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It is shown that in stochastic QCD a vacuum color quark is confined
due to the interaction with environment, chaotic dynamics of Yang-Mills-
Higgsfields, decoherence of pure color state into mixed white (colorless)
state and also squeezed, and entangled states appearance. Critical energy
of order-chaos transition is obtained which depends on Higgs boson mass.
Stochasticity is the root of color confinement disappearing of color at con-
finement radius.

1. Stochasticity

Let us take a heavy spinless color particle (”quark”) in the QCD vac-
uum, for example inside a hadron or deconfined QGP. QCD vacuum is the
environment for color quantum particles whose properties are averaging over
all external QCD vacuum implementations [1–5]. Interactions with the en-
vironment result in decoherence and relaxation of quantum superpositions
[6, 7]. Interactions of some quantum system with the environment can be
effectively represented by additional stochastic terms in the Hamiltonian
of the system. QCD vacuum represents itself namely as a stochastic (not
coherent one) system. Stochastic means that only the second order corre-
lators in the QCD vacuum are dominated (Gauss domination). It has been
confirmed by lattice calculation. The most important evidence for this is
Casimir scaling [8]. The model of the QCD stochastic vacuum is one of the
popular phenomenological models which exhibits quark confinement, string
tension and field configurations around static charges [9–12]. When con-
sidering a QCD stochastic vacuum as the environment for color quantum
particles with the averaging over external QCD stochastic vacuum imple-
mentations, we obtain as consequences decoherence, relaxation of quantum
superpositions, loss of information, and confinement of color states.
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2. Density matrix

In the situation of a quantum system (quark) in the environment (stochas-
tic QCD vacuum) a density matrix is the most adequate formalism. The
color particle density matrix of the system taking into account both color
particle and QCD stochastic vacuum as environment is obtained by averag-
ing with respect to the stochastic terms [1–5]

ρ(loop, 1 2) =< |φ(1)〉〈φ(2)| >, (1)

here we average over all implementations of stochastic gauge field (environ-
ment degrees of freedom). In the model of QCD stochastic vacuum only
expectation values of path ordered exponents over closed paths are defined.
The amplitude is obtained by parallel transport [1–5]

|φ(1)〉 = P exp

(

i

∫

dxµÂµ

)

|φin〉, (2)

Closed path corresponds to a process in which the particle-antiparticle pair
is created, propagates and finally annihilates. With the help of (1) and (2)
we can obtain the next expression

ρ(loop, 1 2) = N−1

c + (|φin〉〈φin| − N−1

c )Wadj(loop, 1 2). (3)

Here Nc is a number of colors, Wadj(loop, 1 2) is the Wilson loop in the
adjoint representation, and we have used the property that color density
matrix in color neutral stochastic vacuum can be decomposed into the pieces
transformed under trivial and adjoint representations [4].

As is known due to Casimir scaling, decay rates of Wilson loops in differ-
ent representations are proportional to each other , in particular Wfund(loop,
1 2) and Wadj(loop, 1 2). Decay of Wfund(loop, 1 2) points at confinement of
color charges. Simultaneously we have decay of Wadj(loop, 1 2) that means
from Eq. (3) that the color density matrix obtained as a result of parallel
transport along the (loop, 1 2) tends under the confinement regime to the
color density matrix of white (colorless) mixture ρ = N−1

c . Here all color
states are mixed with equal probabilities and all information on initial color
state is lost. The stronger the color states are confined the stronger their
states transform into the white mixture.

So, as the Wilson area law holds for the Wilson loop (confinement cri-
terion), we can obtain an explicit expression for the density matrix if we
choose for example the rectangular (loop 1 2) spanned in terms of time T

and distance R [2, 4]. When R or T are of order of 1 fm (for SU(3) theory),
the Wilson loop decays exponentially with the area spanned on (loop 1 2)

ρ(loop, 1 2) = N−1

c + (ρin − N−1

c ) exp(−σadjRT ), (4)



where σadj = σfundGadjG
−1

fund is string tension in the adjoint representation
and Gadj , Gfund are the eigenvalues of quadratic Casimir operators. Under
the condition of Gaussian dominance, string tension is σfund = g2l2corrF

2/2,
where g is the coupling constant, lcorr is the correlation length in the QCD
stochastic vacuum, and F 2 is the average of the second cumulant of curva-
ture tensor when g2l2corrF

2 ≪ 1 [12].
The decoherence rate of transition from pure color states to white mix-

ture can be estimated on the base of purity [6] P = Tr ρ2 [4]

P = N−1

c + (1 − N−1

c ) exp(−2σfundGadjG
−1

fundRT ). (5)

When T or R tend to 0, P → 1, that corresponds to pure state with
the density matrix ρin = |φin〉〈φin|. When composition RT tends to infin-
ity the purity tends to N−1

c , that corresponds to the white mixture state
with the density matrix N−1

c . The rate of purity decreasing is T−1

dec =

2σfundGadjG
−1

fund, where Tdec is the characteristic time of decoherence pro-

portional to QCD string tension and distance R. It can inferred from (3)
and (4) that the stronger is particle-antiparticle pair coupled by QCD string
or the larger is the distance between particle and antiparticle the quicker
information about color state is lost as a result of interaction with the QCD
stochastic vacuum. Thus white states can be obtained as a result of de-
coherence process which allows to conjecture analogy with color particle
confinement. Information on quark color states in confinement region is
lost due to interactions between quarks and confining non-Abelian gauge
fields (stochastic QCD vacuum).

3. Confinement, fidelity, critical energy of order-chaos
transition and mass of the Higgs boson

The Wilson loop definition in QCD is similar [13] to the definition of
fidelity [8], the quantity which describes the stability of quantum motion of
the particles [14]. Using the analogy between the theory of gauge fields and
the theory of holonomic quantum computations [13, 15, 16] we can define
the fidelity of quark motion. We consider the motion of color particles
in different paths from the point x to the point y. In the initial point x
state vectors are |φin〉. For large particle mass and taking into account

that because of Hermitian character of Âµ operator (1) is unitary. We can
rewrite fidelity as integral over the closed loop, traveling from point x to
the point y

f =< 〈φin|P exp

(

i

∫

dxµÂµ

)

|φin〉 > (6)

in the path 1 and back to the point x in the path 2 and obtain integral
proportional to the identity due to the color neutrality of stochastic vacuum.



The final expression for the fidelity of the particle moving in the Gaussian-
dominated stochastic vacuum is

f = exp

(

−
1

2
g2l2corrF

2S

)

, (7)

where S is the area of the surface spanned over the contour (loop, 1 2). Thus
the fidelity for color particle moving along contour decays exponentially with
the surface spanned over the contour S the decay rate being equal to the
string tension is σfund = g2l2corrF

2/2. Another situation, more close to
the standard treatment of the fidelity, is realised when 1 and 2 are two
random paths in Minkowski space, closed to each other. The corresponding
expression for the fidelity is similar, but now the averaging is performed with
respect to all random paths which are close enough. If the unperturbed path
is parallel to the time axis in Minkowski space, the particle moves randomly
around some point in three dimensional space. The fidelity in this case also
decays exponentially with time. Thus we have close connection between
confinement and instability of color particle motion.

The increasing of instability of motion in the confinement region is also
connected with existence of chaotic solutions of Yang-Mills field [1, 17],
possible chaos onset [18]. Yang-Mills fields already on classical level show
inherent chaotic dynamics and have chaotic solutions [17, 18]. It was shown
that the Higgs boson and its vacuum quantum fluctuations regularize the
system and lead to the emergence of order-chaos transition at some critical
energy [13, 19–21]

Ec =
3µ4

64π2
exp(1 −

λ

g4
). (8)

Here µ is mass of Higgs boson, λ is its self-interaction coupling constant, g
is the constant coupling gauge and Higgs fields. Very important here is the
value of mass of Higgs boson. From Ref. [22]: “Higgs mass lower than some
critical value and potential is unstable, and the universe can phase transition
to another vacuum.” On the other hand, in the region of confinement there
exists the boundary of order-chaos transition where the fidelity decreases
exponentially and which is equal to string tension σfund = g2l2corrF

2/2.
This connects the properties of stochastic QCD vacuum, Higgs boson mass
and coupling constants.

4. Squeezed and entangled color states

The instability of motion in the confinement region is also connected
with possible phenomena of quantum entanglement and squeezing of color
states [23–27].



Color particles moving through QCD vacuum with large momentum
transfered develop quark-gluon jets. Both perturbative and nonperturba-
tive (with sub-Poissonian multiplicity distributions) stages of the jet evolu-
tion are important [28]. Gluon multiplicity distribution at the end of the
perturbative cascade in the range of the small transverse momenta (thin
ring of jet) is Poissonian one [29]. Multiplicity distribution for the whole jet
at the end of the perturbative cascade can be represented as a combination
of Poissonian distributions (coherent states.). Gluon coherent states un-
der the influence of the nonlinearities of QCD Hamiltonian transform into
the squeezed and entangled states with sub-(super-)Poissonian multiplicity
distributions [24–26]. Within local parton-hadron duality we can estimate
nonperturbative contribution of the gluon squeezed states to the pion cor-
relation functions in the jet narrow ring [30].

The emergence of entangled and squeezed states in QCD becomes pos-
sible due to the four-gluon self-interaction, the three-gluon self-interaction
does not lead to the effects [24–26]. In principle, these effects are possible
even for quadratic Hamiltonians in the quantum theory under certain con-
ditions. Moreover we may amplify or, on the contrary, weaken both the
squeezing effect and the system instability [31].

Two mode gluon squeezed and entangled states with two different colors
can lead to quark-antiquark entangled states, the role of which could be
important for of the confinement and hadronization phenomena [25, 26].

Quantum entanglement for cubits and Yang-Mills-Higgs fields was con-
sidered in [27] in terms of the original quasiclassical formalism developed in
[31]. The concept of quantum entanglement was found to be very useful as
a model-independent characteristic of the structure of the ground state of
quantum field theories which exhibit strong long range correlations, most
notably lattice spin systems near the critical points and the corresponding
conformal field theories [32].

Quantum entanglement was also considered as an alternative way to
probe the confining properties of large-N gauge theories [33, 34]. Quantum
entanglement between the states of static quarks in the vacuum of pure
Yang-Mills theory was analyzed in Ref. [33].

The Hilbert space of physical states of the fields and the charges is
endowed with a direct product structure by attaching an infinite Dirac string
to each charge. Tracing out the gauge degrees of freedom yields the density
matrix which depends on the ratio of Polyakov and Wilson loops spanned
on quark world lines. In the confinement regime, the entanglement of quark
color states is maximal [35].



5. Conclusions

We have shown that a stochastic (not coherent) vacuum of quantum
chromodynamics for which only correlators of the second order are impor-
tant can be considered as the environment (in the sense of quantum optics)
for color particles (quarks and gluons), where the Wilson loop corresponds
to the fidelity of quantum color particle motion and confinement to the in-
stability (chaoticity) of motion and to decoherence of pure color states into
mixed white states. The Wilson loop, fidelity and purity decay exponen-
tially with decay rate equal to the string tension. The dynamics of Yang-
Mills fields, which is inherently chaotic one already at the classical level,
can be partly regularized by interaction with Higgs fields and by quantum
fields fluctuations. The critical point of an order-chaos transition appears
which corresponds to the point of fidelity exponential decreasing. Squeez-
inq, entanglement, decoherence and instability accompany nonperturbative
evolution of colour particles in QCD vacuum and confinement phenomenon.
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