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We simulate the 3D O(1) (Ising) and O(4) spin models by the Monte
Carlo method. Interesting high-order cumulants from the 3D Ising and
O(4) universality classes are presented and discussed. They all show the
non-monotonic or sign change behavior. The critical behavior is instructive
to that of the high-order cumulants of the net baryon number in the QCD
phase transitions. Maybe it’s difficult to distinguish the universality classes
by the high-order cumulants in the heavy ion collisions.

1. Introduction

One of the primary goals of current ultra-relativistic heavy-ion collision
experiments is to map the QCD phase diagram onto the T–µB plane [1]. The
critical point is particularly interesting, because the divergent susceptibility
and correlation length (ξ) are expected. But the expansion of ξ is limited
as the finite evolution time and volume of relativistic heavy-ion collision
system. So the more sensitive probes to locate the QCD critical point
are needed. Recently, the high-order cumulants of the conserved charges
are suggested, i.e., the net baryon number, net electric charge, and net
strangeness [2, 3]. They are more sensitive to the correlation length and
may change sign near the critical point based on the theory [4–7].

The net baryon number fluctuations have been studied by lattice QCD
and QCD effective models [8–11]. However, owing to the difficulties of



the lattice calculations and model estimations, the study of the high-order
cumulants of the net baryon number need to be continued anyway [12, 13].

The QCD critical point falls into the same universality class with the
3D Ising model [14, 15]. In the chiral limit, the chiral phase transition for
2-flavor QCD is expected to belong to the 3D O(4) universality class [15].
Because of the universal properties of the critical phenomena, the relevant
cumulants can be studied in the simple spin systems. The results should be
instructive to a finite system formed in relativistic heavy-ion collisions.

The paper is organized as follows, firstly, the cumulants of order param-
eter and energy from the O(N) spin models are derived in Sec. 2. Then,
their relations to the net baryon number fluctuations are discussed. In Sec.
3, the high-order cumulants from the 3D Ising model and O(4) spin model
are presented and discussed. Finally, the summary and conclusions are given
in Sec. 4.

2. Cumulants in the O(N) spin models

The O(N) spin models are defined as,

βH = −J
∑

〈i,j〉
~Si · ~Sj − ~H ·

∑

i
~Si, (1)

where H is the Hamiltonian, J is an interaction energy between nearest-
neighbor spins 〈i, j〉, and ~H is the external magnetic field. J and ~H are

both reduced quantities which already contain a factor β = 1/T . ~Si is a
unit vector of N -components at site i of a d-dimensional hyper-cubic lattice.
It is usually decomposed into the longitudinal (parallel to the magnetic field
~H) and the transverse component ~Si = S

‖
i ~eH + ~S⊥

i , where ~eH = ~H/H. For
the 3D Ising and O(4) spin models, d = 3, N = 1 and 4, respectively.

The partition function is as follows,

Z =

∫

∏

i

dNSiδ(~S
2
i − 1) exp(−βE + HV S‖), (2)

where E = −
∑

〈i,j〉
~Si·~Sj is the energy of a spin configuration, S‖ = 1

V

∑

i S
‖
i

is the lattice average of the longitudinal spin components, V = L3 and L is
the number of lattice points of each direction.

As we know, the cumulants of the order parameter are related to the
derivatives of the free energy density, f(T, H) = − 1

V lnZ, with respect to
H. They can be got from the generating function [16],

κS
n =

dn

dxn
ln〈exS‖

〉

∣

∣

∣

∣

x=0

. (3)



So the first, second, third, fourth and sixth order cumulants of the order
parameter are as follows,

κS
1 = 〈S‖〉, κS

2 = 〈δS‖2
〉, κS

3 = 〈δS‖3
〉, κS

4 = 〈δS‖4
〉 − 3〈δS‖2

〉2,

κS
6 = 〈δS‖6

〉 − 10〈δS‖3
〉2 + 30〈δS‖2

〉3 − 15〈δS‖4
〉〈δS‖2

〉, (4)

where δS‖ = S‖ − 〈S‖〉, and κS
1 is the magnetization (order parameter)

of the system. At vanishing external magnetic field, due to the spatial
rotation symmetry of the O(N) groups, such defined order parameter is
zero. In the case, an approximated order parameter definition is suggested
as, M = 〈| 1

V

∑

i
~Si|〉 [17].

The cumulants of the energy are related to the derivatives of the free
energy density with respect to T . The forms of the formulas for the cumu-
lants are the same as that in Eq. (4), where it just need to replace S‖ by
E.

In the vicinity of the critical point, the free energy density can be de-
composed into two parts, the regular and singular parts. The critical related
fluctuations are determined by the singular part. It has the scaling form
fs(t, h) = l−dfs(l

ytt, lyhh). Here t = (T − Tc)/T0 and h = H/H0 are reduced
temperature and magnetic field, T0 and H0 are the normalized parameters.
Tc is the critical temperature. yt and yh are universal critical exponents. In
our simulation, we set J = β and choose the approximate critical tempera-
tures, Tc =4.51 [17] and 1.068 [18] for the 3D Ising and O(4) spin models,
respectively.

In order to map the result of the 3D Ising model to that of the QCD if the
QCD critical point exists, the following linear ansatz is suggested [19–21],

t ≈ T − Tcp + a(µ − µcp), h ≈ µ − µcp + b(T − Tcp). (5)

Tcp and µcp are the temperature and chemical potential at the QCD criti-
cal point, respectively. a and b are two undecided mixed parameters. The
baryon-baryon correlation length diverges with the exponent yt and expo-
nent yh when the critical point is approached along the t-direction and h-
direction, respectively [9]. Because yh (≈ 2.5) is larger than yt (≈ 1.6) [22],
the critical behavior of the net baryon number fluctuations is mainly con-
trolled by the derivatives with respect to h, i.e., the fluctuations of the order
parameter in the 3D Ising model.

The singular part of the free energy density for the chiral phase transition
is suggested as [7]

fs(T, µq, h)

T 4
= Ah(1+1/δ)ff (z), z = t/h1/βδ, (6)



where β and δ are the universal critical exponents of the 3D O(4) spin model.
ff (z) is the scaling function. The reduced temperature t and external field
h are expressed as follows,

t ≡
1

t0
(
T − Tc

Tc
+ κµ(

µq

T
)2), h ≡

1

h0

mq

Tc
. (7)

Here Tc is the critical temperature in the chiral limit. κµ is a parame-
ter determined by QCD [23]. The net baryon number susceptibility is the
derivative of free energy density with respect to the chemical potential µq.
From Eqs. (6) and (7), it’s clear that the form of the derivatives of the
free energy density with respect to T and chemical potential µ̂q = µq/T is
similar. Particularly, The n-th order cumulant of the energy from the 3D
O(4) spin model is relevant to the 2n-th (or n-th ) order cumulant of the
net baryon number at µq = 0 (or µq 6= 0 ) in the chiral phase transition.

3. Critical behavior of the high-order cumulants

The Monte Carlo simulations are performed by the Wolff algorithm with
helical boundary conditions [24]. The typical size of an observable at a given
magnetic field is determined by the saturation of size dependence, as shown
in Ref. [25]. The system sizes in this work for each kind of cumulants at a
given magnetic field and model are listed in Table 1.

Table 1. The typical system size for each kind of cumulant.

H κS
n(O(1)) κE

n (O(1)) κE
n (O(4))

0 24 20 20
0.05 12 10 8
0.1 8 8 8

In order to compare the basic structure of the cumulants at different
external fields, each cumulant is rescaled to unity by its maximum or mini-
mum (except for the first order cumulant of the energy from the O(4) spin
model). For the Ising model, the cumulants of order parameter at H = 0
and H 6= 0 are quite different, so they are presented discretely.

The cumulants of energy from the 3D Ising model at H = 0.1, 0.05, and
0 are shown in the upper panel of Fig. 1. From each sub-figure, it’s clear that
the basic features of the cumulants, i.e., the patterns of the fluctuations, are
not influenced by the magnitude of the external field. With the appearing
or increasing of the external field, the whole critical region is amplified and
shifted toward the higher temperature side. This is easy to understand
that the cumulants are governed by universal functions that depend on the
scaling variable z = t/h1/βδ.
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Fig. 1. (Color online) The 2nd, 3rd, 4th and 6th order cumulants of the energy

(upper panel) and order parameter (lower panel) versus temperature for different

H from the 3D Ising model.

In the vicinity of Tc, κE
2 has a peak. κE

3 oscillates and its sign changes
from positive to negative when the temperature increases and passes the
critical one. κE

4 has two positive peaks locating at the two sides of Tc.
The valley between the peaks is negative. In contrast to the κE

4 , κE
6 has

two negative valleys and one positive peak in the vicinity of the critical
temperature.

The cumulants of order parameter at H = 0.1 and 0.05 from the 3D Ising
model are shown in the lower panel of Fig. 1. The influences of the external
field are similar to those as discussed in the cumulants of the energy. In the
vicinity of Tc, κS

2 has a peak. κS
3 has a negative valley and no sign change

in the critical region. κS
4 shows a obvious positive peak and a very small

and negative valley when the temperature increases and passes the critical
one. κS

6 oscillates from positive to negative, and the negative valley is more
obvious than that in κS

4 .

Comparing the upper part and lower part of Fig. 1, it’s clear that the
generic structure of the same order cumulant of the energy is different from
that of the order parameter, except for the second order one.

In Fig. 2, the high-order cumulants of the order parameter at H = 0
are shown. κS

2 in Fig. 2(a) has a narrow and sharp peak near Tc. From
Fig. 2(b) and (c), both κS

3 and κS
4 oscillate, but the former changes from

negative to positive, while the latter changes from positive to negative with
the increasing temperature. The generic structure of κS

6 in Fig. 2(d) is
similar to that of κE

4 in Fig. 1(c). The behavior of the high-order cumulants
at H 6= 0 and H = 0 is quite different. The sign change in the former case



cT/T

0.8 0.9 1 1.1 1.2 1.3

 
S 2

κ

0

0.2

0.4

0.6

0.8

1
  O(1)

  H=0 

(a)

cT/T

0.9 0.95 1 1.05 1.1
 

S 3
κ

-3

-2

-1

0

1 (b)

cT/T

0.9 0.95 1 1.05 1.1

 
S 4

κ

-1

-0.5

0

0.5

1 (c)

cT/T

0.9 0.95 1 1.05 1.1

 
S 6

κ

-1.5

-1

-0.5

0

0.5

1 (d)

Fig. 2. The 2ed, 3rd, 4th and 6th order cumulants of the order parameter versus

temperature at H = 0 from the 3D Ising model.

appears in the fourth order cumulant, while the third one in the later case.
The way of the sign change of κS

3 at H = 0 as shown in Fig. 2(b) is
consistent with the expectation from the effective model [5]. The qualitative
features of κS

4 as shown in Fig. 1(g) and Fig. 2(c) are consistent with that
from the linear parametric model of the Ising universality class (see Fig. 1 in
Ref. [6]). Especially at non-vanishing external field, the generic structure of
κS

4 in Fig. 1(g) is the same as Fig. 1(b) in Ref. [6]. When the critical point is
approached from the higher temperature side, κS

4 is negative. Based on the
Ising universality class, the sixth order cumulant of the order parameter is
also negative when approaching the critical point on the crossover side. And
the negative valley is more obvious than that in the fourth order cumulant.
Maybe the negative signal of the sixth order cumulant of the net baryon
number is easier to be detected in the experiments.
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Fig. 3. (Color online) The 1st, 2ed, 3rd and 4th order cumulants of the energy

versus temperature for different H from the 3D O(4) spin model.

The cumulants of the energy from the 3D O(4) spin model at H = 0.1,
0.05, and 0 are presented in Fig. 3. Again, the external field shows the
similar influences as discussed above. κE

1 increases with the temperature.
κE

2 , κE
3 , and κE

4 have a similar behavior with that from the Ising model.
As discussed in section 2, κE

1 , κE
2 , κE

3 , and κE
4 from the 3D O(4) spin

model are related to χB
2 , χB

4 , χB
6 , and χB

8 at µB = 0 in the chiral phase
transition. The positive peak of κE

2 is consistent with χB
4 from the lattice

QCD calculations [8] and the estimations of QCD effective models [10, 11,



26]. The sign change of κE
3 is also shown in χB

6 from the Polyakov loop
extended Quark-Meson (PQM) model [7, 11].

Based on the order parameter fluctuations from the Ising model at H 6= 0
and energy fluctuations from the O(4) spin model, the generic structure of
the fourth order cumulant of the net baryon number in the vicinity of the
critical point and in the chiral phase transition at vanishing chemical po-
tential is similar. Except for the small negative valley of the fourth order
cumulant of the order parameter in the Ising model, they both have a ob-
vious peak. The sixth order cumulant in the vicinity of the critical point
is also similar to that in the chiral phase transition at vanishing chemical
potential. It oscillates and has a sign change in the two cases. It’s maybe
difficult to distinguish the two universality classes by the high-order cumu-
lants in the heavy ion collisions.

4. Summary

In this work, the behavior of the high-order cumulants of order parame-
ter and energy in the 3D Ising model, and the cumulants of energy in the 3D
O(4) spin model at H = 0.1, 0.05, and 0 is presented, respectively. The ex-
ternal field does not influence the generic structure of the cumulants, except
the cumulants of the order parameter from the 3D Ising model.

For the 3D Ising universality class, the generic structure of the high-
order cumulants of energy are different from that of order parameter. But
they all have the non-monotonic or sign change behavior. The fourth and
sixth order cumulants of the order parameter at nonzero external field are
both negative when approaching the critical point from the crossover side.
But the negative signal is more obvious in the sixth order cumulant. Maybe
it’s easier to be detected in the experiment.

For the 3D O(4) universality class, the behavior of the second to fourth
order cumulants of energy is similar to that from the 3D Ising universality
class. The net baryon number fluctuations based on the O(4) spin model
are qualitatively consistent with the calculations from the lattice QCD, and
expectations from the QCD effective models. Our results also show that at
vanishing chemical potential, the sixth order cumulant of the net baryon
number is necessary in order to observe a sign change in the chiral phase
transition.

Based on the order parameter fluctuations from the 3D Ising and energy
fluctuations from the 3D O(4) universality classes, maybe it’s difficult to
distinguish the different universality classes by the high-order cumulants in
the heavy ion collisions.
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