IPRO 302: Synthetic Biology Engineering a novel organism

Nature's Engineering

- Living things are made up of biological machines – mostly protein.
- Proteins made according to info stored in DNA
- Each organism has a master plan of DNA
- So, can we make our own blueprints?

Genetic engineering

Add a DNA piece to a new organism, get a new protein

1000 s of examples

Elements of Control

Not just machines, but the *right* machine in the right place at the *right* time

Control

- Promoters, terminators, localization signals
- Syntax and punctuation

Higher Levels of Organization

 More Complex pathways with intercepting parts

5

- Omega-3 pigs
- Landmine sensing plants
- Golden rice
- Artemesin

Genetic circuits

Metabolic pathways

Electronic circuits

METABOLIC PATHWAYS

www.romanblack.com/lini.htm

Our project

The creation of dynamic system in a bacterium

- Tractable (<50-genes)
- Human readable

Implementation

Construction through cheap lab methods

Understanding and design

• Simulation through math modeling

Open-ended

- Synchronization
- More charismatic organisms and designs

Biological System

- Feedback Systems
 - Thermostat
 - Hormone Homeostasis
- Negative Feedback
 - Product Inhibits Production

Three gene system that communicates amongst its parts

From Biology to Engineering

Rearrange gene pieces to obtain an oscillating system – how it all works together?

Obtained Genes from Many Sources

- Jelly Fish
 - XFP
- Bacteria
 - lacl
 - TetR
- Virus/Phage
 - pR T7
 - cl
- Synthetic
 - pLTet
 - pLlac

Assembly Techniques

- DNA Extraction
 - Remove DNA from Host Cells
- Amplify Target Gene
 PCR Amplification
- Connect Genes into Plasmids
 Fusion PCR
- Insert Plasmids into Target Cells
 - Competent Cell Transformations

Oscillator plasmid

- All gene modules are put together in a plasmid
- The system oscillates so that only some genes are active at a certain time

Reporter Plasmid

- Cannot see the Oscillations!!!
- Can See Proteins from Oscillatory Plasmid
 Duplicate Promoter to Track Active Genes
- Fluorescent Protein Produced Depends on Gene activated in pOSC

Design Aspects

- In order to have direction in this project, we need:
 - Stochastic arithmetic modeling
 - Imaginative visions for the future

Modeling

Behavior(t) = Model($\alpha 0, b, m, p, k...$)

 $\alpha 0 =$ promotor strength b = RNA half life m = amount of mrna p = amount of protein

Basic system: One branch

 $\delta m_{i} / \delta t = \alpha 0_{i+1} + \alpha 1_{i+1} p^{n}_{i+1} / (K^{n}_{i+1} + p^{n}_{i+1}) - \beta_{m} m_{i}$

 $\delta \mathbf{p}_i / \delta \mathbf{t} = \alpha_m \mathbf{m}_i - \mathbf{b}_p \mathbf{p}_i$

All three

mRNA Equations:

Protein Equations:

 $dm/dt = -\beta_m m + \alpha_1 p^n/(k_d+p^n) + \alpha_0$ $dm/dt = -\beta_m m + \alpha_1 p^n/(k_d+p^n) + \alpha_0$ $dm/dt = -\beta_m m + \alpha_1 p^n/(k_d+p^n) + \alpha_0$

 $dp/dt = t_s *m - bp*m$

 $dp/dt = t_s *m - bp*m$

 $dp/dt = t_s *m - bp*m$

Analysis

What do we need to know and how do we measure it?

First simulation:GUI Deterministic

Stochastic Model

- Functional species are limited integer amounts only
 - Poisson distribution

$$\lambda_{m} = -\beta_{m}m + \alpha_{1} p^{n}/(k_{d}+p^{n}) + \alpha_{0}$$
$$P_{\lambda m}(n) = \lambda^{n}e^{-\lambda}/n!$$

 $\Delta m/\Delta t = rand(P_{\lambda m}(n))$

 $dm/dt = -\beta_m m + \alpha_1 p^n/(k_d + p^n) + \alpha_0$ $dm/dt = -\beta_m m + \alpha_1 p^n/(k_d + p^n) + \alpha_0$

 $dp/dt = t_s *m - bp*m$ $dp/dt = t_s *m - bp*m$

 $dp/dt = t_s * m - bp*m$

Second Simulation: GUI Stochastic

Synchronization

$$\frac{dm_j}{dt} = -\beta_{m,i}m_j + \frac{\alpha_1}{K_{d,j} + p_i^n} + \alpha_0$$

Which one?

- •Strongest α_1 ?
- •Least leaky α_0 ?
- •Highest ON/OFF ratio α_1/α_0 ?
- •Kd,s , Kd,out ?

Other factors

β_{m,s}
β_{p,s}

 $\cdot n_h?$

Synchronization Designs

mRNA Equations:

$$\frac{\mathrm{dm}_{i}}{\mathrm{dt}} = -\mathrm{m}_{i} + \frac{\alpha_{1}}{1 + \mathrm{p}_{k}^{n}} + \alpha_{0} + \frac{\mathrm{kS}_{\mathrm{int}}}{1 + \mathrm{S}_{\mathrm{int}}}$$
$$\mathrm{P}_{\lambda \mathrm{m}}(\mathrm{n}) = \lambda^{\mathrm{n}} \mathrm{e}^{-\lambda}/\mathrm{n}!$$
$$\Delta \mathrm{m}/\Delta \mathrm{t} = \mathrm{rand}(\mathrm{P}_{\lambda \mathrm{m}}(\mathrm{n}))$$

 $\frac{dm_{j}}{dt} = -m_{j} + \frac{\alpha_{1}}{1 + p_{i}^{n}} + \alpha_{0} + \frac{kS_{int}}{1 + S_{int}}$ $P_{\lambda m}(n) = \lambda^{n} e^{-\lambda} / n!$ $\Delta m / \Delta t = rand(P_{\lambda m}(n))$

 $\frac{\mathrm{dm}_{k}}{\mathrm{dt}} = -\mathrm{m}_{k} + \frac{\alpha_{1}}{1 + \mathrm{p}_{j}^{n}} + \alpha_{0} + \frac{\mathrm{kS}_{\mathrm{int}}}{1 + \mathrm{S}_{\mathrm{int}}}$ $\mathbf{P}_{\lambda \mathrm{m}}(\mathbf{n}) = \lambda^{\mathrm{n}} \mathrm{e}^{-\lambda}/\mathrm{n}!$

 $\Delta m/\Delta t = rand(P_{\lambda m}(n))$

ModelingProtein Equations: $\frac{kS_{int}}{+ S_{int}}$ $\frac{dp_i}{dt} = -\beta (p_i - m_i)$ $P_{\lambda m}(n) = \lambda^n e^{-\lambda}/n!$ $\Delta m/\Delta t = rand(P_{\lambda m}(n))$ $\frac{kS_{int}}{+ S_{int}}$ $\frac{dp_i}{dt} = -\beta (p_j - m_j)$ $\frac{dp_i}{dt} = -\beta (p_j - m_j)$ $P_{\lambda m}(n) = \lambda^n e^{-\lambda}/n!$ $\Delta m/\Delta t = rand(P_{\lambda m}(n))$

 $\frac{d\mathbf{p}_{k}}{dt} = -\beta \left(\mathbf{p}_{k} - \mathbf{m}_{k} \right)$ $\mathbf{P}_{\lambda m}(\mathbf{n}) = \lambda^{n} e^{-\lambda} / n!$ $\Delta m / \Delta t = rand(\mathbf{P}_{\lambda m}(\mathbf{n}))$

$$\frac{dS_{int}}{dt} = -k_{s0}S_{int} + k_{s1}p_{jk} - \eta(S_{int} - S_{ext})$$
$$\frac{dS_{ext}}{dt} = -k_{s0}S_{ext} + \eta \sum_{n=1}^{N}(S_n - S_{ext})$$

Unsynchronized vs. Synchronized

Topology Analysis

Strong Oscillation

Good Synchronization

Α

Β

New target plasmid: pSynch

- We have the genes and preliminary PCR products
- Need to develop construction blueprint

Development

Engineering multicellular organisms
 ✓ Zebrafish
 □Humans?

-Scientific Issues •Synchronization •Different O/S

-Regulatory Issues

-Ethical Issues

Regulatory & Ethical Issues

- Regulations
 - Bodies like IACUC have final say
 - Justifiable use of animals
 - Minimal pain
 - Purpose
- Ethical Concerns

Should we be doing this? Why?

- Understanding complex biomedical systems
- What is life?

Engineered Zebra Fish Culture Cells

