This comprehensive research delves into the intricate dynamics of Laser Powder Bed Fusion (L-PBF) of Ti-6Al-4V powders, emphasizing the potential of non-spherical, hydride-dehydride (HDH) powders... Show moreThis comprehensive research delves into the intricate dynamics of Laser Powder Bed Fusion (L-PBF) of Ti-6Al-4V powders, emphasizing the potential of non-spherical, hydride-dehydride (HDH) powders as a cost-efficient alternative to traditional spherical powders. The study systematically explores the interplay between powder morphology, granulometry, and various post-processing treatments in shaping the resultant microstructure, porosity, and mechanical properties of L-PBF fabricated Ti-6Al-4V components.Initial investigations focused on the flowability, packing density, and resultant density of L-PBF parts using HDH powders with varying size distributions. Through meticulous optimization of laser parameters, parts with a relative density exceeding 99.5% were achieved, even at production rates 1.5–2 times higher than conventional LPBF processes. Dynamic synchrotron X-ray imaging provided insights into laser-powder interactions, revealing key mechanisms of porosity formation associated with HDH powders. Further microstructural examinations highlighted the formation of columnar β grains with acicular α/α′ phases in the as-built condition. Mechanical tests, including fatigue assessments under fully-reversed tension-compression conditions, revealed the critical role of surface roughness in fatigue performance. Notably, mechanical grinding significantly improved fatigue strength, especially in the high cycle fatigue region, by eliminating surface micro-notches. X-ray diffraction analyses further elucidated the stress and micro-strain profiles, offering insights into the material's deformation mechanisms. A pivotal discovery was the presence of α/α′ on prior β/β grain boundaries, challenging the prevailing notion that high cooling rates in L-PBF preclude β/β grain boundary variant selection. Electron backscatter diffraction and synchrotron X-ray imaging illuminated the role of powder characteristics in locally modulating cooling rates, leading to β/β grain boundary α′ lath growth. Lastly, the research underscored the multifaceted interdependencies among contouring, powder granulometry, Hot Isostatic Pressing (HIP), and mechanical surface treatments. A pronounced increase in sub-surface porosities was identified when contouring was combined with fine powder granulometry. However, post-HIP treatments induced a phase transformation from martensitic α′ to a basket-weave α+β microstructure, enhancing the material's fatigue resistance to levels comparable to wrought Ti-6Al-4V. In summation, this doctoral research offers a holistic understanding of the L-PBF process for Ti-6Al-4V, emphasizing the viability of non-spherical HDH powders and providing a roadmap for parameter optimization, defect minimization, and mechanical property enhancement in L-PBF-fabricated Ti-6Al-4V structures. Show less