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Abstract

This report provides supplementary technical details to the confer-
ence paper that introduced C-Saw [6], a language for expressing software
architecture patterns. This report provides additional examples of us-
ing C-Saw, supplementary evaluation details, and it defines the formal
semantics of the language.
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1 Further description of the C-Saw DSL

This section builds on Section 6 of the C-Saw paper [6].

Start and stop. The ‘start’ and ‘stop’ primitives control whether an instance
is running or not. Once started, an instance cannot be started again until it
is stopped, otherwise the primitive would fail. Similarly, a stopped instance
cannot be stopped. At least one instance is started in ‘main’, which can use and
propagate parameters when starting instances. When an instance is started, its
junctions are started concurrently in an arbitrary order.

Instance and junction references. Junction names are always fully-qualified.
The ‘::’ operator is used to form junction names. The special names ‘me :: junction’
and ‘me :: instance’ refer to the containing junction and the instance of an ex-
pression, respectively.

Distributed Key-Value (KV) table. Each junction has a KV table that
can be synchronized between junctions. Junctions can push, but cannot pull:
that is, they may write to both their and other junctions’ tables, but may
only read their local table. C-Saw adapts the tuple-space idea [1] but restricts
readability to junctions.

Junction state. An executing junction can receive remote updates to its table
through write, assert and retract. These updates are not made to the table until
the junction is next scheduled for execution. ‘write’ can only be used on data
that has been generated by ‘save’—i.e., so-called named data. We can ‘restore’
any values except for read-only ones, such as parameters (described further
below).

A junction can discard parallel KV updates through the ‘keep’ primitive.
This primitive is idempotent and can be applied to propositions and data. Local
updates to the table, performed using save, assert and retract, are visible im-
mediately to the junction and overwrite pending updates from other junctions.
There can be a race condition when updating and reading these values unless
the logic is carefully structured. To help with this structuring and to selectively
permit external updates while the junction is running, the ‘wait’ primitive blocks
execution until a formula is satisfied, and allows the junction’s table to reflect
changes to propositions in that formula and a set of data keys. If the formula
is immediately true, then the statement returns immediately. The ‘otherwise’
primitive can be used to impose a time limit on the blocking statement.

Names. The following entities are named: propositions, data, instances and
junctions, and variables—these can consist of parameters and for-bound sym-
bols, and may range over sets and set elements; the latter can be propositions,
data, and instances and junctions. Names can be indexed, as described next.
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Parameters, data types, indexing. Definitions can accept parameters of
different types of data. Propositions, named data, sets, and host-language data
are all legal parameters. Examples can be seen in §5. A definition must be given
the right number of parameters in the right order for the program to be well-
formed. main can take an arbitrary number of parameters. These are usually
distributed among the instances that it starts.

In this paper, parameter variables are indicated as p to distinguish them from
other types of names, such as for-bound symbols p̃. Both definition parameters
and ‘for’ variables are constant variables: that is, they can be read but not
assigned to.

Sets have a fixed size at compile time and can contain any kind of data
but not other sets. For example, sets can contain references to instances—an
example is given in §2.3.

Sets may be provided literally, as seen at Ê in Fig. 5, or declared using the
set syntax and provided as a compile-time parameter, or derived from another
set. A set may be derived from another set in two ways:

1. As a mapping, as done for the set Backend at Ê in Fig.6,

2. Using the subset declaration syntax to allow external code, through b. . .e
syntax, to populate a set as a subset of a previously-defined set.

All sets and subsets are necessarily finite, and it is always possible to iterate
over them.

Sets can be indexed using other data except for sets. Indices can be formed
in two ways:

1. Using for-bound symbol, such as in InitBackend[b̃] and
Backend[t̃gt ] in Fig. 6.

2. Using the idx declaration syntax. This allows external code in the host
language—through b. . .e syntax—to provide a choice function over a given
set or subset.

Indices and sets, including subsets, can be passed as definition parameters.
This can be seen for sets with the backends parameter to τf :: b in Fig. 6. An
example of indices being passed by parametsr is shown in §2.3.

Neither indices nor sets should be serialized or transmitted between junc-
tions, because they might not have valid interpretations at the receiving end.

A contract with the host language requires that the externally-definable
subsets and indices must have valid values relative to the sets to which they are
defined.

Functions and brackets. Functions are templates that are expanded at com-
pile time. They are similar to named equivalents of the 〈E〉 syntax that gathers
a composition of expressions in a common scope. This is not a scope for defini-
tions, but one for fate [3]: that is, if part of the expression fails then the whole
expression fails unless there is some suitable handling logic. 〈|E|〉 brackets have
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an added behavior: upon failure, a roll-back of state (the KV table) is carried
out, restoring it to the point before the brackets were entered. The b. . .e syntax
is not allowed in 〈|E|〉 since roll-back is undefined for it.

More on branching. ‘skip’ is a no-op, and ‘return’ leaves a fate scope. Both
operations can only succeed. Since functions are expanded templates, ‘return’
in a function will leave the junction, not just return from the function to the
junction. ‘case’ is a key control-flow syntax used in this language. Each arm of
a case-expression terminates in one of a fixed number of ways. ‘break’ leaves the
case expression, ‘next’ retries the case, but can only match after the arm that
succeeded, and ‘reconsider’ was described in §6 of the C-Saw paper [6]. There
are additional validity constraints on case constructs: they cannot be empty or
only contain an ‘otherwise’ branch, nor can ‘next’ be used immediately before
‘otherwise’.

Recursion. Recursion is restricted in this language. It can take place through
template-based recursion on expressions, formulas or declarations—these are
described further below. Bounded recursion can also occur through ‘reconsider’
which retries a case-expression, or ‘retry’ which retries a junction.

Template-based Recursion: Expressions/Formulas. The sugaring ‘for ñ ∈
~Nm op I[ñ]’, where I[n] is either E or F and possibly has n free, expands into

I[N1] op . . . op I[Nm]

where op ∈ {∨,∧, ; ,+, ‖, otherwise[t]}.
There are no other constraints on recursion. For example, operator applica-

tion may be nested—the example

for p̃ ∈ {E1, E2, E3} otherwise[t] E[p̃]

becomes:
E[E1] otherwise[t] 〈E[E2] otherwise[t] E[E2]〉

(Note that operators associate to the right.)
Another example showing the loop’s unwinding:

for p̃ ∈ {E1, E2, E3} ; E[p̃]

becomes:
E[E1]; 〈E[E2]; E[E2]〉

Using ‘break’ we can exit the loop early.
When ‘for’ iterates over a singleton set, the loop evaluates only to one instanti-
ation:

for ñ ∈ {E1} op E[n] = E[E1]
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When the set is empty:

for p̃ ∈ {} ∨ E[p̃] = false
for p̃ ∈ {} ∧ E[p̃] = ¬false

And for other operators,

for p̃ ∈ {} op E[p̃] = skip

Template-based Recursion: Declarations. We use ‘for’ to initialize a set
of propositions using init, as seen in Fig. 6. In the same example we can see ‘for’
being used in a ‘case’ expression. In both cases, the code is inlined at compile
time. With the ‘case’ expression, we can mix different types of recursion, for
example:

for x̃ ∈ {. . .} (for ỹ ∈ {. . .} ∧ (Foo[x̃ ] ∨ Bar[ỹ ])) ⇒
# ‘y’ is free here, but ‘x’ is bound.

Communication to self. Junctions cannot send data to themselves—applying
‘write’ to themselves would be redundant. Junctions may assert or reject propo-
sitions, but these are not “communicated” to the junction—the change is made
locally. That is, assert [] Prop may be executed in a junction j (assuming that
Prop has been properly declared there), but assert [j ] Prop may not.

Initialization. Junction definitions use init syntax to declare and initialize
proposition (prop) and data (data) variables. The latter are always initialized
with the special undef . This is not a valid value—trying to write or restore
it results in an error. A data variable is given its first valid value using save.
undef is also used to initialize subset and idx. set must be specified at load
time.

Junction safety conditions. verify is used to state properties that should
hold in different parts of the system, upon those parts being reached in the
control flow. We rely on ternary logic—verify will return an error if it needs to
evaluate f @P and f is not running.
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2 More architecture examples in C-Saw

Section 5 of the C-Saw paper [6] provides several example of how the language
can be used to capture architectural patterns that support the implementation
of important features. Examples of such features were given in Fig. 1 of the
paper.

This section builds on the paper to provide additional examples of how to
use the DSL to implement important features.

2.1 Parallel sharding

InstanceTypes = {τFront, τBack}
Instances = {Fnt : τFront, Bck1 : τBack, . . . , BckN : τBack}
def τFront :: (t) J
| init prop ¬Work
| init data n
| set Backs # Assigned to {Bck1, . . . , BckN} Ê

| for t̃gt ∈ Backs init prop ¬ActiveBackend[t̃gt ] Ë
| subset tgt of Backs Ì
| init prop ¬HaveAtLeastOne
bChoose();e{tgt}; save(. . . , n);
retract [] HaveAtLeastOne;

for b̃ ∈ tgt + Í

if ActiveBackend[b̃] then

〈| write(n, b̃); assert [b̃] Work; wait [] ¬Work; Î
assert [] HaveAtLeastOne; Ï

|〉 otherwise[t ] retract [] ActiveBackend[b̃];
# Complain if not one backend is viable.

if ¬HaveAtLeastOne complain();

Figure 1: Snippet of N -ary sharding to a set of back-ends. The syntax is
explained in §2.1.

The code in Fig. 5 of the paper is limited to using a single back-end at a
time. This can be improved to use all the back-ends in parallel. One way of
doing this involves making Work into a set indexed by tgt, and changing the
penultimate line of Fig. 5 to the following:

〈wait [] ¬Work[tgt]; write(n, tgt); assert [tgt] Work[tgt]〉

Extending this idea further, Fig. 1 shows how the sharding logic can be
extended to sets of back-end targets. It restructures the architecture to achieve
higher availability. Similar architectures could optimize for throughput and
latency through load-balancing. In Fig. 1 we see Ê set syntax used to declare a
set defined at compile-time, Ë a derived set called ActiveBackend to track which
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back-ends are usable, Ì subset syntax used to declare a runtime-defined subset
of an existing set (note that a different kind of “tgt” is being used here than
that in Ë), Í iteration through a set in parallel (i.e., using the ‘+’ operator),
Î the same core line from the paper, Ï use of a proposition to determine if
no viable back-ends exist, to alert the operator that the computation cannot
terminate successfully.

2.2 Caching

Recall that use-case ° from in Fig. 1 of the C-Saw paper described how caching
can be used to avoid repeating expensive or time-consuming operations. This
section describes an implementation of an inline cache that memoizes function
calls. Not all functions are amenable to memoization—functions need to be
pure. For amenable functions, the cache reduces the response time for clients,
and reduces the pressure on the resources needed to compute a function. If
the architecture separates the part of the system where the function is com-
puted from the rest of the system, then the cache also reduces pressure on the
communication resources between the two parts of the system.

The features of the cache, such as its sizes and eviction strategy, are orthog-
onal to the architecture, and are therefore outside of the DSL’s scope. They are
expressed and implemented in the host language or provided by linked libraries.

The implementation described in this section interfaces with external func-
tions (in the host language) that classify the request’s type. This classification
determines whether the cache should be consulted. For cacheable operations,
the implementation performs a cache look-up, calls the requested function, and
caches the result.

Fig. 2 shows the cache’s implementation. Note that τFun is closely based on
τAuditing in Fig. 4 from the C-Saw paper. bF e implements the function to be
computed (and whose results can be memoized).

This code uses two data objects: n and m. The state held in junctions’
KV-tables and the state held by the host language interact in the following
ways:

• n is affected by the context at entry into the junction, and it serializes
components that are needed in the remainder of the computation.

• bCheckCacheablee affects Cacheable, which is made explicit by the syntax:
bCheckCacheablee{Cacheable }.

• bLookupCachee affects Cached.

• bF e affects m, which is used in generating the response.

2.3 Fail-over

A fail-over architecture can be implemented in various ways that provide dif-
ferent trade-offs between availability and overhead. Different implementations
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can also differ subtly in their tolerance of different kinds of faults that might
arise—such as short losses of synchronization between parts of the system.

This section describes a full implementation in C-Saw that supports fault-
tolerance and multiple fail-over stages.

In this architecture, we typify the application logic into a single-instance
front-end and at least two instances of back-end. Back-ends provide redundancy:
as long as one back-end works then the system can continue to function. This
fail-over design handles a subsystem restarting or reappearing after a transient
network outage. The entire system is parametrized by timeouts to discover
faults early.

The architecture’s logic is not tightly coupled to application logic, and in
our prototype the same logic is applied to both Redis and Suricata. Fig. 3
sketches the two instance types and their junctions. The front-end’s junctions
face clients (τf :: c) or back-ends (τf :: b). Code for the latter is provided in
Fig. 6 which shows how that junction behaves during the Starting phase when
contact is made between back-ends and the front-end, and the subsequent phase
where client requests are handled. The logic of the architecture is summarized
in Fig. 4 for the back-end and Fig. 5 for the front-end.

The implementation described in this section provides an implicit fail-over
between warm replicas of back-end instances. While adequate for the design
goal, it can be made (i) less conservative, and lower latency, by not requiring
all the back-ends to respond before returning a response to the client—a sin-
gle back-end responding would be sufficient; (ii) use less network overhead by
only having a single back-end return a pre-response; (iii) scale better than the
current linear scaling overhead when additional back-ends are added by struc-
turing sets of back-ends to make the cost logarithmic. To show another point in
the design space, an alternative design featuring a watchdog instance is given
in §2.4.

2.4 Watched fail-over

One of the take-aways of this research was how the same architectural concept
can be implemented in different ways using C-Saw, leading to different architec-
tural features. This section presents an alternative architecture to the fail-over
feature described in §2.3 of the C-Saw paper.

The architecture in this example supports two back-ends, o and s, where o
is preferred to s, and s is used when o is unavailable. This design also features a
watchdog that arbitrates back-end liveness. The front-end focuses on engaging
with only one of the two back-ends—unlike the other design which involved
engaging with all backends.

The system starts by picking a back-end on which to focus. It then traverses
states depending on faults that can arise. The system can continue to function
unless both back-ends become unresponsive, or unless the single synchronized
back-end becomes unresponsive. The high-level state diagram for the design
front-end is shown in Fig. 10. That diagram reuses the notation introduced
in Fig. 4 of the C-Saw paper, showing the transitions between states of the
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system. Transitions are denoted by arrows indicating whether the transition is
made externally (via scheduling) or internally by the system (through one or
more changes in instances or their configuration).

The states are composed of the states of instances: the white circle denotes
a front-end, and the two blue circles denote back-ends. Within the circles we
find an indication of their internal state: 0 means that they are initialized but
not synchronized, and m and n are two distinct synchronization points. The
black edge between the front-end and one of the back-ends denotes the focus of
the front-end, i.e., which of the two back-ends is currently picked as being the
leader.

In Fig. 10 we see a back-end being chosen for focus upon succesful startup,
and the system then transitioning between states depending on whether one or
both back-ends become unavailable. The system continues functioning through
the orange states, and attempts to recover back into a green state. Should
both back-ends become unavailable, the system enters a red state and must be
restarted.
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InstanceTypes = {τCache, τFun}
Instances = {Cache : τCache, Fun : τFun}
def main(t) J

start Cache(t) + start Fun(t)
def complain() J . . .

def τCache :: (t) J
| init prop ¬Work | init prop ¬Cacheable
| init prop ¬Cached | init prop ¬NewValue
| init data n | init data m
bCheckCacheablee{Cacheable}; Ê

case {
Cacheable ⇒ Ë

bLookupCachee{Cached}; Ì

nextÍ
¬Cacheable ∨ (Cacheable ∧ ¬Cached) ⇒ Î

save(. . . , n);
〈write(n, Fun);
assert [Fun] Work;
wait [m] ¬Work; restore(m, . . .);
assert [] NewValue;
〉 otherwise[t ] complain();

next
Cacheable ∧ NewValue ⇒ Ï

bUpdateCachee; break
}

def τFun :: (t) J
| init prop ¬Work | init prop ¬Retried
| init data n | init data m
| guard Work
restore(n, . . .);
bF e;
retract [] Retried;
case {

Work ⇒
〈save(. . . , m); write(m, Cache);
retract [Cache] Work〉 otherwise[t ]
if ¬Retried then assert [] Retried;
else complain();

reconsider
otherwise ⇒ skip

}

Figure 2: Adding an application-specific caching layer. This examples builds
on Fig. 4 from the C-Saw paper [6], whose τAuditing we largely reuse here as
τFun. The main differences from previous examples involve the interfacing with
externally-defined functions. The key steps in this junction are: Ê determine
whether a request’s response could be cached; Ë have the DSL code react to
changes made by external code—e.g., Cacheable is set by bCheckCacheablee;
Ì the “case” statement is redone but will not reconsider this branch; Í performs
the lookup using bLookupCachee; Î call the function if the result cannot be
cached, or if the cache misses; Ï update the cache if the result is cacheable.
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def τf ::b(backends, t) J
| init data state
| init prop Starting | init prop ¬Active
| init prop ¬Activating | init prop ¬Retried

| for t̃gt ∈ backends init prop ¬Backend[t̃gt ]Ê
if Starting then

for b̃ ∈ backends +

〈wait [] InitBackend[b̃] otherwise[t ] skip〉;
retract [] HaveAtLeastOne;

for b̃ ∈ backends ;

if InitBackend[b̃] then

〈| Initialize(b̃);
# Next line relies on idempotence.

assert [] HaveAtLeastOne;
|〉 otherwise[t ] skip;

if ¬HaveAtLeastOne then complain;
retract [] Retried;
case {

Starting ⇒
# Progress f::c beyond Starting.

retract [f ::c] Starting otherwise[t ]
if ¬Retried then

assert [] Retried;
else complain();

reconsider
otherwise ⇒ skip

}
else

case {
Call ⇒
〈 verify ¬Active;

write(state, f ::c);
assert [f ::c] Active;
wait [state] ¬Active;

〉 otherwise[t ] complain();
retract [] Call;
break

for b̃ ∈ backends ¬Call ∧ InitBackend[b̃] ⇒
Initialize(b̃) otherwise[t ] skip;

retract [] InitBackend[b̃];
break

otherwise ⇒ skip
}

Figure 6: Code for the backend-facing junction in the front-end instance
sketched in Fig. 5. The syntax at line Ê shows the formation of a set from
another set: Backend is a set of propositions that is indexed by a backend
identifier.
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InstanceTypes = {τf , τb}
Instances = {f : τf , b1 : τb, b2 : τb}
def main(t) J

start b1 startup(t) serve(t) reactivate(b3 ∗ te)+
start b2 startup(t) serve(t) reactivate(b3 ∗ te)+
start f b({b1 ::serve, b2 ::serve}Ê, t)

c({b1 ::serve, b2 ::serve} , t)
def complain J b. . .e; return
def Initialize(tgt) J Ë

verify ¬Activating ∧ ¬Active;
write(state, tgt);
assert [tgt ] Activating; Ì
wait [] ¬Activating;
assert [tgt ] Active;
# If we fail on this, the backend won’t be used

# by f::c, and the backend will reattempt

# reactivation later after a period of inactivity

# expires.

# ‘f::c’ below can be made into a parameter.

assert [f ::c] Backend[tgt ]; Í
retract [] Active;

Figure 7: Part of the architecture description for the fail-over architecture
described in §2.3 of the C-Saw paper. Initialize is a function called to initialize
a newly-registered backend tgt . Location Ê shows an example of passing set
parameters in the DSL, and Ë shows the declaration of the tgt parameter the
is used as a destination junction in Ì, and as an index in Í. These language
features are described further in §6 of the C-Saw paper.
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def τf ::c(backends, t) J
| init prop Starting | init prop ¬Active
| init prop ¬Req | init prop ¬Call
| init prop ¬HaveAtLeastOne
| init data state | init data req
| init data preresp

| for t̃gt ∈ backends init prop ¬Backend[t̃gt ]

| for t̃gt ∈ backends init prop ¬Running[t̃gt ]
# Req is asserted externally

# to process client request.

| guard ¬Starting ∧ Req
retract [] Req;
verify ¬Call;
assert [f ::b] Call;
wait [state] Active;
restore(state, . . .);
retract [] Call;
bH1e;
save(. . . , req);

retract [] HaveAtLeastOne;

for b̃ ∈ backends +

if Backend[b̃] then

〈| verify S(b̃) −→ b̃@Active ∧ ¬b̃@Running[b̃];

write(b̃, req);

assert [b̃] Running[b̃];

wait [preresp] ¬Running[b̃];
assert [] HaveAtLeastOne;

|〉 otherwise[t ] retract [] Backend[b̃];

if ¬HaveAtLeastOne complain();
verify HaveAtLeastOne;

restore(preresp, . . .);
save(. . . , state);
write(f ::b, state);
bH3e;
retract [f ::b] Active;

Figure 8: Code for the client-facing front-end junction in the fail-over architec-
ture described in §2.3 of the C-Saw paper [6]. The code for the backend-facing
front-end junction is shown in the paper.
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def τb ::serve(t) J
| init prop ¬Active | init prop ¬Activating
| init prop ¬RecentlyActive | init data preresp
| init data state | init data req
| init prop ¬Running[me :: junction]
| guard Activating ∨ (Active ∧ Running[me :: junction])
case {

Activating ⇒
restore(state, . . .);
# If the remote retraction fails,

# then b::reactivate will eventually

# retry the startup.

retract [f ::b] Activating otherwise[t ]
retract [] Activating;

break
otherwise ⇒

assert [me :: instance ::reactivate] RecentlyActive
restore(req , . . .);
bH2e;
save(. . . , preresp);
〈 write(f ::c, preresp);
retract [f ::c] Running[me :: junction];
〉 otherwise[t ] retract [] Active

}

def τb ::startup(t) J
| init prop ¬InitBackend[me :: instance ::serve]
| guard ¬me :: instance ::serve@Active
assert [f ::b] InitBackend[me :: instance ::serve]

otherwise[t ] skip

def τb ::reactivate(t) J
| init prop ¬RecentlyActive
| init prop ¬Active
retract [] RecentlyActive;
wait [] RecentlyActive otherwise[t ]
〈retract [me :: instance ::serve] Active;

retract [me :: instance ::serve] Activating〉;

Figure 9: Code for the back-end in the fail-over architecture sketched in §2.3
of the C-Saw paper [6].
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Figure 10: States of the front-end of the “watched” fail-over system described
in §2.4.
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InstanceTypes = {τf , τw, τo, τs}
Instances = {f : τf , w : τw, o : τo, s : τs}
def main(t) J(

start w co() cs() cunrecov() + start o(t) + start s(t)
)

; start f (t)
def complain J . . .

def RunBackend(n, t , tgt) J
〈|write(n, tgt); assert [tgt ] Run[tgt ]|〉

otherwise[t ] complain();

def τf :: (t) J
| init prop ¬Reply

| for t̃gt ∈ {o, s} init prop ¬Run[t̃gt ]
| init prop ¬failover | init prop ¬nofailover
| init data n | init data m
# Junction won’t be scheduled until ¬Reply.
| guard ¬Reply
bH1e; save(. . . , n);
verify ¬Run[o] ∧ ¬Run[s] ∧ ¬Reply
verify ¬ (failover ∧ nofailover)
case {

failover ∧ ¬nofailover ⇒
RunBackend(n, t , s);
break

¬failover ∧ nofailover ⇒
RunBackend(n, t , o);
break

otherwise ⇒
RunBackend(n, t , o) + RunBackend(n, t , s)

otherwise[t ] complain();

# Here could implement more robust handling,

# to retry RunBackend () for example.

};
# Don’t wait too long for completion, prioritize

# throughput.

wait [m] Reply otherwise[t ] return;
# If Reply hasn’t been reset in line above then this

# junction won’t be scheduled again because of guard.

retract [] Reply;
restore(m, . . .);
bH3e;

def Watch(tgt , prop) J
| for t̃gt ∈ {o, s} init prop ¬Run[t̃gt ]
| init prop ¬prop
〈|assert [tgt ] prop; assert [f ] prop|〉 otherwise complain()

def τw ::cs() J
| guard ¬S(o) ∧ S(s) ∧ S(f )
Watch(s, failover)

def τw ::co() J
| guard ¬S(s) ∧ S(o) ∧ S(f )
Watch(o, nofailover)

def τw ::cunrecov() J
| guard ¬S(s) ∧ ¬S(o) ∨ ¬S(f )
complain()

Figure 11: First half of the code for §2.4. Note the proposition name being
passed as the second parameter to the function Watch; it must be resolvable at
compile-time since functions behave as templates in this language.

17



def reply(t , other) J
verify ¬Reply@f
# Condition below isn’t too strong since

# either ‘s’ or ‘o’ may Reply,

# so we ensure that the other backend isn’t

# currently in Reply mode.

verify ¬Reply@other
〈save(. . . , m);
write(m, f );
assert [f ] Reply;
〉 otherwise[t ] complain();

def τs :: (t) J
| for t̃gt ∈ {s} init prop ¬Run[t̃gt ]
| init prop ¬Reply
| init data n | init data m
| guard Run[s]
verify ¬Reply
restore(. . . , n);
bH2e;
retract [f ] Run[s];

otherwise[t ] complain();
case {

failover ⇒
reply(t , o);
retract [] Reply;
break;

otherwise ⇒ bskipe
};

def τo :: (t) J
| for t̃gt ∈ {o} init prop ¬Run[t̃gt ]
| init prop ¬Reply
| init data n | init data m
| guard Run[o]
verify ¬Reply
restore(. . . , n);
bH2e;
retract [f ] Run[o];

otherwise[t ] complain();
reply(t , s);
retract [] Reply

Figure 12: Second half of the code for §2.4.
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Sched f

Wrf (n, ∗)

Wrg(n, ∗)

Wrf (Work, tt) Wrg(Work, tt)

Rdf (Work, ff)

Unsched f

Rdg(Work, tt)

Rdg(n, ∗)

Sched g

Wrf (Work, ff)

Wrg(Work, ff)

Unsched g

Figure 13: Part of the event structure for Fig. 3 from the C-Saw paper [6].
All arrows are enablement arrows, but arrows are dotted to emphasize cross-
junction enablement. Scheduling events are shown boxed for emphasis.

3 Semantics

This section uses event structures [5] to give formal semantics to the C-Saw
DSL. Intuitively, event structures describes enablement and conflict between
events. This approach for describing semantics has been used to characterize
concurrency of distributed and weakly-consistent systems [2], and it seemed like
a suitable approach to use for C-Saw.

Fig. 14 shows a subset of C-Saw’s semantics. Event structures are triples
consisting of a set of events, and the enablement and conflict relations. In
the subset above, an event is represented by a label describing that event such
as “WrJ (v, ∗)”—which updates the value of data item v in the memory of
junction J . In this subset of rules, the top rules only introduce new labels, and
the bottom rule describes the parallel composition of the semantics. This form
of composition simply unifies two structures; other forms of composition, such
as ‘;’, are more complex. Section 3.5 contains the rest of the rules.

We take advantage of the graphical notation of event structures to give
examples of system behavior. Fig. 13 represents the system from Fig. 3 in
the C-Saw paper [6]. These semantics reduce DSL behavior to a small set of
general events, such as scheduling and unscheduling of a junction (Sched f
and Unsched f ), writes of data (Wrf (n, ∗)) and propositions (Wrf (Work, tt)),
and reads (Rdf (Work, ff)). Symbols tt and ff represent “true” and “false” in
the semantics. In this example, event Wrf (Work, tt) occurs when proposition
Work is set to true in the memory of junction f ; and Rdf (Work, ff) occurs
when Work is read as false in the memory of junction f . This example does not
involve conflict between events, which can arise when code branches. Section 3.6
contains larger examples based on another example of a DSL expression.
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[[b. . .e{~V }]]J =


⋃

v∈~V

{WrJ (v, ∗)} , ∅, ∅


 [[save(. . . , n)]]J =

({WrJ (n, ∗)} , ∅, ∅) [[write(γ, n)]]J = ({Wrγ(n, ∗)} , ∅, ∅)

[[E1 + E2]]J = (S[[E1]]J ∪ S[[E2]]J , ≤ [[E1]]J ∪ ≤ [[E2]]J , #[[E1]]J ∪ #[[E2]]J )

Figure 14: Semantic rules for part of the language syntax—the syntax is shown
in Table 1 of the C-Saw paper.

“Local priority” rule. Junctions execute concurrently and may send mes-
sages to each other in parallel. Messages are used to perform updates to junc-
tions’ KV-tables. While a junction is running, updates are queued to take effect
after the junction finishes executing, and before it is scheduled to execute again.
If multiple updates to the same state occur then they are handled in the order
that they are received—races are avoided by the design of the sychronization
logic expressed in the DSL. A junction can only directly update another junc-
tion’s state if the latter is executing wait on that state—for both propositions
and data objects. If state updates arrive at a running junction, and that junc-
tion updates that same state, then the pending update will be ignored. That
is, local updates have priority.

3.1 Event structures

This section starts by outlining the basic definitions of event structures [5] to
make the description more self-contained. The cited literature provides the
details and discussion related to the basic definitions of event structures.

An event is a triple (id , label , outward) consisting of a unique identifier drawn
from an inexhaustable set, a label, and a Boolean value labeled “outward”. The
labels used in C-Saw’s semantics are defined in §3.2. “Outward” is used to
track whether an event can enable events through composition, for instance
events related to exception-handling. All events start out with “outward“ being
true, and it will be manipulated by some statements.

An event structure is a triple (S,≤,#) consisting of: a set of events S, an
enablement relation ≤ and a conflict relation #. The ≤ relation is reflexive
and transitive. The # relation is irreflective and symmetric. We previously
encountered this triple in Fig. 14, and it will be used in §3.5 to give the remainder
of the language semantics.

To qualify as an event structure the following properties must hold:
conflict inheritence:

∀e1, e2, e3 ∈ S. s1#s2 ∧ s2 ≤ s3 −→ s1#s3

and finite causes:
∀e ∈ S. |[e]| ∈ N
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where
[e] = {e ∈ S | e′ ≤ e}

Two events e1, e2 are concurrent if they are incomparable by enablement
and are not conflicting:

e1 6≤ e2 ∧ e2 6≤ e1 ∧ ∀e′1 ∈ [e1], e′2 ∈ [e2]. ¬(e′1#e′2)

3.2 Labels

Labels represent the activity taking place during an event. Examples of labels
were previously given in §3, and in this section we describe the remaining labels
that are used in C-Saw’s semantics.

The full set of labels is:

L ∈ {RdJ (K, V ), WrJ (K, V ), StartJ (γ), StopJ (γ),

Sched J , Unsched J , SynchJ ( ~K), WaitJ ( ~K,K) }

Further to the labels described in §3, SynchJ ( ~K) represents a synchronization
barrier across concurrent event chains. This is an intermediate event that is
inserted by the semantics during some operations to preserve intuition, and an
example will be seen soon. WaitJ ( ~K,K) is a placeholder label that is decom-
posed into a pattern of network events at a later stage to simplify the semantics,
as will be described in §3.5.

The examples in the C-Saw paper abstract some behavior, such as the
complain () function:

def complain() J . . .

in Fig. 4 of the C-Saw paper [6]. We represent this abstracted behavior using
ad hoc labels such as the “complain” label in §3.6.

3.2.1 Graphical notation

Event structures can be represented graphically as shown in Fig. 13. This section
describes the notation more accurately. A larger example will be given in §3.6.

The graphical notation captures event structures’ formalization of enable-
ment and conflict between events. In this notation, events are represented using
their labels.

The notation relies on two key definitions. The first is immediate causality,
represented by an arrow between two events. This captures a minimal form

of enablement: “ L1 L2 ” iff, taking ei to correspond with Li: e1 � e2 and

¬∃e′. e1 � e′ ∧ e′ � e2.
The second is minimal conflict, represented by a zizag between two events.

This captures a minimal form of conflict: “ L1 L2 ” iff, taking ei to corre-

spond with Li: e1#e2 and ∀e, e′. e ≤ e1 ∧ e′ ≤ e2 ∧ e#e′ −→ e = e1 ∧ e′ = e2.
(Note that the arrow used here denotes material implication, and is a different
arrow than that used for immediate causality.)
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The graphical notation can convey an intuition of the behavior of a system

that is described by an event structure. The notation L1 L2 means that L1’s

event is necessary for L2 to occur. Furthermore, fan-in events are conjunctive;
that is, L3 below can only occur if both L1 and L2 occur:

L1

L2

L3

Fan-out events create parallel chains of event execution:

L1

L2

L3

And such parallel chains can be mutually exclusive if they are conflicting, as
shown below:

L1

L2

L3

3.3 Supporting definitions

This section provides some definitions used when giving semantics to the C-Saw
DSL.

The isolate function mutates an event to set its outward flag to false. This
is used in the semantics to capture event interactions for exception-handling, as
will be seen by the semantics of 〈| · |〉 and otherwise.

isolate ((id , label , outward)) = (id , label , ff)

This function will also be lifted to work on sets of events.
The DSL semantics will be expressed using [[·]]ηJ , where J is the junction in

which the semantics are being evaluated and η is a finite function that maps to
DSL statements. It is initialized as follows:

{sub 7→ skip, return 7→ skip, break 7→ skip,
reconsider 7→ skip, next 7→ skip}

The parameter η is used to give semantics to statements that affect control
flow. sub tracks which statement will be evaluated next in sequence, and the
other values will depend on sub to some extent—this will be made clear by
the semantics. Parameter η will be changed while recursively evaluating the
semantics of DSL statements, but J will remain fixed. We will use the notation
η{return 7→ η(sub)} to denote the update of η such that return is changed to
map to η(sub). When redundant, J and η will be omitted from the notation.
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The next two definitions gather the rightmost and leftmost periphery of an
event structure, and are used when composing event structures together:

⇒
[[E]] =

{
S if “≤” = ∅
{e ∈ S | 6 ∃e′. e ≤ e′} otherwise

⇐
[[E]] =

{
S if “≤” = ∅
{e ∈ S | 6 ∃e′. e′ ≤ e} otherwise

To make fresh copies of event structures we use a map \(idx, [[E]]) where idx
is an arbitrary object used for indexing. This map creates a copy of events,
updating their identifier to make them unique, and preserves their enablement
and conflict relations. This map is used to describe the semantics of composition
operators that lead to distinct but similar future behavior of a system, such as
the E1 otherwise E2 operator that maps arbitrary failure during E1 to execute
E2. For e ∈ S[[E]], we define \idxe to be the unique bijection to S\(idx, [[E]]).
The symbol idx is dropped when it is obvious from the context or if it is trivial
(unique).

The function N is used to decompose case statements and give semantics to
the next terminator by progressively reducing the cases that can apply.

N




case {
F1 ⇒ E1; T1
F2 ⇒ E2; T2
...

...
otherwise ⇒ En
}



7→




case {
F2 ⇒ E2; T2
...

...
otherwise ⇒ En

}




if n > 2

This function is undefined if the case expression contains only one case—in
which case next cannot be used—or is malformed.

Another supporting definition involves a scheme to decompose a formula F
into primitive events that relate to each proposition involved in F . For this we
first convert F into its disjunctive normal form [4] (DNF):

∨∧
{P,¬Q, . . .}

Next, that is converted into sets of sets of literals (propositions or their nega-
tions):

{. . . , {P,¬Q, . . .} , . . .}
Finally, these are mapped these into read-event labels:

{. . . , {RdJ(P, tt),RdJ(Q, ff), . . .} , . . .}

Each element set represents a combination of reads than can guard subsequent
logic. Each element set is structured into parallel events that are collectively
prefixed by a Synch, and such that each element set is a strict alternative:
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SynchJ

RdJ (P, tt)

RdJ (Q, ff)
. . .

SynchJ . . .

3.4 Program semantics

Mapping programs into event structures involves the following steps:

1. Functions are inlined. They have no distinct semantic meaning since they
are templates (see §6 of the paper [6]).

2. Expressions only consist of formulas, ranged over by the metavariable F
in Table 1 of the paper, and are in converted to DNF as described above.

3. Statements, including junction definitions, are mapped using the defini-
tions in §3.5.

4. A post-processing step described in §3.5 expands placeholder events into
atomic events.

5. A start-up portion, described next, is added to complete the program-level
semantics.

Start-up. The start-up portion of a program initializes and starts instances
from a distinguished start-up instance. In involves two special names:

• The externally-occuring main event enables the subsequent events as de-
fined by the semantics of the program’s main statement:

def main J . . .

• The distinguished init junction represents the instance responsible for
start-up.

The start-up behavior of the example in Fig. 4 from the paper is shown
below. The rest of its semantics is visualized in §3.6.

main

Startinit(Act)

Startinit(Aud)

WrAud(Work, ff)

WrAud(Retried, ff)

WrAct(Work, ff)
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3.5 DSL statement semantics

This section provides a general, infinitary version of the semantics for a DSL.
That is, events have finite support as required by the definition of event struc-
tures, but branches may have infinite depth because subsumed subtrees are not
filtered—a proposition that is set to false might later be used to define behavior
when the proposition’s value is true. This expands the semantics with redun-
dant behavior that can be eliminated—either during a later deflationary pass or
by construction. Formalizing a more accurate semantics is left as future work.
The language’s implementation only requires a weaker version of this semantics
where unnecessary program behavior is curtailed.

Fig. 15 shows the semantic definitions for most statements. Two statements
are handled separately because their behavior requires more explanation.

The first is the case expression. Let E be:

case {
F1 ⇒ E1; T1
F2 ⇒ E2; T2
...

...
otherwise ⇒ En

}

In order to define [[E]]η we make some intermediate definitions, starting with
adaptations of η:

η′ = η{break 7→ η(sub), reconsider 7→ E}
η′i = η′{next 7→ E′

i} where i < n
η′n = η′{next 7→ undef}

where E′
i (where i < n) is:

case {
Fi+1 ⇒ Ei+1; Ti+1

...
...

otherwise ⇒ En
}

The remaining intermediate definition is:

case(i) =





[[Fi]]
η′i

[[Ei; Ti]]
η′i

[[¬Fi]]η
′
i

case(i+ 1)

if i < n

[[En]]η
′
n if i = n
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Finally, [[E]]η = case(0),
The second is the wait statement. It is initially mapped to a “WaitJ (~n, F )”

event which can generally interconnect with other events as shown below:

A1

...

An

WaitJ (~n, F )

B1

...

Bm

We then expand WaitJ (~n, F ) into a set of two kinds of events. First, events
that include the DNF-expansion of F , shown here as a q-ary set of disjuncts:
DNF(F )1, . . . ,DNF(F )q. Second, the reads of data state ~n: RdJ (n1, ∗), . . . ,RdJ (np, ∗)

These sets of events are then interconnected as shown below. This is designed
to stage the evaluation of the wait statement: first determine that F is satisfied,
then read ~n.

A1

...

An

DNF(F )1

...

DNF(F )q

RdJ (n1, ∗)
...

RdJ (np, ∗)
. .

.

. . .

RdJ (n1, ∗)
...

RdJ (np, ∗)

B1

...
Bm

B1

...
Bm

3.6 Example

This section uses the graphical notation described in §3.2.1 to illustrate the
event structure for the example described in §5.1 of the paper [6]. The start-up
behavior of this example was shown in §3.4.

There are two instances in this example. The behavior of Act is shown next,
and that of Aud is shown in Fig. 16.

The instances interact implicitly by updating propositions in each other’s
KV-tables. Act engages Aud at the occurrence of event Wr{Act,Aud}(Work, tt),
and is engaged back when RdAct(Work, ff) occurs. The complexity of Aud ’s
behavior in Fig. 16 arises from the combination of τAuditing’s retry logic and its
failure-handling.
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RdAud(Work, tt)

RdAud(n, ∗)

Sched Aud

WrAud(Retried, ff)

RdAud(Work, ff)

Unsched Aud

RdAud(Work, tt)

RdAud(Retried, tt)

complainWr{Act,Aud}(Work, ff)

RdAud(Work, ff)

Unsched Aud

RdAud(Retried, ff)

WrAud(Retried, tt)

RdAud(Work, ff)

Unsched Aud

RdAud(Work, tt)

RdAud(Retried, tt)

complainWr{Act,Aud}(Work, ff)

RdAud(Work, ff)

Unsched Aud

Figure 16: Behavior of the Aud instance from §5.1 of the C-Saw paper.

Sched Act

WrAct(n, ∗)

WrAud(n, ∗) complain

Wr{Act,Aud}(Work, tt) complain

RdAct(Work, ff) complain

Unsched Act

3.7 Topology

The topology of a C-Saw-architected system, showing the communication paths
between components, is derived from the definition of Topo:

Topo =
⋃

ι∈Instances

⋃

γ∈Junctions(ι)

{
(γ, γ′) | γ′ ∈ Topoγ(Eγ)

}

Topo produces a directed graph whose nodes are junctions and whose edges
indicate communication from one junction to another. Its definition depends on
the following definitions:
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• Instances (see §4 from the C-Saw paper)

• Junctions(ι), which maps an instance to its set of junctions (by analysis
of C-Saw expressions),

• Eγ , which is the DSL statement of junction γ.

• Topoγ(E), which recursively computes the set of communication targets
for junction γ by analyzing the syntax of the junction’s DSL expres-
sion. For example, the statements “assert [γ′] P” “retract [γ′] P” and
“write(γ′, n)” would return the set {γ′}; “〈E′〉” evaluates to Topoγ(E′);
and “E1; E2” evaluates to Topoγ(E1) ∪ Topoγ(E2).
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4 Further evaluation

This section contains additional graphs that complement those in the evaluation
given in §7 of the C-Saw paper [6].

Fig. 17a shows the performance of modified cURL when executed over large
files, and complements Fig. 13a in the C-Saw paper which focused on small files.
The performance difference for large files is less intelligible.

Fig. 17b shows the performance overhead of various reconfigurations of Redis
under a SET workload. It is the complement of the paper’s Fig. 13c.

Fig. 17c shows the behavior of Redis reconfigured for object-size sharding
when subjected to a workload featuring a corresponding distribution to that
used for key-based sharding in Fig. 11b.

Fig. 17d extends the evaluation in §8.3 of the C-Saw paper. It shows the nor-
malized overhead when Suricata’s architecture was modified to support shard-
ing, compared to the original version of Suricata. In this version we used a
batch size of 2048 to mitigate overhead.
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(a) Performance of modified cURL.
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(b) Performance overhead of modified Re-
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(c) Redis sharding based on object size.
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Figure 17: Additional graphs from experiments.
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