1}^{2} \vec{E}}{(R_{e}^{2}/r)^{2}} = 18.38 \text{ Ks}^{2}$ Pn=Fer Ag= (12.38)(43.2) = 534,99 k OPn= 19 (534,99)= 481.5 K > 147K OK~ Section 2-2 Typ. and Floor Bean M. = 170K-St The bending moment of this beam is very similar to the Section 1-1 typ ginles and therefore wan't need to be redesigned. So, we will use W 10×45 OMN = 206Kft > MJ=170K-Et OKY

Proj: Cals by: Dama Brown	Page:	Date:	ILLINOIS INSTITUTE
Section 2-2 Beam			
We select W18x86			
Lr=28.58+ > L6=2	7.084 > 4p = 9.29 St	C6≥1.6	$7 \rightarrow dh_{n} = dh_{px}$
\$ May = ON = 698K St >	Mu=Grak-ft		
Section 2-2 Columns			
Because of the Similar Same. The larger of the	forces acting on the two will be designed	Columns, Thry thereats,	will be designed the
Mu = 200k R+ Pu = 79	k. Arr. ent	of series of e	Rume
& Max = 292 k-ft	4r=28.2.94>11=28.0f	+ > Lp = 8.768+	662167
Sine Leribric and	C6 21.67		
dom = Cb [OMp -BF (16-1p)] = 6/np → 6	Mn = Shp = 2	92K-fr>Mu = 200K-f4
Kysky Ly-4 = 28 / KL-	25'		
Fx= 5.23 G= 2.48			
$\left \left \frac{KL}{T}\right _{T}$ = 135.48 > 113.43			
Fer = 1877 Fe = 1877 11-120	(1990) = 13,68 ksi		
$P_n = F_{cr} \cdot A_{g} = (13.68)(15.6) = 3$	113.34k		
df= 192K > 79K	OKY		

Proj: Page: 5 Date: OF TECHNOLOGY Cals by: Damon Brown Checked by: Section 3-3 Typ, Column Mo = 467K-Ft R= 49K Use WIZY210 LS= 96,051> 45= 90.051> 40= 11.6 8+ 662167 - Other other 0/40x= 1310 k Rt > 467 k- Rt The beading moment is much loss than the capacity but this beam was Chosen because of the large unbrast length. Post other members would have Glad to dort lateral torsional buckling that to Lb > 4r, 4p. Kalio L:90' KL:90' (Denting about string ands) 1x=5,89 KK= 180.6≥113.43 $F_{cr} = .877 \ f_e = .\frac{877 \ 7i^2 \ (3^{h}, vw)}{(180.6)^2} = .7.70 \ ks'.$ Pn = For Ay = (7,70ks) (61.8) = 475.6k 01.=,9(475.6)=438K >49K OK/ Section 4-4 Typ. Ext. Column Mu=49014-8+ Pu= 315K Use W36×330 Le= 45,5 > 24= 16 > Lo = 13,5 Q. 21.67 - 6Mm = 6Mps dMox= 6M= 5290K-Ft > Mu = 4901K-Ft K=Ky=1.0 L=Ly= 34' KL=34 Fr=15.5 G=3123 $\left(\frac{kL}{C}\right)_{c} = 75,20 < 113,43$ $F_{e} = \frac{\pi^{2} c}{4 \pi^{2}} = 50.61 \qquad F_{cr} = (1658)^{50/61} = 33.07$ Pn=An Fer= (97) (33.07) = 3267.4 K (R= ,9(32074)= 2286.7K>315 K OKV

Proj: Cals by: Daren Brown	Page: 6 Checked by:	Date:	ILLINOIS INSTITUTE
Section 4-4 Typ. Ist. Col.			
Mu = 856eK-St Pu = 83K			
lord is minimi compared To	a beam instrud d the bendly moment.	i o beam-cdum	because the on-1
Choose W MX132			
OMpr = 878K-ft			
$L_{f} = 56' \ge L_{b} = 34' \ge L_{p} = 13.3'$	4621.67 - 4	pmax= QAn	
64-= 878K-RY > MU = 856 K	At OKY		
Section 41-4 Typ. Lateral Support	+		
Mu=150K-8+ Ru= 294 K LL=24' KK=10			
Kt=24' Using Table 4-	I in Asse with A	it of 24 Mn	= 329K ful W14 × 68
L1= 24,5 > 26-34' > 44 = 8,64'	42161 -	drup + 431k+	4 - \$An
\$Mm=4316-875 Mu=150	K-At ohr		
Section 4-4 Typ, Brace		7 7	
$L_{b} = \sqrt{2u^{3} + u^{4}} = 2u \cdot \varepsilon^{2} \qquad \rho_{u} = 1$	ISOK X X	34	
Using Table 4-1 in AISC		11	
din= 222 K for W12×53	I	-1	
dl. = 23214 > R= 150K OKV			
Section 4-4 Typ. Brace	N	A	-
1: J. 12 4 121 - 21.66	R. Lov	\searrow	18'
W. 1914 Cluck 21	PU-DAL	\checkmark	1
dra= 1312 > A=62k OKV	1	- 31)	

Proj: Cals by: Oomen Brown	Page: 7 Checked by:	Date:	RUNOIS INSTITUTE
Section 5-5 Girders (and Floor) Mus 24314-61 Ulter W	10 450]		
hr = 34,31 >46 = 241 > 4p= 8,641 ØMm=421K-Fr > Mu = 243 K-F	Cb ZIG7 ->	$\phi M_{px} = 431 \ k \cdot Fr$	- dim
Section 5-5 Typ. Col.			
P= 335 K			
26= ди' Kx=ky= 1.0 КС-ди' ФМn = Заяк Ког [W	Using Tille 4-1 14×68	in Alse	
An= 324 K > R = 225/4 0	KV		
Section 5-5 Typi Column Py = 58K [Dia W.8 x3] This has similar caputernants Ofn = 131R > Pu = 58K OKY	as a prevlavs	mendet, su c	alculations are part increased
Section 5-5 Rout Kidles			
Mo=61k-84 Table 3-2 :- AJSC C. ØMn=102k-64761k-64 OK	r [<u>W8 x38</u>]		
Section 6-6 Typ. Brokes			
Axial Londs are very low Try W SH31 \$Ph=131K>7	of Tak only is	ik, so orly	1 member is designed
Sortion 6-6 Ext. Column			
Some properties of Service 4.4 Mar 207K-RV R= 50K	lated Support.		
WHY X68 QAn=431K RY> 307	and oke 0	Ma=329k >50k	okr
Section 6-6 J.t. Column Rushisk Mut Jok 94	18x 53 (Adigo at in	Sect. 4-4).	

IPRO 356 APPENDIX H Pro Forma

	Adian I alda hararte	<u>Non-Adjustable</u> Inputs
Development inputs		
Development/ Renovation Costs	\$27,561,535	
LoardDebt inputs		
Loan to Value	70.00%	
Developer Contribution 7.		38.80%
Debt Rate	7.00%	
Lengh of Loan (up to 30 years)	30	
Revenue/Fanerice Insuits		
Venue Annual Rent (Assuming a 30 vr lease)	\$3,000,000	
Revenue Inflation	3.66%	
Expense Inflation	3.00%	
Developer Return Requirements		
Developer Annual Relum Requirement (IRR)	15.00%	
Cap Rate Used for Disposition Alter 38 ws		
Reversion Gap Rate on Developer Sale	10.00%	

IPRO 356 APPENDIX H (cont.) Pro Forma

		Construction Year	Operational Year 1		
			Yr1	Yr 2	Yr 3
		2012	2013	2014	2015
Revenues					
	Rent	\$0	\$3,000,000	\$3,090,000	\$3,182,700
	Property Reversion (sale at e	\$0	\$0	\$D	\$0
	Total Revenues	\$0	\$3,000,000	\$3,090,000	\$3,182,700
Expenses					
	initial Capital Outlay	-\$8,268,461	\$0	\$D	\$0
	Debt Service		-\$1,554,759	-\$1,554,759	-\$1,554,759
	Total Expenses	-\$8,268,461	-\$1,554,759	-\$1,554,759	-\$1,554,759
Net Cash Flow		-\$8,268,461	\$1,445,241	\$1,535,241	\$1,627,941
IRR		23%			

Debt Service Balance

\$19,058,830 \$1,554,759 \$1,336,218 \$18,870,289 \$1,554,759 \$1,320,920 \$18,636,450 \$1,554,759 \$1,304,551

Payment

\$19,293,075 \$1,554,759 \$1,350,515

nierest

Principal

\$204,244

\$218,541

\$233,839

\$18,636,450	\$1,554,759	\$1,304,551	\$250,208
\$18,356,242	\$1,554,759	\$1,287,037	\$267,723
\$18,118,519	\$1,554,759	\$1,268,296	\$286,463
\$17,832,056	\$1,554,759	\$1,248,244	\$306,516
\$17,525,540	\$1,554,759	\$1,226,788	\$327,972
\$17,197,569	\$1,554,759	\$1,203,830	\$350,930
\$16,846,639	\$1,554,759	\$1,179,265	\$375,495
\$16,471,144	\$1,554,759	\$1,152,980	\$401,779
\$16,069,365	\$1,554,759	\$1,124,856	\$429,904
\$15,639,461	\$1,554,759	\$1,094,762	\$459,997
\$15,179,464	\$1,554,759	\$1,062,562	\$492,197
\$14,687,267	\$1,554,759	\$1,028,109	\$526,651
\$14,160,616	\$1,554,759	\$991,243	\$563,516
\$13,597,099	\$1,554,759	\$951,797	\$602,963
\$12,994,137	\$1,554,759	\$909,590	\$645,170
\$12,348,967	\$1,554,759	\$864,425	\$690,332
\$11,658,635	\$1,554,759	\$816,1D4	\$738,655
\$10,919,980	\$1,554,759	\$764,399	\$790,361
\$10,129,619	\$1,554,759	\$709,073	\$845,686
\$9,283,933	\$1,554,759	\$649,875	\$904,884
\$8,379,049	\$1,554,759	\$566,533	\$968,226
\$7,410,823	\$1,554,759	\$518,758	\$1,036,002
\$6,374,821	\$1,554,759	\$446,237	\$1,108,522
\$5,266,299	\$1,554,759	\$365,641	\$1,186,119
\$4,080,180	\$1,554,759	\$285,613	\$1,269,147
\$2,811,033	\$1,554,759	\$196,772	\$1,357,987
\$1,453,046	\$1,554,759	\$101,713	\$1,453,046

IPRO 356 APPENDIX H (cont.) Pro Forma

г

Yr 4	Yr 5	Yr Ø	Yr7	Yr Ø	Yr 9	Yr 10
2018	2017	2018	2019	2020	2021	2022
\$2 970 191	4 3 976 696	¢9 477 P94	¢2 602 167	ta cao cao	10 000 310	ta 014 330
40,270,101 60	40,070,020 40	\$0,477,022 \$0	φο,302,137 ≰n	\$3,009,022 \$0	43,000,310 40	43,314,320 \$0
\$3,278,181	\$3,376,526	\$3 477 R22	\$3 580 157	40 \$3 689 622	\$3,900,310	\$3 914 320
40,270,101	4 0107010E0	ψ υ, τι 1,022	ψ0 ₂ 3686 ₂ 133	40,0 00,022	44,000,010	4 4,314,323
\$0	\$0	\$0	\$0	\$D	\$0	\$0
-\$1,554,759	-\$1,554,759	-\$1,554,759	-\$1,554,759	-\$1,554,759	-\$1,554,759	-\$1,554,759
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	-\$1,554,759	-\$1,554,759
\$1,723,422	\$1,821,767	\$1,923,063	\$2,027,397	\$2,134,862	\$2,245,551	\$2,359,560
Yr ti	Yr 12	¥r 13	Yr 14	Yr 15	Yr 16	Yr 17
2023	2024	2025	2026	2027	2028	2029
						_
\$4,031,749 \$0	\$4,152,702 \$0	\$4,277,283 \$D	\$4,405,601 \$D	\$4,537,769 \$0	\$4,673,902 \$0	\$4,814,119 \$0
\$4,031,749	\$4,152,702	\$4,277,283	\$4,405,601	\$4,537,769	\$4,673,902	\$4,814,119
\$0	\$0	\$0	\$D	\$D	\$0	\$0
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	\$1,554,759	-\$1,554,759
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	-\$1,554,759	-\$1,554,759
\$2,476,990	\$2,597,942	\$2,722,523	\$2,850,842	\$2,983,010	\$3,119,143	\$3,259,360
Yr 18	Yr 19	Yr 20	Yr 21	Yr 22	Yr 23	Yr 24
2030	2031	2032	2033	2034	2035	2030
				•	•	
\$4,958,543	\$5,107,299	\$5,260,518	\$5,418,334	\$5,580,884	\$5,748,31D	45,920,760
	¥0 #5 103 000	\$U #E 000 E40	\$U #E 440.0004	30 #5 600 404		
54,536,243	əo,107,299	ao,260,518	əə,416,334	40,080,884	40,746,310	40,920,760
\$0	\$0	\$0	\$D	\$D	\$0	\$0
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	-\$1,554,759	-\$1,554,759
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	-\$1,554,759	-\$1,554,759
\$3,403,783	\$3,552,540	\$3,705,759	\$3,863,574	\$4,026,124	\$4,193,551	\$4,366,000
IPRO 356 APPENDIX H (cont.) Pro Forma

Yr 25	Yr 26	¥r 27	Yr 28	Yr 29	Yr 30	Yr 31
2037	2039	2030	2040	2041	2042	2043
40 ago 200		** *** ***		to one 200	4 7 000 007	
36,096,362	\$6,281,334	\$6,469,774	\$6,663,867	46,863,783	\$7,069,697	âu -
\$0	\$0	\$0	\$0	\$0	\$0	\$72,817,874
\$6,098,382	\$6,281,334	\$6,469,774	\$6,663,867	\$6,863,783	\$7,069,697	\$72,817,874
\$0	\$0	\$0	\$0	\$D	\$0	\$0
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	-\$1,554,759	\$0
-\$1,554,759	-\$1,554,759	-\$1,554,759	\$1,554,759	\$1,554,759	\$1,554,759	\$0
		- •		- •		
\$4 543 623	\$4 726 574	\$4 915 014	\$5 109 108	\$5 309 024	\$5 514 937	\$72 B17 874
+	+ .,. L U ₁ 01 +	÷1,010,014	40,100,100	40,000,0CT	40,017,007	