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The parton content of protons gets strong peripheral contribution at 1
fm from multiparticle dynamics as revealed by the overlap function in the
unitarity condition for elastic pp-scattering at 7 TeV.

It is well known that parton (quark, gluon) densities and the share of low-
x partons rise with increasing energies of colliding hadrons. Less attention
has been paid to the analysis of the spatial distribution of the parton content
inside them and its evolution with energy. This can be done by studying the
structure of the overlap function in the unitarity condition for the elastic
scattering amplitude in the impact parameter representation at different
energies of colliding protons. The very first analyses [1, 2, 3] have lead
to extremely interesting conclusions about the increasing peripherality of
protons within the rather narrow interval of ISR energies. Later, this was
confirmed and strengthened at somewhat higher energies by the Spp̄S data
[4]. It was shown that while the increase of the overlap function at the
proton periphery is quite modest in the ISR energy range (about 4%), it
becomes much stronger (about 12%) if Spp̄S energies are included. However,
no sizable change of the proton blackness was noticed at small distances in
this energy interval. The similar effect at HERA energies was discussed in
[5] for the vector meson production process in the framework of the dipole-
proton scattering model.

That is why we attempt to learn if peripheral regions of protons become
even more active at LHC energies and the central region is activated as well.
The striking, but not at all unexpected, result is that this increase persists
and extends to smaller impact parameters now. It amounts to about 40%
of edge corrections at distances about 1 fm. The main parton content in the
overall region of inelastic collisions remains relatively constant and below
the unitarity bound in the central region of impact parameters less than
about 0.5 fm but also indicates some increase of opacity compared to lower
energies.

We proceed by using the approach adopted in [3]. First of all, the
TOTEM data on the differential cross section of elastic pp-scattering at 7



TeV [6] are fitted by the formula (1) for the elastic scattering amplitude
f(s, t) (which depends on the center-of-mass energy

√
s and the transferred

momentum
√
|t|) proposed in [7]:

f(s, t) = iα[A1 exp(0.5b1αt) +A2 exp(0.5b2αt)]− iA3 exp(0.5b3t), (1)

where α(s) is complex and is given by

α(s) = [σt(s)/σt(23.5GeV)](1− iρ0(s)). (2)

Even though this parametrization has no theoretical foundation, it provides
in a wide energy interval good phenomenological fits of differential cross
sections1 defined as

dσ

dt
= |f(s, t)|2. (3)

The normalization at the optical point is

σt(s) =
√

16πImf(s, 0). (4)

We shall also use the ratio of the real to imaginary parts of the amplitude

ρ(s, t) =
Ref(s, t)
Imf(s, t)

. (5)

The following values of the parameters have been fixed by the fit to the
experimental points of the differential cross section at the energy 7 TeV in
the range 0.0052 < |t| < 2.44 GeV2:

A2
1 = 55.09mb/GeV2, A2

2 = 3.46mb/GeV2, A2
3 = 1.47mb/GeV2,

b1 = 8.31GeV−2, b2 = 4.58GeV−2, b3 = 4.70GeV−2. (6)

We have also used σt(7 TeV) = 98.58 mb and ρ0(7 TeV) = 0.14. The
normalization of |f(s, t)|2 in mb/GeV2 allows direct comparison with [3].

The good quality of the fit with these values is seen in Fig. 1. With some
adjustment of parameters Ai, bi, the fit is also satisfactory if one adopts the
value of ρ0 = 0.107 favored by the recent results of the TOTEM collabora-
tion [13].

The real and imaginary parts of the amplitude are shown in Fig. 2. Each
of them has one zero. The evolution of their ratio ρ(s, t) with the transferred
momentum t is mainly prescribed by the last term in this formula with the
negative sign in front of it and small exponential b3. It is also shown in
Fig. 2. It is small and can be neglected everywhere except near the point
where the imaginary part is equal to zero.

1 There are many others (albeit with larger number of adjustable and hidden parame-
ters) reviewed in [8] and recently published [9, 10, 11, 12].



Fig. 1. Fit of the TOTEM data – dash-dotted curve. Dotted curve is calculated
with parameters from [3] and with ρ0 = 0.14.

Fig. 2. Real (dotted curve) and imaginary (dash-dotted curve) parts of the ampli-
tude and their ratio (solid curve).

The new feature seen in Fig. 2 is the difference in values of ρ(s, t) in
the Orear region for the two choices of ρ0. It becomes of the order of 1
for ρ0 = 0.107. Note that in both cases it strongly differs from its average
value about −2 required by the fit according to the solution of the unitarity
equation [14]. The solution [15] predicts the exponential of

√
|t|-behavior

of the amplitude. It poses an interesting problem which has not yet been



resolved. This ratio can change the sign if more zeros of either imaginary or
real parts of the amplitude appear. For example, this happens in the model
of [11]. It incorporates phenomenologically the Orear type behavior of the
amplitude at larger transferred momenta (albeit in a way somewhat different
from [15]) and predicts two zeros of the real part. The ratio reaches large
negative values at high transferred momenta. The somewhat smaller values
at large |t| are also predicted in the model using the inverse of polynomials
[9] as described in [11]. The analysis of [11] clearly shows that the proper
description of the amplitude at larger transferred momenta can change our
conclusions about the behavior of this ratio there.

To reveal the space structure of proton interactions, the amplitude f(s, t)
must be rewritten in the impact parameter space. By applying the Fourier-
Bessel transformation, we define the profile function

iΓ(s, b) =
1√
π

∫ ∞
0

dqqf(s, t)J0(qb). (7)

Here, the variable b, called the impact parameter, describes the vector join-
ing the centers of colliding protons at the moment of their collision, q =

√
−t,

and J0 is the Bessel function of zero order.
The amplitude f(s, t) must satisfy the unitarity condition. If written in

the impact parameter representation (7) it is

2ReΓ(s, b) = |Γ(s, b)|2 +G(s, b), (8)

where G is called the overlap function in the impact parameter space.
The smallness of the real part of f(t) corresponding to small ImΓ(s, b)

implies that one can compute G approximately as

G(s, b) ≈ 2ReΓ(s, b)− (ReΓ(s, b))2. (9)

The physics meaning of these relations is very simple. The overlap function
G describes the kinematical overlap of two cones filled in by the inelastically
produced secondary particles in the momentum space expressed in terms of
the proton structure at a given impact parameter b. In other words, it cor-
responds to the particle distribution dσ/db in the impact parameter space.
One may treat it as a parton distribution if one-to-one correspondence of
particles and partons is assumed.

The overlap function at 7 TeV has a form shown in Fig. 3 by the up-
per dash-dotted curve. Its dependence on ρ(s, 0) is so weak that can be
neglected. However, as we see, it strongly differs from the corresponding
function at ISR energy 23.5 GeV (shown by the lower solid curve), especially
at the very edge of the distribution. The overlap function at 7 TeV declines
steeply but there is no sharp cutoff at large impact parameters. At b = 0,



Fig. 3. The overlap functions at 23.5 GeV (solid curve), 62.5 GeV (dotted curve)
and 7 TeV (dash-dotted curve).

it approaches the unitarity limit corresponding to the complete blackness.
This is a clear manifestation of the parton saturation effect.

The difference between the two functions ∆G(b) = G(s1, b)−G(s2, b) (
√
s1 =

7 TeV,
√
s2 = 23.5 GeV) results because of the increase of the elastic cross

section and shrinkage of the diffraction cone with energy. In other words,
it demonstrates the increase of the opacity since the ratio σel/σt increases
also, and it is proportional to the opacity.

In Fig. 4, we demonstrate the difference between these two distributions
(the upper curve). It is mainly concentrated at the periphery of the proton
at the distance about 1 fm. This feature is stable against the variations of
ρ0. It shows that, at higher energies, the peripheral region becomes more
populated by partons, and they play more active role in particle production.

It is tempting to ascribe the peripheral nature of this effect to two fea-
tures of inelastic processes observed already at LHC. First, the collisions
with impact parameters about 1 fm lead to the almond-shaped overlap re-
gion. Therefore, due to increase of the parton density they become respon-
sible for the ridge-effect visible in high multiplicity pp-processes at LHC
but not observed at lower energies. Second, the more peripheral collisions
with larger impact parameters would lead to strong increase of the cross
section of the inelastic diffraction with large masses and high multiplicities
which can hardly be separated by the gap criteria from the minimum bias
events. This is especially interesting because the cross section of the low-
mass diffraction is rather small at 7 TeV [16] and surprisingly close to its
values at ISR energies. The stronger absorption in the peripheral region at



Fig. 4. The difference between the overlap functions. Dash-dotted curve is for 7
TeV and 23.5 GeV energies, solid curve is for 62.5 GeV and 23.5 GeV energies.
Conclusion: The parton density at the periphery increases strongly!

7 TeV results in the suppression of the low-mass inelastic diffraction pro-
cesses. It looks as if it is necessary to include the states of the continuum
spectrum beside the discrete bare eigenstates in the traditional approach
[17].

We note that the Regge-type models of inelastic diffraction [18] do not
agree with the observed decrease below 1 at 7 TeV of the parameter Z =
4πB/σt studied in [8] because they predict that this parameter is equal to
1 + σD

in/σel greater than 1 (where σD
in is the cross section of the low-mass

inelastic diffraction). It has been pointed out in [15] that this parameter
defines the slope of dσ/dt beyond the diffraction cone in the Orear region.
Its further decrease with energy would result [19] in first signatures of the
approach to the black disk limit to appear just in there.

Another new feature, seen in Fig. 4, is the quite large (about 0.08) value
of ∆G(b) at small impact parameters that reveals a stronger blackness of
the disk at higher energies and is related to the rise of the cross section
of the main bulk of inelastic processes. No signs of this effect have been
found at lower energies. These observations are tightly related to the visible
violation of geometric scaling even in the diffraction cone at LHC energies
[20] because of the dual correspondence of the transferred momenta t and
the impact parameters b. Probably, they correspond also to disagreement
between experimental data at 7 TeV and predictions of Monte Carlo models
seen in high multiplicity events [21].

In the same Figure, the lower curve corresponds to the similar (albeit



much smaller!) difference ∆G(b) within the quite narrow ISR energy interval
(23.5 - 62.5 GeV). It was stressed in [3] that this difference is negligibly small
at low impact parameters while showing some statistically significant excess
about 4% at the periphery2.

Comparison of the curves in Fig. 4 leads to the conclusion that the size
of the proton as well as its blackness increase with energy. The protons
become more black both in the central region, where they almost reach
the saturation of the unitarity condition, and, especially, at the periphery,
where the parton density strongly increases. Multiparticle dynamics is in
charge of these effects.
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[13] K. Österberg, talk at EPS-HEP 2013 conference, Stockholm.
[14] I.M. Dremin and V.A. Nechitailo, Phys. Rev. D 85, 074009 (2012).
[15] I.V. Andreev and I.M. Dremin, ZhETF Pis’ma 6, 810 (1967).
[16] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett. 101, 21003

(2013).
[17] M.L. Good and W.D. Walker, Phys. Rev. 120, 1854 (1960).
[18] A.B. Kaidalov, Phys. Rep. 50, 157 (1979).
[19] I.M. Dremin, Nucl. Phys. A 888, 1 (2012).
[20] I.M. Dremin, V.A. Nechitailo, Phys. Lett. B 720, 177 (2013).
[21] S. Chatrchyan et al. (CMS Collaboration), Eur. Phys. J. C 73, 2674 (2013).

2 This curve differs slightly from that of [3] because we did not use the interpolation
procedure adopted there but subtracted directly two overlap functions at 62.5 GeV
and 23.5 GeV.


