Deep Learning and Model Predictive Methods for the Control of Fuel-Flexible Compression Ignition Engines
Description
Compression ignited diesel engines are widely used for transportation and power generation because of their high fuel efficiency. However, diesel engines can cause concerning environmental pollution because of their high nitrogen oxide (NOx) and soot emissions. In addition to meeting the... Show moreCompression ignited diesel engines are widely used for transportation and power generation because of their high fuel efficiency. However, diesel engines can cause concerning environmental pollution because of their high nitrogen oxide (NOx) and soot emissions. In addition to meeting the stringent emission regulations, the demand to reduce greenhouse gas emissions has become urgent due to the more frequent destructive catastrophes caused by global warming in recent decades. In an effort to reduce emissions and improve fuel economy, many techniques have been developed and investigated by researchers. Air handling systems like exhaust gas recirculation and variable geometry turbochargers are the most widely used techniques on the market for modern diesel engines. Meanwhile, the concept of low temperature combustion is widely investigated by researchers. Low temperature combustion can increase the portion of pre-mixed fuel-air combustion to reduce the peak in-cylinder temperature so that the formation of NOx can be suppressed. Furthermore, the combustion characteristics and performance of bio-derived fuel blends are also studied to reduce overall greenhouse gas emissions through the reduced usage of fossil fuels. All the above mentioned systems are complicated because they involve not only chemical reactions but also complex fluid motion and mixing processes. As such, the control of these systems is always challenging and limits their commercial application. Currentlymost control methods are feed-forward control based on load condition and engine speed due to the simplicity in real-time application. With the development
of faster control unit and deep learning techniques, the application of more complex control algorithms is possible to further improve the emissions and fuel economy. This work focuses on improvements to the control of engine air handling systems and combustion processes that leverage alternative fuels.Complex air handling systems, featuring technologies such as exhaust gas recirculation (EGR) and variable geometry turbochargers (VGTs), are commonly used in modern diesel engines to meet stringent emissions and fuel economy requirements. The control of diesel air handling systems with EGR and VGTs is challenging because of their nonlinearity and coupled dynamics. In this thesis, artificial neural networks (ANNs) and recurrent neural networks (RNNs) are applied to control the low pressure (LP) EGR valve position and VGT vane position simultaneously on a light-duty multi-cylinder diesel engine. In addition, experimental examination of a low temperature combustion based on gasoline compression ignition as well as its control has also been studied in this work. This type of combustion has been explored on traditional diesel engines in order to meet increasingly stringent emission regulations without sacrificing efficiency. In this study, a six-cylinder heavy-duty diesel engine was operated in a mixing controlled gasoline compression ignition mode to investigatethe influence of fuels and injection strategies on the combustion characteristics, emissions, and thermal efficiencies. Fuels, including ethanol (E), isobutanol (IB), and diisobutylene (DIB), were blended with a gasoline fuel to form E10, E30, IB30, and DIB30 based on volumetric fraction. These four blends along with gasoline formed the five test fuels. With these fuels, three injections strategies were investigated, including late pilot injection, early pilot injection, and port fuel injection/direct injection. The impact of moderate exhaust gas recirculation on nitrogen oxides and soot emissions was examined to determine the most promising fuel/injection strategy for emissions reduction. In addition, first and second law analyses were performed to provide insights into the efficiency, loss, and exergy destruction of the various gasoline fuel blends at low and medium load conditions. Overall, the emission output, thermal efficiency, and combustion performances of the five fuels were found to be similar and their differences are modest under most test conditions.While experimental work showed that low temperature combustion with alternative fuels could be effective, control is still challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends. A modification was made to the functional ignition delay model to cover the significantly different ignition delay behavior between conventional and oxygenated fuel blends. The parameters in the model were calibrated with only gasoline data at a load of 14 bar brake mean effective pressure. The results showed that this physics-based model can be applied to the other four fuel blends at three differentpilot injection strategies without recalibration. In order to also facilitate the control of emissions, machine learning models were investigated to capture NOx emissions. A kernel-based extreme learning machine (K-ELM) performed best and had a coefficient of correlation (R-squared) of 0.998. The combustion and NOx emission models are valid for not only conventional gasoline fuel but also oxygenated alternative fuel blends at three different pilot injection strategies. In order to track key combustion metrics while keeping noise and emissions within constraints, a model predictive control(MPC) was applied for a compression ignition engine operating with a range of potential fuels and fuel injection strategies. The MPC is validated under different scenarios, including a load step change, fuel type change, and injection strategy change, with proportional-integral (PI) control as the baseline. The simulation results show that MPC can optimize the overall performance through modifying the main injection timing, pilot fuel mass, and exhaust gas recirculation (EGR) fraction. Show less