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Using the sample of Au + Au collisions at 200 GeV generated by the
AMPT with string melting model, the anisotropic amplitudes of azimuthal
distributions of total transverse momentum, mean radial (transverse) mo-
mentum, and multiplicity are first presented and compared. It shows that
the azimuthal distribution of mean radial momentum well characterizes the
radial expansion. So a measurement of the azimuthal distribution of mean
transverse (radial) rapidity of final state particles is suggested. We further
show that the isotropic part of the suggested distribution is the combi-
nation of isotropic radial expansion and thermal motion. The anisotropic
amplitude characterizes the anisotropic radial flow, and coincides with the
parameter of anisotropic radial flow rapidity extracted from a generalized
blast-wave parametrization.

1. Introduction

The observation of large elliptic flow at RHIC is considered as one of
the most important signatures of the formation of the strongly interacting
Quark Gluon Plasma (sQGP) [1, 2]. The flow harmonics are Fourier coef-
ficients of the azimuthal multiplicity distribution of final state hadrons [3].
One common feature of flow harmonics is their mass ordering in the low
transverse momentum region [4]. This phenomena can be well understood
by hydrodynamics with a set of kinetic freeze-out constraints, i.e., the tem-
perature, the radial flow, and the source deformation [5]. The radial flow is
usually described by 2 parameters. The first is the isotropic radial velocity
(or rapidity, related by vT = tanh yT). It presents the surface profile of
isotropic transverse expansion of the source at kinetic freeze-out.

The other parameter is the anisotropic radial velocity (i.e., the azimuthal
dependent radial velocity). It measures the difference of the radial flow
strength in and out of the reaction plane. It is introduced to account for



the anisotropic radial flow field which arises in non-central collisions. The
observed elliptic flow can be generated by anisotropic radial flow [5, 6].
Moreover, the shear tension of viscosity in hydrodynamics is supposed to
be proportional to the gradient of radial velocity along the azimuthal di-
rection [7], which is directly related to anisotropic radial velocity. The
proportionality constant is the shear viscosity.

In hydrodynamic models [8, 9, 10], these parameters are not indepen-
dent. They are related by the initial conditions and the equation of state.
Their determination is crucial for theoretical calculations.

It has been shown that the azimuthal distribution of mean transverse
momentum directly measures the transverse motion of the source at kinetic
freeze-out [11]. So we suggest the measurement of the azimuthal distribution
of the mean transverse rapidity of final state hadrons (〈yT(φ)〉). It should
be helpful in determining the parameters of the anisotropic radial rapidity.

As we know, 〈yT(φ)〉 contains three parts: average isotropic radial ra-
pidity, average anisotropic radial rapidity, and average thermal motion ra-
pidity [4]. Since both thermal and radial motions contribute to the isotropic
rapidity of the distribution, the isotropic radial rapidity itself can not be
directly obtained from the distribution. Conventionally, the radial flow
parameters are extracted from the pT spectra of the hadrons [12, 13], or
dileptons [14, 15], by a generalized blast-wave parametrization [5, 6]. The
obtained parameters are an approximate description of the radial flow; they
are model dependent. A model independent measure is called for.

Fortunately, the thermal motion is isotropic. As such, it does not con-
tribute to the anisotropic radial flow. The azimuthal amplitude of the mean
transverse rapidity distribution should correspond directly to the anisotropic
radial rapidity. It is interesting to see the features of the azimuthal distri-
bution of mean transverse rapidity, and how its azimuthal amplitude relates
to the parameters of anisotropic radial rapidity extracted by a generalized
blast-wave parametrization.

In this paper, using a sample generated by the AMPT model with string
melting [16, 17], we first compare the anisotropic amplitudes of three az-
imuthal distributions of total transverse momentum, the mean radial (trans-
verse) momentum, and multiplicity in section II. It shows that the azimuthal
distribution of mean radial momentum, or rapidity, is a good measure of ra-
dial expansion. In section III, we further demonstrate the measured physics
of isotropic and anisotropic amplitudes of the suggested distribution. They
behave indeed as the expected radial flow (with a random thermal compo-
nent), and anisotropic radial flow, respectively. In section IV, it is further
shown that the parameter of anisotropic radial flow rapidity is just the
anisotropic amplitude of the suggested distribution. Finally, the summary
and conclusions are given in section V.



2. Measurements of radial expansion

Conventionally, the azimuthal distribution of the multiplicity of final
state particles is presented by

dN

dφ
∝ 1 +

∞∑

n=1

2vn(N) cos(nφ), (1)

where φ is the azimuthal angle between the transverse momentum of the
particle and the reaction plane. The coefficients of the Fourier expansion
are [18],

vn(N) = 〈cos(nφ)〉, (2)

where 〈. . . 〉 is an average over all particles in all events. The second har-
monic coefficient v2(N) is the so-called elliptic flow parameter. It represents
the anisotropy of the colliding system and has the biggest value in relativis-
tic heavy ion collisions [19].

However, the multiplicity distribution only counts the number of particle
emissions in a certain azimuthal angle. The initial anisotropy in coordinate
space in non-central collisions makes the formed system expand in a per-
pendicular almond shape in momentum space. The expansion of the system
generates not only the anisotropy of multiplicity distribution but also their
associate radial (transverse) momentum. The total radial momentum at a
given azimuthal angle is the combination of them. Therefore, the azimuthal
distribution of radial momentum is a good measure of the anisotropic ex-
pansion. The total transverse momentum in the mth azimuthal bin can be
defined as

〈Pt(φm)〉 =
1

Nevent

Nevent∑

j=1

(
Nm∑

i=1

pT,i(φm)

)
. (3)

Where pT,i is the transverse momentum of the ith particle, Nm is the total
number of particles, and 〈. . .〉 denotes the average over all events.

In order to see the contributions of radial expansion alone, the mean
radial momentum in the mth azimuthal bin can be defined accordingly as,

〈〈pT(φm)〉〉 =
1

Nevent

Nevent∑

j=1

(
1

Nm

Nm∑

i=1

pT,i(φm)

)
. (4)

Here, the averages 〈〈. . .〉〉 are over all particles in the mth angle bin and all
events. This records only the contributions from the transverse momentum
of final particles. In contrast to the azimuthal multiplicity distribution, the
multiplicity effect is eliminated by the average over the number of particles
in the mth bin.



The anisotropic parameters of all those azimuthal distributions can be
directly obtained from their Fourier expansions,

d〈Pt〉
dφ

∝ 1 +
∞∑

n=1

2vn(〈Pt〉) cos(nφ), (5)

and
d〈〈pT〉〉
dφ

∝ 1 +

∞∑

n=1

2vn(〈〈pT〉〉) cos(nφ). (6)

d〈Pt〉
dφ

and d〈〈pT〉〉
dφ

are the azimuthal distribution functions of total radial

momentum and mean radial momentum. vn(〈Pt〉) and vn(〈〈pT〉〉) are their
anisotropic parameters, respectively.

In order to see the contributions of those anisotropic flows in a real sys-
tem, we simulate the Au + Au collisions at 200 GeV by AMPT with string
melting model [16, 17]. A partonic phase is implemented in the model and
the elliptic flow data from RHIC are well reproduced by the model [20]. We
generate 1.6 millions minimum bias events. Their centrality dependencies
are presented in Fig. 1. The red stars, the blue triangles, and the black solid
circles are the anisotropic amplitudes of total transverse momentum v2(Pt),
multiplicity v2(N), and mean transverse momentum v2(〈〈pt〉〉), respectively.

Figure 1 shows that they have similar centrality dependence, small at
peripheral and central collisions, and largest at mid-central collisions. But
their anisotropies are different. The anisotropy of mean transverse momen-
tum is the smallest, the anisotropy of multiplicity is in the middle, and the
anisotropy of total transverse momentum is the largest, as it counts the
anisotropy from both multiplicity and transverse momentum distributions,
as we discussed in their definitions.

So the azimuthal distribution of mean transverse momentum can mea-
sure the anisotropy of radial expansion, in additional to the multiplicity dis-
tribution. We suggest the measurement of azimuthal distribution of mean
transverse rapidity. Usually, the transverse rapidity of a final state hadron
is considered as a good approximation of its transverse rapidity at kinetic
freeze-out [21]. It is defined similarly to that of mean transverse momentum.

yT = ln(
mT + pT

m0

) , (7)

where m0 is the particle mass in the rest frame, pT is transverse momentum,

and mT =
√
m2

0
+ p2

T
is the transverse mass.

The mean transverse rapidity in a given azimuthal angle bin is defined
as the summation of all particles’ rapidities divided by the total number of
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Fig. 1. (Color online) The centrality dependence of elliptic flow parameters deduced

from azimuthal distributions of radial momentum (red stars), mean radial momen-

tum (black solid circles), and multiplicity (blue solid triangles) for the sample of

Au+Au collisions at
√
sNN = 200 GeV generated by AMPT with string melting.

particles, i.e.,

〈yT(φm − ψr)〉 =
1

Nevent

Nevent∑

e=1

1

N e
m

Ne
m∑

i=1

ye
T,i(φm − ψr), (8)

where the transverse rapidity of final state particle with mass m0 is deter-
mined by its transverse momentum. Rapidity is more convenient in boost
transformations. It should directly relate to the radial flow parameters that
we are interested in.

The distribution of mean transverse rapidity in a minimum bias sample
is shown in Fig. 2(a). We can see it is a periodic function of azimuthal angle,
and consists of two parts. The isotropic constant, yT0 = 1.3371 ± 0.0001,
and azimuthal dependent part yT2 = 0.0334 ± 0.0002.
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Fig. 2. (Color online) (a): 〈yT(φ)〉 for centrality 0−70%, (b): 〈yT(φ)〉 for 3 different

mass particles, (c): 〈yT(φ)〉 at three different centralities, 0 − 5% (red points),

30% − 40% (black triangles), and 60% − 70% (green down triangles), (d): The

centrality dependence of yT2 (red points), and ρ2 (black triangles).

3. Physics of the suggested measurement

The isotropic part of the suggested distribution contains both isotropic
radial expansion and thermal motion. In order to see the features of the
isotropic part, we study the mass dependence of the suggested distributions.

The suggested distributions of three different particles, pion (blue trian-
gles), kaon (red points), and proton (black triangles) are given in Fig. 2(b).
It shows that the distribution of the lightest pion is at the top with the
largest isotropic rapidity, while the distribution of the heaviest proton is at
bottom with the smallest isotropic rapidity, and the distribution of kaons
with intermediate mass is between them with intermediate isotropic rapid-
ity.

As we know, the thermal motion is mainly determined by the tempera-
ture and particle mass. At fixed temperature, the particles with small mass
should have larger thermal velocity. So the isotropic part of the suggested
distribution is just ordered as expected by thermal motion.

The features of the anisotropic part, the suggested distribution, at three
typical centralities, 0-5% (red points For the most central collisions), 30%-
40% (black up triangles for the middle-central collisions), and 60%-70%
(green down triangles for the peripheral collisions), are given in Fig. 2(c).

It shows that the distribution is almost flat and azimuthal angle inde-
pendent in central collisions, but azimuthal angle dependent in non-central
collisions. It also shows the large anisotropy in mid-central collisions, and
small anisotropy in peripheral collisions.

This centrality dependence is consistent with the fact that anisotropic
radial flow appears in non-central collisions, and is the largest in mid-central
collisions.

So the suggested distribution well represents the characters of radial



flow. Since we can not separate the thermal motion, the parameter of
isotropic radial rapidity can not be obtained from the measurement. How-
ever, the thermal motion is isotropic, and has no contribution to the aniso-
tropic part. The azimuthal dependent part, yT2, should correspond to the
parameter of anisotropic radial flow rapidity.

4. Measured anisotropic amplitude and extracted parameter
of anisotropic radial flow rapidity

It is interesting to check if the measured anisotropic part corresponds to
the extracted parameter of anisotropic radial flow rapidity.

The blast-wave model is currently the only model that simply includes
the radial flow parameters. It is motivated from hydrodynamics with the
kinetic freeze-out parameters [6, 12, 22, 24, 25, 26]. It is assumed that the
longitudinal expansion is boost invariant [27]. The single-particle spectrum
is given by the Cooper-Frye formalism (as in hydrodynamics) [28],

E
d3N

d3p
∝ 1

(2π)3

∫

Σf

pµdσµ(x)f(x, p), (9)

where f(x, p) is the momentum distribution at space-time point x. Eq. (4) is
an integral over a freeze-out hyper-surface, and sums over the contributions
from all space-time points.

Originally, local thermal equilibrium is assumed to be reached at kinetic
freeze-out and a Boltzman distribution of the momentum is applied [12]. It
has been shown recently that a Tsallis distribution provides an even better
description for all pT spectra from elementary to nuclear collisions [29, 30].
So, we use the Tsallis distribution for f(x, p), i.e.,

f(x, p) =

[
1 +

q − 1

T (x)

(
p · u(x) − µ(x)

)]− 1

q−1

, (10)

where q is the parameter characterizing the degree of non-equilibrium, and
T is the kinetic freeze-out temperature. Thus the transverse momentum
spectrum can be given by [31],



dN

pTdpTdφ
∝
∫

2π

0

dφs

∫ yb

−yb

dye
√

y2

b
−y2

cosh y

∫ R

0

mTrdr

[
1 +

q − 1

T

(
mT cosh y cosh ρ

−pT sinh ρ cos(φb − φ)

)]− 1

q−1

, (11)

where mT and pT are transverse mass and transverse momentum of the
particle, respectively, and yb = ln(

√
sNN/mN ) is the beam rapidity [32].

According to the generalized blast-wave parametrization, the radial flow
rapidity which controls the magnitude of the transverse expansion velocity
is [6, 22, 33, 34],

ρ = r̃
(
ρ0 + ρ2 cos(2φb)

)
, (12)

where r̃ =
√

(r cos(φs)/RX)2 + (r sin(φs)/RY )2. ρ0 and ρ2 are the pa-
rameters of isotropic radial flow rapidity and the amplitude of anisotropic
radial flow rapidity, respectively. The greater the magnitude of ρ2, the
larger the momentum-space anisotropy. Here, φs is the azimuthal angle
in coordinate space and φb is the azimuthal angle of the boost source el-
ement defined with respect to the reaction plane. They are related by
tan(φb) = (RX/RY )2 tan(φs).

There are 5 undetermined parameters: the temperature (T ), isotropic
radial flow rapidity (ρ0) and anisotropic radial flow rapidity (ρ2), q of the
Tsallis distribution, and RX/RY . Since all the particles are assumed to
move with a common radial flow velocity, the mean kinetic freeze-out pa-
rameters are usually obtained by the simultaneous fitting of spectra from
several hadrons [23, 24] and elliptic flow [6]. Elliptic flow, v2(pT), is the
second coefficient of the Fourier expansion of azimuthal multiplicity distri-
bution [35, 18], and defined as,

v2(pT) =

∫ yb

−yb
dy
∫

2π

0
dφ cos(2φ) dN

pTdpTdydφ∫ yb

−yb
dy
∫

2π

0
dφ dN

pTdpTdydφ

. (13)

In Fig. 3, the pT spectra of six particles, π±, K±, p, and p, of the
same sample, are presented by red solid circles. The differential elliptic
flow v2(pT) of pions, kaons, and protons are presented in Fig. 4 by black
triangles, red solid circles and blue triangles, respectively. The error bars
only include statistical errors. They are very small in comparison with the
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Fig. 3. (Color online) The transverse momentum spectra for π±, K±, p and p

within |yL| < 0.1 at centrality 0 − 70% for the sample of Au+Au collisions at√
sNN = 200 GeV generated by the AMPT model with string melting.

experimental data [22]. Typically, the systematic errors are considered to
be 5% when fitting the simulated data [36]. Due to resonance decays in the
low momentum region of pions [23], the data points in the low pT regions
of the spectra are excluded in this fitting.

Using Eqs. (6) and (8), the fitting curves in each plots of Fig. 3 and
4 are drawn. They describe well the corresponding data points of the pT

spectra and elliptic flow. The fitting parameters are T = 102 ± 1 MeV,
ρ0 = 0.67±0.01, and ρ2 = 0.036±0.002. This temperature is the same mag-
nitude as that given by hydrodynamics [5, 10], and experimental data [22].
The parameter of anisotropic radial flow rapidity, ρ2, is very close to the
azimuthal amplitude of the suggested distribution, yT2 = 0.0343 ± 0.0002.

The centrality dependence of ρ2 is shown in Fig. 2(d) by black trian-
gles. We can see that at each centrality, ρ2 is very close to yT2. The
azimuthal amplitude of the suggested distribution coincides with the pa-
rameter of anisotropic radial flow rapidity extracted from a generalized
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Fig. 4. (Color online) The differential elliptic flow v2(pT ) for different particle

species within |yL| < 0.1 at centrality 0 − 70% for the sample of Au+Au collisions

at
√
sNN = 200 GeV generated by the AMPT model with string melting.

blast-wave parametrization. So they are consistent.

5. Summary

We suggest a measurement for the azimuthal distribution of mean trans-
verse rapidity. It consists of two parts: isotropic, and anisotropic mean
transverse rapidity. The isotropic part is the combination of isotropic radial
expansion and thermal motion. It is demonstrated to be consistent with
expected the mass ordering. The anisotropic part presents the anisotropic
radial expansion. Its centrality dependence is shown to be consistent with
extracted the parameter of anisotropic radial flow rapidity. The suggested
distribution provides a model independent way to get the parameter of
anisotropic radial flow rapidity. It is helpful for hydrodynamic calculations,
and a model independent determination of shear viscosity [37].
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