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Numerical simulations of Quantum Chromodynamics on a space-time
lattice represent the best non-perturbative tool to explore the QCD phase
diagram and the behavior of strong interactions under extreme conditions.
We review the present status of the field and discuss some recent results.

1. Introduction

Many of the questions which are still open within the Standard Model of
particle physics concern strong interactions. They are described by Quan-
tum Chromodynamics (QCD). While we have a clear understanding of the
theory in the high energy limit where, thanks to property of asymptotic free-
dom, it is perturbative, we still cannot solve the low energy regime, where
the coupling is strong and the theory is non-perturbative. As a result, we
still do not understand why quarks and gluons, the elementary colored de-
grees of freedom of QCD, are confined into hadrons. One would also like to
know if color confinement is a permanent state of matter, or if in particular
extreme conditions, characterized by high temperature, high baryon density
or strong magnetic fields, different phases of strongly interacting matter can
be found.

The possible presence of a high temperature deconfined Quark-Gluon
plasma phase has been explored since long: it is of particular interest for
cosmological and astrophysical reasons (think, e.g., of the early stages of
evolution of the Universe), and it is experimentally probed by heavy ion
collision experiments.

Numerical simulations of QCD discretized on a Euclidean space-time
lattice represent the best available tool to explore strong interactions in the
non-perturbative regime, starting from the first principles of the theory. In
practice, one rewrites the QCD thermal partition function, formulated in
the Feynman path integral formalism, as follows

Z(V, T ) =

∫
DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫
DUe−SG[U ] detM [U ] ,
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Fig. 1. Schematic view of the QCD phase diagram. The T − µB plane is shown in

more detail, together with some questions that lattice simulations still leave open.

where U are the gauge link variables (elementary parallel transports) and
ψ̄Mψ is a proper discretization of the quark action. The temperature T is
related to the extension of the compactified Euclidean time dimension τ ,
T = 1/τ = 1/(Nta) where a is the lattice spacing (we assume an isotropic
cubic lattice) and Nt is the number of lattice sites in the time direction.
SG[U ] is the pure gauge action while detM encodes the contribution of
dynamical fermions. Lattice simulations are ideally suited to compute equi-
librium quantities, like

〈O〉T =

∫
DUe−SG[U ] detM [U ]O[U ]∫

DUe−SG[U ] detM [U ]
=

∫
DUP[U ]O[U ] ,

where O is a generic physical observable, via Monte-Carlo sampling. An
obvious requirement is that the probability distribution over gauge config-
urations, P[U ], be real and positive. In general, the correct inclusion of the
fermion determinant in the probability distribution is the most demanding
task in terms of computational power, especially when one tries to lower the
values of the light quark masses towards their physical values.

Lattice simulations give us information, with a systematically increasable
precision, about basic thermodynamical quantities, like the pressure and the



energy density, about equilibrium particle and quantum number distribu-
tions (e.g., quadratic and higher order susceptibilities of baryon number and
electric charge) and on the location and the order of the transitions to the
different phases of strongly interacting matter, i.e. about the QCD phase
diagram, which is reported schematically in Fig. 1. Apart from temperature,
one can think of many possible extensions of the phase diagram, represent-
ing external parameters of phenomenological relevance. Unfortunately, the
important case of a baryonic chemical potential µB, which is necessary to
consider QCD at finite density, is plagued by the so-called sign problem: the
fermion determinant detM [µB 6= 0] is complex, so that the path integral
measure is not positive and Monte-Carlo methods are not directly usable.
Approximate methods works well only in a limited region where µB/T ≪ 1,
which is the case of the strongly interacting medium produced in heavy ion
collisions at very high energies (µB/T ∼ 10−2 at LHC).

2. Phase diagram at zero and non-zero baryon density

The liberation of color degrees of freedom at the deconfinement tem-
perature is clearly visible, in lattice studies, from the sudden increase of
approximate order parameters, like the Polyakov loop, and of various ther-
modynamical quantities, like the energy density, the pressure or the quark
number susceptibilities. Roughly around the same temperature, the restora-
tion of chiral symmetry, which is spontaneously broken at low T , takes place.
There is now good agreement between different collaborations, adopting
different discretizations schemes, regarding the location of this transition,
which according to chiral symmetry restoration is placed around Tc ∼ 155
MeV [1, 2].

The behavior of various susceptibilities is consistent with the absence
of a true transition, i.e. no discontinuities seem to develop as the thermo-
dynamical limit is approached [3]: that means that either the transition is
extremely weak (hence not phenomenologically relevant) or deconfinement
and chiral symmetry restoration correspond simply to a rapid change of
physical properties.

Actually, this is the situation for physical values of the quark masses.
In numerical simulations the quark mass spectrum can be changed at will
and one can explore the nature of the transition as a function of u/d and
s quark masses. The present outcome of such exploration is reported in
Fig. 2, which is usually known as the Columbia plot. A true transition is
present in the limit of very light or very heavy quark masses, where exact
symmetries and order parameters can be found (chiral and center symmetry
respectively). Unsettled issues exist regarding the chiral limit of the two
flavor theory [4], where the transition could be first order or second order
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Fig. 2. Phase structure of Nf = 2 + 1 QCD as a function of the up/down and

strange quark masses.

in the O(4) universality class.
When one considers the various possible extensions of the phase diagram,

like the inclusion of a baryon chemical potential µB, one would like to
determine how Tc changes and if it corresponds to a true transition at some
stage, for instance at a critical endpoint in the T − µB plane. For QCD
at finite baryon density reliable numerical results can be obtained only in a
restricted region of high T and small chemical potentials, where approximate
solutions to the sign problem can be found, like reweighting techniques [5, 6],
analytic continuation from imaginary chemical potentials [7–9] and Taylor
expansion techniques [10, 11].

As an example, in Fig. 2 we report a comparison (see Ref. [12]) of the crit-
ical line Tc(µB) determined in the case of four degenerate flavors by different
techniques (the pseudocritical temperature Tc is an increasing function of
the pseudocritical coupling βc, which is the quantity reported in the figure).
Consistency among different determinations is good as long µ/T ≤ 1 (µ is
the quark chemical potential, i.e. µ ≡ µB/3), meaning that the curvature of
the pseudocritical line at µ = 0 can be determined with good control over
systematic uncertainties. In the physical case of 2 or 2+1 flavors one ob-
tains values for the curvature of the critical line, Tc(µ)/Tc(0) = 1−A (µ/T )2,
in the range A ∼ 0.05 − 0.07 [8, 13–15]. Such values are smaller, by ap-
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imaginary chemical potentials.

proximately a factor 3, than those usually obtained for chemical freeze-out
curves in heavy ion collisions. However a recent re-analysis of heavy-ion
data, which takes better into account inelastic interactions after hadroniza-
tion, seems to bring the freeze-out curves closer to lattice predictions for
the pseudocritical line [16, 17].

Unfortunately the same techniques, working well for small baryon chem-
ical potentials, have not provided, up to now, a clear and consistent evidence
for the presence and the location of the critical endpoint in the T−µB plane,
at which the pseudo-transition present at µB = 0 would turn into a first
order transition.

The general idea is that the introduction of non-zero µB would increase
the strength of the transition, thus enlarging the low-mass first order region
in Fig. 2 till the physical point is included into it. However, numerical
simulations performed at imaginary chemical potential, i.e. negative µ2

B,
seem indicate that the effect of a a positive µ2

B is instead to decrease the
strength of the transition [18]. This has been recently reinterpreted in terms
of the general structure of the phase diagram at µ2

B < 0, in particular in
connection with the phase structure close to the so-called Roberge-Weiss
endpoint [19, 20] and the related tricritical points. In Fig. 2 we show the
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The scale chosen for the quark mass axis permits to better appreciate the chiral

extrapolation according to tricritical scaling (see Ref. [21]).

result of recent extensive studies regarding the order of the phase transition
for the theory with two light flavors, Nf = 2 QCD, as a function of the
bare quark mass and µ2 [21]: the first order region clearly shrinks as µ2

increases; moreover, present results suggest that the chiral limit at µ = 0,
i.e. the left-upper corner in Fig. 2, might be first order, in agreement also
with the findings of Ref. [4].

3. Strongly interacting matter in strong magnetic fields

Quarks are also subject to electromagnetic interactions, which however
are expected, in general, to bring small corrections to strong interaction
physics. Nevertheless, the situation may be different in the presence of
background fields whose strenght is at the QCD scale. The issue is of great
phenomenological interest, since in some heavy ion collisions one has the
highest magnetic fields ever created in a laboratory [22], reaching up to
1015 Tesla (eB ∼ 0.1 GeV2) at LHC, and even larger fields may have been
created in the early stages of the Universe [23, 24].

That justifies the recent theoretical interest in the subject [25]. Contrary



to the case of a finite µB, the introduction of a magnetic background field
does not encounter particular technical problems, such as a sign problem, so
that various interesting questions can be conveniently approached and have
been investigated by lattice QCD simulations in the last few years [26–43].

Lattice results show that Tc decreases as a function of the external
field, with deconfinement and chiral symmetry breaking remaining entan-
gled. The strength of the transition increases, in the sense that the rapid
change of thermodynamical quantities becomes steeper and steeper, even if
no evidence has been found till now for a critical endpoint in the T − B
plane where Tc becomes a true transition point.

Various studies have investigated the magnetic properties of strongly
interacting matter. The outcome is that it behaves as a paramagnetic ma-
terial [38–40, 43], with a magnetic susceptibility which steeply rises as one
enters the deconfined Quark-Gluon Plasma phase, and is comparable to that
of well known strong paramagnetic materials, such as liquid oxygen.
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