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This talk outlines the current status of Monte Carlo simulations in
particle physics. It demonstrates the implementation of automated NLO
contributions to matrix elements. The matching methods MC@NLO and
POWHEG are outlined and results using various NLO tools are presented.
The first plots from POWHEG showing the matching of NNLO matrix
elements to the parton shower are also presented.

1. Introduction

There is a current drive in the Monte Carlo community to include higher
order perturbative corrections in computational simulations. The most re-
cent developments in Monte Carlos has been to include NLO QCD correc-
tions to the matrix element matched to the parton shower.

Motivations for this extension are the occurrence of large and non-flat
K-factors (σNLO/σLO), indicating the need for a local K-factor. Also, NLO
matrix element calculations exhibit a significant reduction in scale depen-
dence. In a Monte Carlo, extending the matrix element calculation to NLO
QCD allows a reasonable error estimate to be formed. Furthermore, the
matching of the NLO prediction to the parton shower gives the distribution
of the hardest emission to NLO accuracy [1].

Numerical fixed order NLO matrix elements are calculated by using a
method such as Catani-Seymour subtraction [2]. Details on the subtraction
method for numerical matrix element calculations can be found at Ref. [3].
Equation (1) relates the NLO cross section, σNLO, to the differential born
(B), virtual (V ) and real (R) cross sections. The subtraction term intro-
duced here is denoted by B⊗ dS as it can be factorised into the underlying
Born configuration and a splitting function.

σNLO =

∫

dΦB

[

B +

∫

dΦ1B ⊗ dS + V

]

+

∫

dΦR [R−B ⊗ dS] (1)

Equation (1) allows for the numerical calculation of NLO matrix ele-
ments. However, including a parton shower on top of this requires a match-
ing method such as the POWHEG [4] and MC@NLO [5] method.



2. POWHEG

Here we will briefly look at the formalism (for a more involved treatment,
see Ref. [4]) and see some example plots from using the POWHEG method.
The POWHEG implementations considered are from POWHEG-BOX [6],
HERWIG++ [7] and PYTHIA8 [8].

2.1. POWHEG formalism

In order to include a possible matrix element emission, the Sudakov form
factor is modified in the POWHEG formalism by identifying the kernel with
the ratio of the real matrix element and the underlying born term.

∆(µ, µ0) = exp

[

−
∫ µ

µ0

dΦ1

R(ΦB ⊗ Φ1)

B(ΦB)

]

(2)

Equation (2) is then included in the POWHEG master equation (equa-
tion (3)) to reweight the contribution from the matrix element.

σPOWHEG =

∫

dΦBB(ΦB)

[

∆(µ, µ0) +

∫ µ

µ0

dΦ1

R(ΦB ⊗ Φ1)

B(ΦB)
∆(k2

T , µ0)

]

(3)

This gives a modified Born term, B, which is the calculation to NLO, and
correctly accounts for a possible matrix element emission. The phase space
can be divided into 2 regions by introducing a small parameter. It is divided
such that should this introduced parameter be taken to 0, the equation
above is recovered. The advantage of this is that the new parameter can be
tuned to match NNLO distributions or data [9].

2.2. Results from POWHEG

Figure 1 compares CDF data to Monte Carlo simulation for diphoton
production. The Monte Carlo used here is HERWIG++ with the POWHEG
method implemented. This shows the difference between the LO calculation
and the NLO QCD matched sample. There is a substantially improved
modelling of data, especially in the ∆Φ plot.

Figure 2 shows the importance of NLO calculations in searches for BSM
physics, as the affect on the distribution is clearly shown in the difference
in magnitude of the dĳet invariant mass peak on graviton events.

Higgs processes often contain local K-factors. Figure 2 shows the locality
of the K-factor in the pT of the 3rd hardest jet in H+jets events. The effect
of including NLO corrections on the scale uncertainties can also be seen
here.
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Fig. 4. These plots are from Ref. [17]. The distributions are of the hardest 2 jets

in W boson production. The left hand plot is of ∆yjj and the right is of ∆Φjj .

the data, and the dominating uncertainty here comes from the variation in
the resummation scale. The forward energy flow shows a prediction from
SHERPA which is consistent with the data. Here the dominating error
comes from the MPI.

Figure 4 uses SHERPA+BLACKHAT with W+2 jets production calcu-
lated with the MC@NLO method. This compares ATLAS data with NLO
and MC@NLO simulations. The uncertainty on the fixed order prediction
is given by a variation of renormalisation (µR) and fatorisation scale (µF )
as 1

2
µR/F < µR/F < 2µR/F . On the MC@NLO sample, the uncertainty is

given by a variation of resummation scale, 1
√

2
µQ < µQ <

√
2µQ.

4. Merging methods

The matching methods considered above give the hardest emission cor-
rect to NLO. This can be considered alongside the merging methods, which
better describe hard emissions than the parton shower, which becomes ex-
act in the soft-collinear approximation. Merging methods are implemented
in Monte Carlos at LO, and can be easily extended to NLO in principle, by
a reweighting of all the contributing terms by a K-factor.

The merging methods considered here are MEPS@NLO [18], which is
the implementation in SHERPA with MC@NLO, and MINLO [19], which
is implemented with POWHEG.

4.1. Merging Results

This section presents results from merging NLO matrix elements to-
gether. Some of the plots show the improved modelling of the hard jets
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Fig. 5. These are SHERPA+BLACKHAT plots for the ∆R (left) and ∆Φ (right)

distributions between the hardest 2 jets in merged W+jets results from Ref. [20].

Fig. 6. The left hand plot shows the MINLO merged prediction for the Higgs

rapidity, and the right hand plot shows the MINLO merged prediction for the pT
of the Higgs boson from Ref. [21].

that this achieves over simply a matching method. These improvements are
most noticeable in observables sensitive to jets other than the hardest.

Figure 5, compares the different NLO techniques for ∆R and ∆Φ distri-
butions between the hardest 2 jets. The improvement as we move towards
MEPS@NLO is very pronounced for these observables. This is due to how
sensitive they are to the modelling of the second jet. MEPS@NLO is the
only method which calculates this to NLO accuracy.

Figure 6 demonstrates the implementation of the MINLO method in
PYTHIA with the POWHEG method. Figure 6 shows the difference be-
tween merging and POWHEG for the rapidity distribution of the Higgs
boson in H+jets events. Here the first jet is merged in via the MINLO pro-
cedure. Figure 6 also shows the pT distribution for the Higgs boson, again
in H+jets events. Again, the comparison is made between POWHEG and
the merging in of an additional jet.



Fig. 7. The pT and y of the Higgs boson is shown to NNLO matched to a parton

shower. These plots are taken from Ref. [22].

5. NNLO matched to parton shower

POWHEG has recently released plots from the first instance of NNLO
matrix elements being matched to parton shower [22]. These results are
shown in Fig. 7, and are again for the rapidity and pT of the Higgs boson
in Higgs production processes. These can be compared with the POWHEG
results for the same observables in Fig. 6. The uncertainties in Fig. 7 are
greatly reduced, as compared with Fig. 6.

6. Future outlook and conclusions

In the near future, the NLO calculations performed in the Monte Carlo
community will be compared with data once these become available, in
order to fully verify our implementations of the NLO physics. Completing
this leads naturally on to calculating higher order corrections on the longer
term. This involves calculating NNLO QCD corrections, and also to begin to
introduce NLO EW corrections which can become very large at the collider
energies we are beginning to probe.

Another area of interest to the Monte Carlo physics community is to
discuss observables which would help the community to properly understand
what the Monte Carlo is doing in complicated regions of phase space, and
for us to gain a deeper understanding of the physics involved in the processes
we are modelling. To this end, the Monte Carlo community is discussing
different measurements that we would like the experimentalists to complete.

The current status of Monte Carlo physics is the automation of NLO
corrections to the vast majority of processes. These predictions have been
compared to data in several cases, and even more are still being verified. The
interfacing technology between the matrix element and the parton shower
is now very well established.
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[17] S. Höche, F. Krauss, M. Schönherr, and F. Siegert, Phys. Rev. Lett. 110,
052001 (2013).
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