Automated Shipping Container Transport System Development

1116

M

THE NIL

ELLENS

ITRA

XTRA

IIT/IPRO307 Spring2005

HYUN

We are doing a <u>third</u> I-Pro on the same subject because

- Intermodal (rail-highway) is a defining industry in the region: 87,000 jobs (ref Chicago Metropolis 2020 freight plan)
- Future projections (volume growth) indicate serious issues (capacity; actual handling processes). Freight is doubling in 7 years.
- Potential for a win-win-win-win situation in the form of: Congestion relief; Air quality benefit; Livability improvement; Conservation.
- Big project

This semester's project consists of:

- Two parts-- which can be separate or complementary
- Part A: Intrayard handling

Part B: **Between**-yard movement (configured as a truckway expandable to serve the **Intra**yard shuttle)

Spring '04 ACCOMPLISHMENTS

Grid-Rail (GRAIL) Over Head Lattice Concept

Inter-Yard Structure Concept

Fall '04 ACCOMPLISHMENTS

TEAM MEMBERS-RESPONSIBILTIES

Project Aspect:

- Librarian
- LIM
- Propulsion
- Between-yard
- Structures
- Civil ٠
- **GIS and Network** ٠
- Modeling, Animation and Zoning •
- Cost Analysis Database •
- Plans/Reports/Drawings

Spring '05 Sub team Leader:

Carliss Jackson # Rafiu Amolegbe * # Paul Prusa Charles Medrano # Vladimir Grozdanov # Mira Racheva Keegan Adcock * # David Smreczak Joseph Tomal Kallinikos Kechagias

Major:

Psychology Project Electrical Eng. Mechanical Eng. Civil Eng. Civil Eng. Civil Eng. **Computer Science** Information Tech. Information Tech. Civil Eng.

Advisors

Laurence Rohter, IIT Bruce A. Dahnke, Skytech Transportation Dr. Shen, IIT/CAE

Ariel Iris, Chicago Area Transportation Study Gerald Rawlings, Chicago Area Transportation Study Dr. Mohammadi, IIT/CAE

Second semester in an I-Pro

Second semester with I-Pro 307

What is a Linear Induction Motor?

LIM/I-Beam Connection

LIM Design Specifications

– Maximum System

- 45 motors tied in series
- 22.5 inch width for the reaction plate
- Total area of the motors is 36.1 square feet (1.875 ft X 19.25 ft)
- Acceleration of 0.0166 g's
- Time to reach operating speed is 1 minute and 50 seconds
- Power is 175.95 kW or 235.9 horsepower
- Total cost of motors \$ 67,498.92
- Total cost to operate 12.32 \$ per hour

– Minimum System

- 21 motors tied in series
- 22.5 inch width for the reaction plate
- Total area of the motors is 16.8 square feet (1.875 ft X 9 ft)
- Acceleration of 0.0077 g's
- Time to reach operating speed is 3 minute and 55 seconds
- Power is 82.11 kW or 110
 horsepower
- Total cost of motors \$ 31,499.50
- Total cost to operate 5.75 \$ per hour

Between-Yard Structure Semester 1&2

2nd level with a 2nd type of LIM shuttle

SIDE ELEVATION

Between-Yard Structure Semester 3

truckway (tollroad) **28ft clearance** for doublestack train and additional clearance(22ft) for intrayard shuttle expansion

Corwith to 47th Corridor

Approx total length=5miles (1000frames @25ft each)

East end is rehabbed railroad and residential.

West end is active railroad, CTA and industrial.

Overall Material Qty:

		Corwith	Between	47th St	total
		Yd	Yards	Yd	
Steel structural	tons x1000	56	60	38.5	154.5
Concrete	cubic yd x1000	94	90	64	248.0
Steel reinforcing	linear ft x1000k	7	6.2	5	18.2
Concrete deck	cy x1000	0	40	0	40.0
Asphalt	cy x1000	0	8	0	8.0

ZONING

🚰 Map - Microsoft Streets & Trips

Total Number of Trucks Daily

_ 8 ×

Why a \$5.00 Toll?

- **\$4.00 =** Truck Plaza Rate on all Tollways
- **\$6.00 =** Truck Skyway Rate
- **\$7.50 =** Waukegan Exit on the Tri-State
- \$5.00 = Truck Toll on Golf Road, Willow Road, Lake Cook Road, and Touhy Avenue Ramp Exits on the Tri-State

***An average toll of **\$5.00** a truck was found on all plazas, the skyway, and major street exit ramps so we find a **\$5.00** toll sufficient for the truck tolls on our ramps.

Number of Trucks and Revenue Produced from Both Ramps at \$5.00 Toll Per Truck

Percent of Trucks Using 55E → 90/94S Ramp	Number of Trucks	Amount of Money Produced Daily
10%	200	\$ 1,000.00
25%	500	\$ 2,500.00
50%	1,000	\$ 5,000.00
Percent of Trucks Using 90/94N → 55W Ramp	Number of Trucks	Amount of Money Produced Daily
10%	180	\$ 900.00
25%	450	\$ 2,250.00
50%	900	\$ 4,500.00

Equal Percentage of Trucks On Each Toll	Total Combined Trucks at % From Both Ramps	Total Revenue Produced Daily From Combined Ramps
10%	380	\$ 1,900.00
25%	950	\$ 4,750.00
50%	1,900	\$ 9,500.00

Conclusions

- Despite its potential advantages, our research has failed to identify the Linear Induction Motor as the best option for propelling the shuttle.
- Much improvement was made this semester in regards to the structural analysis and design of columns, girders, beams, monorails, and foundations.
- Use of a toll collecting truckway opportunely allows for spreading construction costs and advantages over a wider set of stakeholders.

Next steps

- Assess "Time and Motion" of current method (spotting) to set a performance bar (i.e. time/cost/cycle time to beat with alternative system)
- Consider other means of propulsion such as synchronous or rotary motors.
- Explore route alignments for interconnecting additional container handling facilities.
- Evaluate alternative methods that consolidate operations.