

IPRO 344

Inflatable Greenhouses

Current Greenhouses

- Use lots of energy
- Young plants need a narrow range of temperature to thrive in
- Excessive volume
- Structure
- Pest Control

Group Structure

- 1. Why plastic?
- 2. Structural Concept
- 3. Fabrication

Why PLASTIC? (PolyEthylene)

- -Plastic is much cheaper construction than stand and glass structures that are currently used.
- -The amount of UV transmitted is nearly the same as glass.
- -The greenhouse when constructed can be deflated and moved to suit different locations.
- -Plastic is light weight, making it easy to inflate; this way the air become the major structural element
 - -Creating connections with plastic is easily accomplished through ironing or light welding.

STRUTURAL CONCEPT

STRUTURAL CONCEPT (SECTIONAL VIEW)

FABRICATION

FABRICATION

THE PROBLEM WITH LATERAL TUBES IS THAT "PINCHING" OCCURS.

FABRICATION

TO ALLEVIATE THAT
VERTEX POINT,
LONGITUDINAL TUBING
GIVES MANY MORE
PLACES TO "PINCH"
MAKING IT MORE
FLEXIBLE

Pest Control

Experimental Setup

Experimental Design

Results

- Insect incapacitation within 30 seconds
- Death within 3 hours

Application in Greenhouses

Volume of Greenhouse (ft³)

Temperature Control

- Several Options

 Available
 - Misters
 - Foggers
 - Fans
 - Plastic Coatings

Thermal Analysis

Mister

- Misters attach to hose via attachment
 - Cheap
 - No pumps required; use water pressure to generate mist

- Misters with pumps
 - User defined temperature settings
 - More expensive

Foggers

- Cools greenhouse by generating a cooling fog
- More complex and expensive than misters
 - Price: \$25-\$250/unit
 - Modular units require no tubing
 - Pool of water required

Fans

- All cooling options require a fan
- Serves a double purpose
 - Circulates air within greenhouse
 - Keeps greenhouse inflated
- Size of fan dependent upon size of greenhouse
- Typical circulation in a greenhouse is 1 total air exchange per minute

Plastic Coatings

- Solarflair[™]870 is a pigment that offers a way to absorb the "Photosynthetic Active Light" (PAR) which has a wavelength of around 400-800nm. Designed by EMD Biosciences.
- Offers a way to reflect some of the UV and IR wavelengths that supply unnecessary heat for the greenhouse.

LIGHT RED/DARK RED RATIO

- •For optimum plant growth more red and blue is desired.
- ■The positive light red/dark red ratio of 1.4 : 1 was intended to affect the length growth of plants in a way that the internodal distance (the distance between the base of leaves) is decreased and thus the plant has more energy available for photosynthesis.

Business Plan

Economic Advantage

of Inflatable Greenhouse

Reducing Initial Capital

Energy efficient

Suitable for Organic

Reducing Initial Capital

Initial cost of Conhaderation Gale Endeands ouse

- Structure = \$3,425.44
- Film = \$520
- Cooling and Heating System = \$ 6,689
- Growing Media = 1,794.50
- Equipment ==\$\$1,665 \[\frac{1}{2}
- Installation Cost = \$1,348.75

TOTAL SAVINGS IN INITIAL CAPITAL = \$ 7,604

* Assumption

Size : 6ft x 41.5ft = 250 ft², 250ft² X 8 = 2000 ft²

Location: Illinois, Moderate Climate

Reducing Initial Capital

Structure of Initial Cost

Energy Efficient

Operation cost of Conventional Greenhouse

- Labor Cost
- Seed and Fertilizer
- Fuel Cost: Electricity, Natural gas
- Pesticide

Savings opportunities

Energy Efficient

Surface Area

1526.04 ft²

Required Heating

177,631,056 Btu/yr

Required Cooling

45,094,482 Btu/yr

3,516.8 ft²

409,355,520 Btu/yr

103,921,440 Btu/yr

Assumbling SAVINGS IN ENERGY COST = \$6,945.35 Gas price = 23\$/MBtu1

Cost of Heating

\$ 4,539.46/yr

\$ 10,461.09/yr

Cost of Cooling

\$ 1321.33/yr

\$ 3045.05/yr

Suitable for Organic

Not using pesticide

- Reducing operations cost

\$ 169 / 6 month \$ 340 / yr

Assumption: Tomato Farm

Using alternative Material for organic

- Producing high quality goods

Total Savings

Savings in Initial Cost

\$ 7,943.44

Savings in Energy Cost

\$ 6,945.35 / yr

Savings in Pesticide

\$ 340 / yr

Savings by years

Initial year

\$ 15,228.79

3 year

\$ 29,799.49

5 year

\$ 44,370.19

10 year

\$ 80,796.94

Green Greenhouses

- Saves Energy
- Structure
- Selective Cooling
- Pest Control

Questions