

IPRO 323:

Laser and Waterjet Technology

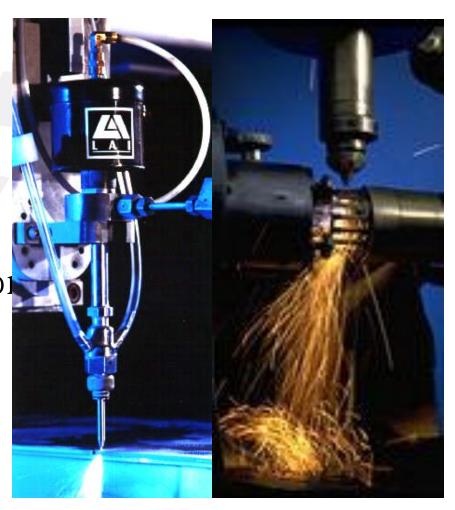
Website:

http://www.iit.edu/~ipro323s06

Advisor: Dr. Keith

McKee

Presenters: Ali Gowani, Ben


IPRO Team

Team Members: (left to right) Hyung Choe, Ben Ingvoldstad, Trevor Waller, Hassaan Nasir, Ali Gowani, Sangmin An, Jimmy Lie, Dr. Keith McKee

- Introduction
- IPRO Objectives
- Laser Overview
- Waterjet Overview
- Technology Comparison
- Market Trends
- Conclusions & Recommendations

Objectives

- Gather information regarding the detailed specifications of how lasers and waterjets work.
- Examine the applications that lasers and waterjets can have in a variety of manufacturing processes.
- Compare which machinery is better suited for a particular task.
- Determine the feasibility of introducing these machines to a mainstream industrial market.

Lasers:

An

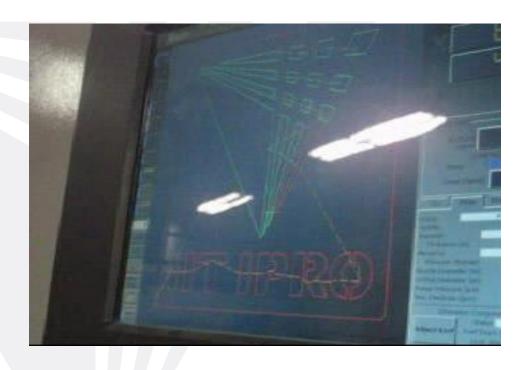
erview

Laser Technology Overview

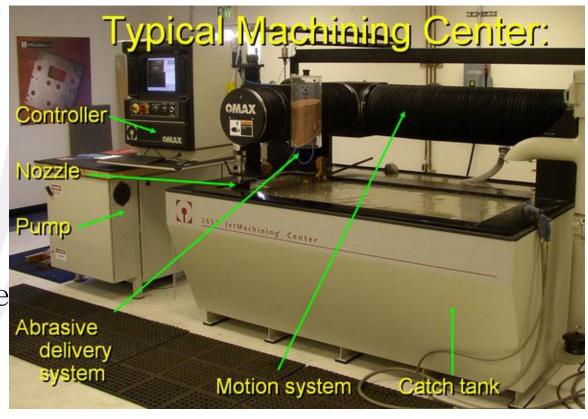
- What is a laser?
 - □ Light Amplification by Stimulated Emission of Radiation.
 - □ Excited Electrons Creating Light
 - \square YAG vs. CO_2
- Laser Properties
 - □ Monochromatic
 - ☐ Highly Directional
 - ☐ High Power in a Small Area

Laser Technology Overview

- Laser Uses
 - Cut very hard materials
 - Alternative to metal stamping
 - □ Rapid prototyping



Waterjets: An


Shown with optional aquipment.

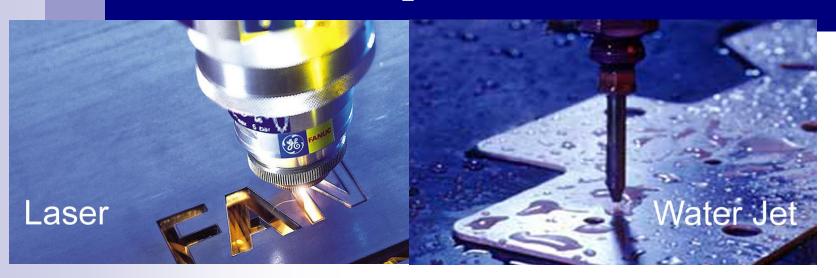
Waterjet Demonstration

Waterjet Technology Overview

- Major Components
 - □ Pump
 - □ Plumbing
 - Cutting Head
- Types
 - □ Abrasive
 - □ Non-Abrasive

Waterjet Technology Overview

- Pure Waterjet Attributes
 - □ Very thin stream (0.004 to 0.01 in. Diameter)
 - ☐ Able to cut soft, light materials
 - □ Extremely low cutting forces


- Abrasive Waterjet Attributes
 - ☐ Thin stream (0.02 to 0.05 in. Diameter)
 - ☐ Thin and thick material cutting (up to 10 in.)
 - Low cutting forces

Waterjet Technology Overview

- Why Use Waterjets?
 - □ Very Powerful
 - "Cold" Cut Process
 - ☐ Minimal wear on machine
- Who Uses Waterjets?
 - ☐ Food Industry
 - ☐ Aerospace Industry
 - ☐ Smaller Custom Shops
 - □ Automotive

Laser and Waterjets: A Comparison

Laser and Waterjet Comparison

Laser advantages

- Narrow cutting tolerance (.020 inches)
- Low maintenance
- Faster cutting rates

Laser disadvantages

- Equipment cost
- Material limitations
- Small Heat Affected Zone

Waterjet advantages

- Cuts all materials
- No Heat Affected Zone
- No part distortion

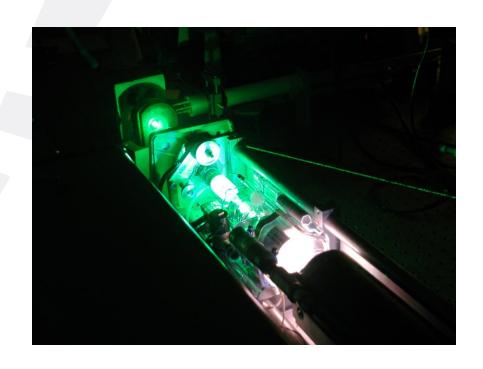
Waterjet disadvantages

- Equipment cost
- Pump maintenance (every 1,000 hours)
- Noise (80 dB or more)
- Slow cutting rates
- Water must be highly purified

Market Trends

Market Trends

- Misconceptions
 - □ Lasers and waterjets are brand new technologies
 - ☐ These machines are high maintenance
 - □ Not cost effective to operate
- Truths
 - □ Lasers and waterjets are well established and reliable
 - □ Low maintenance and simple operation
 - □ Initial purchase saves future production costs


Market Trends

- Industry Growth
 - Lasers
 - \$1.5 billion sales per year
 - 22% growth between 2003-2004
 - 3-4% growth expected this year
 - □Waterjets
 - Fastest growing in machine tool market
 - 9.1% steady growth rate between 1997-2004
 - Expected increase in sales

Conclusions and Further Study

Conclusions

- Both technologies
 provide alternatives to
 traditional cutting
 methods
- Cost effective investment
- Both machines are reliable for general applications

Recommendations

- Large companies consider long term investment in these machines
- Small companies develop rapid prototyping for limited production
- Future IPROs can select industries that would benefit and propose machine alternatives

Questions?

For more information check out http://www.iit.edu/~ipro323s06

