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ABSTRACT

This thesis develops mathematical background for the design of algorithms for

discrete-data problems, two in statistics and one in operations research. Chapter � gives

some background on what chapters � to � have in common. It also defines some basic

terminology that the other chapters use.

Chapter � offers a general approach to modeling longitudinal network data, includ-

ing exponential random graph models (����s), that vary according to certain discrete-time

Markov chains (The abstract of chapter � borrows heavily from the abstract of Schwartz

et al., ����). It connects conditional and Markovian exponential families, permutation-

uniform Markov chains, various (temporal) ����s, and statistical considerations such as

dyadic independence and exchangeability. Markovian exponential families are explored in

depth to prove that they and only they have exponential family finite sample distributions

with the same parameter as that of the transition probabilities. Many new statistical and

algebraic properties of permutation-uniform Markov chains are derived. We introduce ex-

ponential random C-multigraph models, motivated by our result on replacing C observations of

a permutation-uniform Markov chain of graphs with a single observation of a correspond-

ing multigraph. Our approach simplifies analysis of some network and autoregressive

models from the literature. Removing models’ temporal dependence but not interpretabil-

ity permitted us to offer closed-form expressions for maximum likelihood estimators that

previously did not have closed-form expression available.

Chapter � designs novel, exact, conditional tests of statistical goodness-of-fit for

mixed membership stochastic block models (�����s) of networks, both directed and undirected.

The tests employ a "2-like statistic from which we define p-values for the general null

hypothesis that the observed network’s distribution is in the ����� as well as for the

simple null hypothesis that the distribution is in the ����� with specified parameters.

For both tests the alternative hypothesis is that the distribution is unconstrained, and they

both assume we have observed the block assignments. As exact tests that avoid asymptotic

arguments, they are suitable for both small and large networks. Further we provide and
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analyze a Monte Carlo algorithm to compute the p-value for the simple null hypothesis. In

addition to our rigorous results, simulations demonstrate the validity of the test and the

convergence of the algorithm. As a conditional test, it requires the algorithm sample the

fiber of a sufficient statistic. In contrast to the Markov chain Monte Carlo samplers common

in the literature, our algorithm is an exact simulation, so it is faster, more accurate, and

easier to implement. Computing the p-value for the general null hypothesis remains an

open problem because it depends on an intractable optimization problem. We discuss the

two schools of thought evident in the literature on how to deal with such problems, and

we recommend a future research program to bridge the gap those two schools.

Chapter � investigates an auctioneer’s revenue maximization problem in combina-

torial auctions. In combinatorial auctions bidders express demand for discrete packages

of multiple units of multiple, indivisible goods. The auctioneer’s NP-complete winner de-

termination problem (���) is to fit these packages together within the available supply to

maximize the bids’ sum. To shorten the path practitioners traverse from from legalese

auction rules to computer code, we offer a new ��� formalism to reflect how government

auctioneers sell billions of dollars of radio-spectrum licenses in combinatorial auctions

today. It models common tie-breaking rules by maximizing a sum of bid vectors lexico-

graphically. After a novel pre-solving technique based on package bids’ marginal values,

we develop an algorithm for the ���. In developing the algorithm’s branch-and-bound

part adapted to lexicographic maximization, we discover a partial explanation of why clas-

sical ��� has been successful in using the linear programming relaxation: it equals the

Lagrangian dual. We adapt the relaxation to lexicographic maximization. The algorithm’s

dynamic-programming part retrieves already computed partial solutions from a novel data

structure suited specifically to our ��� formalism. Finally we show that the data structure

can “warm start” a popular algorithm for solving for opportunity-cost prices.
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Chapter �

INTRODUCTION

Over the next three chapters, I present a mosaic of models ranging from the wholly

abstract to those describing specific, real-world events. They include statistical models of

longitudinal data and of samples of size one. They include optimization problems that I

know how to solve and optimization problems that I do not. Each chapter is mostly self

contained, defining its own notation and terminology, because none discusses the models

of the others.1

What they do share, however, stems from my motivation in choosing the topics

and how I have pursued them. My interest in specifically applied mathematics arose from

first studying economics and later working as an economist, specializing in industrial

organization (antitrust) and auctions, before I matriculated at ���. From this background I

have developed a predisposition toward models of social phenomena that are discrete, as

in indivisible and not continuous. Economics models often propose that some collection

of people make choices that optimize some social welfare or private payoff function, at

least in some average sense. These models can be discrete in two senses: in the set of actors

or in the actors’ sets of available choices. My impression is that the more “micro” the

microeconomics—examining smaller numbers of actors in more controlled environments,

such as auctions—the more quantitatively predictive the model. In part this is because

such models drop the continuous approximations that models of larger markets make.

When millions of people participate in a market, we can pretend that adding one more

hungry mouth or one more productive farmer is an infinitesimal change, ignoring such

details as which farmer sells food to which family. By contrast markets with, say, dozens

of participants force us to forego the calculus that has made continuous models more

accessible, at least to economists, than discrete models have been. As models add more

1"I repeat a few definitions across chapters because notation differs. In any case, if you read the thesis
straight through, the repetitions are sufficiently widely separated as be be useful reminders. If you skim the
thesis looking for topics of interest, the repetitions are even more useful.
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realistic constraints, like who sells to whom, the choice sets become discrete and require

mixed or integer optimization to solve.

The difference in age of continuous versus discrete economic models reflects this

dynamic. Modern mathematical economics began in earnest in the so-called “marginal

revolution” of the second half of the nineteenth century with the continuous supply-and-

demand models of, e.g., Léon Walras, Carl Menger, or Alfred Marshall.2 Discrete models

in economics are much younger. A major source is game theory, the modern form of which

dates only to ���� when von Neumann and Morgenstern published Theory of Games and

Economic Behavior (Fudenberg & Tirole, ����, p. xviii). Elsewhere in social science, the liter-

ature on social networks also dates from the mid-twentieth century (see subsection �.�.�).

Given this attention gap, I have a hunch that more low hanging fruit remains in the study

of social phenomena that are discrete than continuous.

And so all three chapters draw inspiration from social science literature or directly

address social phenomena. Major inspirations for chapters � and � were the articles Airoldi

et al. (����) and Hanneke et al. (����) on social networks. Chapter � addresses a class of

auctions for discrete goods. Moreover all the chapters’ models are all finite and discrete.

Chapter � considers the sale by an auctioneer of discrete items to a number of distinct

bidders. Chapters � and � both address the statistics of finite samples of networks.

A network or graph is a (finite) set of nodes or vertices representing anything

indivisible and mutually distinct, say, people. In both chapters � and � we assign consecutive

numbers one through =, a positive integer, to the nodes of interest, and then just operate

on networks whose node set is [=] B {1, . . . , =}. Edges between nodes represent bilateral

relationships between them. Edges may be either directed (Alice pays Bob) or undirected

(Alice and Bob transact). We always consider all of the edges in a graph as directed or

all of them as undirected. In the former case, edges are ordered pairs of nodes, and we

read the edge as going from the first to the second node in the pair. In the latter case we

can form undirected edges by including the directed edge in both directions. However, if

2"Carl Menger was the father both of the so-called Austrian school of economics and of ���’s own Karl
Menger.
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we also assume, as chapter � does, that networks of interest are simple, meaning no node

forms an edge with itself, called a self-loop, then we identify edges with dyads, or sets of

two distinct of nodes. Chapter � in contrast permits networks to be simple or non-simple,

directed or undirected. Regardless of the exact definition that these assumptions imply,

both chapters useD= to denote the set of all possible edges among nodes in [=]. Chapter �

uses G= to denote the set of graphs on the node set [=]. However, chapter � uses G= ,1

because the chapter also considers the possibility of more than one copy of each edge.

More generally, for a positive integer C, a multigraph in G= ,C can have up to C copies of each

allowed edge inD= . The utility of multigraphs to the chapter is the connection it describes

between multigraphs and temporal networks, sequences of snapshots of edges over time

longitudinally for a fixed set of nodes.

Another effect of my background as a working economist on my research priorities is

that all three chapters develop mathematics that has the potential to solve data-driven prob-

lems. The chapters describe algorithms using formulas, sequences, recursive definitions,

and the occasional table or pseudo-code listing. Chapter � discusses a class of statistical

models that generate temporal network data. If a data set tracks relationships among a

fixed set of nodes, the chapter says how to read in the data and rewrite it as a multigraph

susceptible to other network analytic techniques that already exist for single snapshots of

networks but have not been extended to time series data. Then chapter �’s theorems say how

to translate conclusions about the multigraph back into conclusions about the temporal net-

work (section �.� summarizes the process). Chapter � offers a Monte Carlo algorithm �.�.�

for testing the goodness of fit between a single observation of a network and a popular

statistical model of such networks. That algorithm’s subroutine, algorithm �.�.�, produces

random draws from the subset of networks on the same set of nodes as the input data that

would have produced the same estimates for the model’s parameters. Such a subroutine is

useful in its own right for simulations. Figures �.� and �.� report simulations I implemented

of the goodness-of-fit test itself. Chapter � details an algorithm for determining who wins
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what in a type of auction governments use to lease multiple radio frequencies at a time.3

Bidders express demand in terms of packages that the auctioneer isn’t allowed to split

apart, like “one block of cheese and one bottle of wine” or “no cheese and two bottles of

wine”. The input to the algorithm is a spreadsheet like the one in table �.�. I formulated

the problem specifically to model how auctioneers actually implement the auctions. While

I have implemented several parts of those algorithms in working code, which contributed

to Bono et al. (����) and Schwartz et al. (����), building a fully functional prototype awaits

future research.4

Both chapters � and � began with the goal of applying algebraic statistical techniques

to new models of random graphs, networks on a fixed set of nodes whose edge exist

randomly according to some probability distribution. The set G= of networks on nodes

named one through = is a finite set, and we can pick the probability distribution of edges’

existence by assigning each graph 6 2 G= a probability ⇠(6). By making that probability

⇠✓(6) depend on a real-valued vector parameter ✓ B (1 , . . . , 3) that we pick from a

fixed parameter space ⇥, we create a statistical model, or just model,M B {⇠✓ | ✓ 2 ⇥}.

Models that fit certain criteria, which chapter � explains in great detail and chapter � revisits,

are exponential families, and exponential random graph models (����) are statistical models of

random graphs that are also exponential families. In some statistical tests of data potentially

coming from a distribution in an ����, it is helpful to simulate uniformly random draws

from a subset of G= that depend on the particular ����. To do so, we can use what I will

lump together as ���� algebraic statistics techniques (����s) (for an overview of ����s [but

that didn’t use the term], see Petrović, ����; Diaconis & Sturmfels, ����, stated and proved

what has come to be known as the fundamental theorem of algebraic statistics). Both chapters �

3"Chapter �’s theorems �.�.� and �.�.�, lemma �.�.��, and corollary �.�.� are that chapter’s main
algorithmic content. Accompanying the equations scattered about are summaries of how to put them together
in steps: tables �.� and �.� and remarks �.�.�, �.�.� and �.�.��.

4"One challenge has been robustly handling rounding errors emanating from optimization software
packages such as ����, Gurobi, lp_solve, CPLEX. Surprisingly little appears in numerical analysis and
computer science textbooks on how to compare floating-point values within an error tolerance, much less how
to compare vectors of them lexicographically while handling infinities and NaNs. My manuscript in preparation
describing the literature and the algorithms I landed on didn’t fit in with the other chapters here.
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and � were originally meant to be “simple” applications of ����s.

Sonja Petrović, one of my advisors, originally approached me with the project that

turned into chapter � to apply ����s to the models of Markov chain of random networks

in Hanneke et al. (����). A (discrete time, homogeneous) Markov chain is a sequence

of random variables -0 ,-1 ,-2 , . . . together with a joint probability distribution P under

which the probability of the next random variable -C+1 depends only on the state G that

the current random variable -C is in, which is to say that the sequence and P have the

Markov property P(-C+1 = GC+1 | -0 = G0 , . . . ,-C = GC) = P(-C+1 = GC+1 | -C = GC) for

all nonnegative integers C. Hanneke et al. (����)’s Markov chains took values in G= and

P✓(-C+1 = GC+1 | -C = GC), properly parameterized, formed an exponential family. The

critical first step in ����s is identifying that the statistical model of interest is in fact an

exponential family when parameterized appropriately for the application. That requires

looking at the finite-sample joint distribution P✓(-C+1 = GC+1 ,-0 = G0 , . . . ,-C = GC), not

the transition distributions P✓(-C+1 = GC+1 | -C = GC). As subsection �.�.� concludes, only

some of Hanneke et al.’s models are exponential families with the right parameterization.

So we could not blanket apply ����s to those models. Instead theorem �.�.�� gives neces-

sary and sufficient conditions for when a Markov chain’s finite-sample joint distribution

is an exponential family with the same parameter as the transition probabilities are an

exponential family. Further section �.� gives a sufficient condition in the form of a class of

Markov chain models that have that property.

Sonja also brought me in on the project that so far has turned into chapter �. Hers and

our coauthors’ goal was to apply ����s to a specific class of ����s called mixed membership

stochastic block models (�����s), which subsections �.�.� and �.�.� define. The value of ����s

is they provide tools for deriving and proving the correctness of an algorithm for sampling

from subsets of G= depending on the ���� of interest. Plug an ���� into ����s, get an

algorithm out. The algorithm is itself a Markov chain of graphs in the appropriate subset

of G= , and that Markov chain’s marginal distribution P(-C = G) converges to uniform as

C !1. But if you already have an algorithm, then you don’t need ����s, especially if your

algorithm, like algorithm �.�.�, which which I stumbled upon while trying to apply ����s
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to �����s, samples directly and exactly uniformly from the right subset G= . In particular

algorithm �.�.� is faster, more accurate, and easier to implement than the Markov chain

that ����s would provide. The upshot is that both chapters � and � were supposed to be

about ����s and neither is.

The type of auction chapter � focuses on is called a combinatorial auction because

bidders express demand for multiple combinations of discrete, indivisible goods—say, a

“barrel of water” rather than “water”. The auctioneer can fit together multiple bidders’

package bids, not all of which are for directly comparable combinations of products. Thus a

simplistic rule like “highest bidder wins” loses. This raises all sorts of fascinating economic

questions (see Cramton et al., ����b, pt. �), but chapter � focuses on the mathematical

and algorithmic facets, particularly the winner determination problem. That problem is to

maximize the auctioneer’s revenue while awarding bidders only those packages they bid

for and constrained by the auctioneer’s actual supply of those products. We model it as

a mathematical programming problem: optimizing an objective function on a real vector

space subject to some finite number of constraints on which vectors qualify (Minoux,

����/����, p. �). In particular we write it as a zero-one integer program. The chapter

presupposes the reader is familiar with integer and linear programs, but let’s briefly review

the definitions. Fix an < ⇥ = real-valued matrix A, an <-vector b, and an =-vector c:
linear programz                  }|                  {

maximize
x

c«x

subject to Ax = b,

x � 0.

zero-one integer programz                          }|                          {
maximize

x
c«x

subject to Ax = b,

x 2 {0, 1}= .

Both problem types permit minimizing instead of maximizing and replacing the = in the

constraints Ax = b with either  or �. Bertsimas and Tsitsiklis (����, chaps. �–�, ��–��) is

a readable but rigorous introduction to linear and integer programming.

I have followed some typographical and notational conventions across all three

chapters, some of which I have already used. The expression 0 B 1 means that I am

defining 0 to be 1. Likewise this introduction font indicates the first time I fully define a

term. (A partial definition of the same term in italics may foreshadow that full definition.)
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If you come across a symbol or term you don’t know, skim backward until you see the

symbol next to a : or the term in the introduction font. Latin italic capital letters are

generally matrices or random variables. Bold symbols like X or ↵ denote matrices or

vectors. Sets are capitalized either in Greek (⇥), Latin calligraphic (D= , G=), or Latin script

(✏) fonts. N is the set of nonnegative integers. R is the set of real numbers. If P is a

probability distribution, then E is its expected value operator. However, while P is always

some probability distribution, I give its exact meaning in each context.
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Chapter �

INTERPRETABLE DATA REDUCTION FOR NETWORK MARKOV CHAINS5

�.� Introduction

An assumption of popular models of network creation is the existence of a low

dimensional sufficient statistic for often very high dimensional networks. They suppose that

a large network is generated by a random process entirely determined by these sufficient

statistics, allowing the estimation of similarly low dimensional parameters that are the

actual goal of the researcher. Assuming a fixed set of vertices [=] = {1, . . . , =}, these

exponential random graph models (����s) are parameterized distributions on the set of

graphs on [=]. Hanneke et al. (����), Hanneke and Xing (����), Krivitsky and Handcock

(����), and Robins and Pattison (����) extended the models to encompass time series of

graphs via Markov chains. They do so largely from the bottom up: proposing sufficient

statistics of the current and next graphs in the chain and specifying transition probabilities

drawn from exponential families of distributions with these sufficient statistics.

Our goal is a top-down analysis of parametric Markov chains, focusing on those

discrete-time Markov chains on discrete state spaces that bear sufficient statistics of low

dimension. A sufficient statistic for a parameter  of the distribution of a set - =

{-0 ,-1 , . . . ,-C} of random variables is a random variable �(-) such that the distribu-

tion of - conditional on �(-) does not depend on . The sufficiency principle asserts that

any inference about  should be the same whether we observe - = G or - = H as long as

�(G) = �(H) (Casella & Berger, ����, § �.�). Darmois-Koopman-Pitman theorems state that,

under regularity conditions, the only parameterized families of probability distributions

whose sufficient statistics do not grow in dimension with the size of the sample space are

the exponential families (E. L. Lehmann & Casella, ����, § �.�). We are concerned with

situations in which the dimension of - is high and the dimension of �(-) is low and does

5This chapter includes joint work with Sonja Petrović and Hemanshu Kaul. The Air Force Office of
Scientific Research’s grant FA9550-14-1-0141 supported Sonja’s and my initial work on this project. Schwartz
et al. (����) is an article manuscript derived from this chapter. We have submitted it for publication.
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not depend on C. Section �.� discuss several theorems in this vein for discrete spaces.

The Darmois-Koopman-Pitman theorems suggest that restricting Markov chains

to having exponential family distributions can make estimation of their parameters easier

by limiting the amount of data we need to observe. This is particularly important when

the state space is finite but large, such as the set of all networks on = vertices, which has

O(2=2) networks in it. Section �.� classifies the transition matrices giving rise to exponential

families of likelihood functions based on ideas from Feigin (����) and Küchler and Sørensen

(����, ����). Further, extending ideas from Gani (����), the section discusses their algebraic

structure.

Exponential-family transition probabilities’ form is sufficiently constrained that,

under certain circumstances, we can identify the Markov chain with an independently and

identically distributed (���) sequence on the same state space. This is the goal of section �.�.

Extending ideas first proposed in Rosenblatt (����), we characterize all Markov chains that

can be identified with an ��� sequence in this way. This identification reduces analysis of

the autocorrelated Markov chain to analysis of an ��� sequence. The function to compute

the ��� sequence from the Markov chain (and its inverse, which necessarily exists) is often

easy to derive in practical cases. We will conclude by looking at applications to Markov

chains of networks in section �.�.

�.� Sufficiency and Parametric Markov Chains

In this section we introduce notation and terminology in preparation for review-

ing the Darmois-Koopman-Pitman-type theorems for discrete-space, discrete-time Markov

chains. While similar theorems exist for continuous time or space, we feel that the measure

theory needed to state the theorems in their full generality would obscure their mean-

ing and usefulness to researchers focused on discrete applications such as the network

applications in section �.�.

For a gentle introduction to Markov chains, see Hoel et al. (����). Levin and Peres

(����) provides a modern perspective focused on mixing times.

Let ✓ be a discrete state space, either finite or countable. Let - = {-C}C2N be a

time-homogeneous6 Markov chain with transition matrix %✓ 2 R✓⇥✓ for any ✓ in some
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non-empty parameter space ⇥ ✓ R3, 3 � 1:

P(-C+1 = 1 | -C = 0) = %✓(0 , 1).

Associate with - the process N = {NC}C2N of N✓⇥✓
transition-count matrices whose 0 , 1

entry counts the number of times - transitioned from state 0 to state 1 by time C, i.e., if 1 is

the indicator function for � ✓ ✓, then(cf. Gani, ����, Eqs. �–�; Stefanov, ����, Eq. �)

#C(0 , 1) B
C�1’
8=0

1(-8 = 0)1(-8+1 = 1),

#C(+, 1) B
’
02✓

#C(0 , 1) =
C’
8=1

1(-8 = 0), (�.�)

#C(0 ,+) B
’
12✓

#C(0 , 1) = #C(+, 0) + 1(-0 = 0) � 1(-C = 0).

#C(+, 1) is the 1th entry of the contingency table N (+, ·), giving the number of times that

- has visited state 1 during times 1, . . . , C, inclusive. Likewise, #C(0 ,+) gives the number

of times that - has visited state 0 during times 0, . . . , C � 1, inclusive. We can then write

the probability mass function (���) of -1 , . . . ,-C under %✓ under the initial condition

-0 = G0 2 ✓ as (Küchler & Sørensen, ����, Eq. �.�.�)

!
C

✓,G0
(G1 , . . . , GC) = exp

 ’
0 ,12✓

#C(0 , 1) log%✓(0 , 1)
!

(�.�)

(as long as we take 0 log 0 = 0).

Equation (�.�) has the form of an exponential family, which we now define. A set

⇠ = {⇠✓ | ✓ 2 ⇥} is called a model on ✓ if ⇠✓ is a probability distribution on ✓ for each

✓ 2 ⇥ (Petrović, ����, § �). If - is distributed according to ⇠✓ and ⇥ contains distinct

points ✓1 < ✓2 for which ⇠✓1 = ⇠✓2 , then we say that ✓ unidentifiable on the basis of -

(E. L. Lehmann & Casella, ����, § �.�, Def. �.�, p. ��).

The model ⇠ is called an exponential family if there exist ✓ 2 N>0, functions � : ✓!

[0,1), ⌘ : ⇥! R✓ , ⌧ : ✓! R✓ , and, for all states 0 2 ✓ and all parameters ✓ 2 ⇥,

⇠✓(0) =
�(0) exp(⌘(✓) · ⌧ (0))Õ
12✓ �(1) exp(⌘(✓) · ⌧ (1)) . (�.�)

6Throughout this paper, when we say Markov chain, we mean a time-homogeneous Markov chain, one
whose transition probabilities are not functions of time.
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Equation (�.�) actually defines the probability density or mass function ⇠✓ of the distribu-

tion that we are also calling ⇠✓. Normally this ambiguity is no bother, but when it matters in

subsection �.�.�, eq. (�.�) will be understood to define densities with respect to some dom-

inating, �-finite measure on ✓, typically the counting measure (E. L. Lehmann & Casella,

����, pp. ��–��). In fact, every measure on a discrete space is absolutely continuous with

respect to the counting measure, so we may always assume, without loss of generality, that

the dominating measure is the counting measure and eq. (�.�) defines a classical probability

mass function. See lemma �.�.�.

Instead of saying that ⇠ is an exponential family, we might say that ⇠✓ has the

exponential family representation in eq. (�.�) for all  2 ⇥ or that ⇠✓ is drawn from the

exponential family in eq. (�.�) for all  2 ⇥.

We call � the carrier measure, ◆ the parameter function. ⌧ is a sufficient statistic for

✓ by the factorization theorem (Casella & Berger, ����, Thms. �.�.� and �.�.��).

Define ✓ : ⇥! R [ {1} by

✓() = log

 ’
12✓

�(1)4⌘(✓)·⌧ (1)
!
, (�.�)

so we can rewrite

⇠(0) = �(0)4⌘(✓)·⌧ (0)�✓(✓). (�.�)

We call ✓ the log-partition function or log normalizer (And thus might call 4✓ the normal-

izer or partition function. See Wainwright & Jordan, ����, Eq. �.�; Nielsen & Garcia, ����,

§ �.�).

If 3 = ✓ and ⌘(✓) = ✓ for all ✓ 2 ⇥, we say that ⇠ is naturally parameterized with

natural parameter space H B {� 2 R✓ | Õ
12✓ �(1)4� ·⌧ (1) < 1} (Casella & Berger, ����,

§ �.�, p. ���; though some authors call parameterization with the natural parameter the

canonical form and that the natural parameter space of eq. (�.�) is ⌘�1(H ). See, e.g., E. L.

Lehmann & Casella, ����, § �.�, pp. ��–��; Wainwright & Jordan, ����, § �.�, p. ��). We

always stipulate that⌘(⇥) lies in the natural parameter space (Casella & Berger, ����, p. ���);

hence |✓(✓)| < 1 for all ✓ 2 ⇥. ⇠ is called a log-linear model if it is naturally parameterized
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and � is constant (In this case, the elements of ✓ are called cells and ⌧ is called the design

matrix. See Fienberg & Rinaldo, ����a, § �). Log linear families have contingency tables

with exponential family distributions, and maximum likelihood estimation (���) for this

class of models is well understood; see, e.g., Fienberg and Rinaldo (����a).

The size and shape of⇥,⌘(⇥), and ⌧ (✓)play an important role in exponential family

theory. Since the codomain of ⌘ and ⌧ is R✓ , we say that ⇠ is ✓ dimensional (E. L. Lehmann

& Casella, ����, § �.�, p. ��). If 3 < ✓ then ⇠ is curved; if 3 = ✓ then ⇠ is full (Casella & Berger,

����, § �.�, Def. �.�.�, p. ���). An exponential family is regular if its natural parameter space

is open. Equation (�.�) is a minimal representation of ⇠ if the entries of ⌧ and of ⌘ are

affinely independent, meaning � · ⌧ (0) = 6 for all 0 2 ✓ with �(0) < 0 implies that � = 0

and 6 = 0 and � · ⌘(✓) = ⌘ for all ✓ 2 ⇥ implies � = 0 and ⌘ = 0 (Barndorff-Nielsen, ����,

Cor. �.�, p. ���; Küchler & Sørensen, ����, p. ��; Wainwright & Jordan, ����, p. ��). If ⌘ and

⌧ are affinely independent, then ✓ is identifiable (Wainwright & Jordan, ����, p. ��). If, in

addition to affine independence,H contains an open, ✓ -dimensional rectangle, then we say

that ⇠ is full rank (E. L. Lehmann & Casella, ����, § �.�, p. ��). A curved exponential family

is not full rank (E. L. Lehmann & Casella, ����, § �.�, p. ��). If eq. (�.�) is not a minimal

representation, then it is an overcomplete representation (Wainwright & Jordan, ����, § �.�,

p. ��).

For a rigorous introduction to exponential families, see Barndorff-Nielsen (����,

chap. �). Küchler and Sørensen (����) rigorously treats exponential families for stochastic

processes, including Markov chains.

From eq. (�.�) we see that the joint probability of the Markov chain - through time

C conditional on the initial state -0 = G0 is drawn from an exponential family. Supposing

that %✓ = ✓ C % in eq. (�.�), we can take the parameter space ⇥ to be the set of ✓ ⇥ ✓

stochastic matrices. Thus #C is a sufficient statistic for the transition matrix %. Moreover,

the (consistent, asymptotically normal) ��� %̂ for % is (Asymptotic normality stands even

when %✓ is not simply ✓, but does require some additional hypotheses. See Stefanov, ����,
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§ �; see also Al-Eideh et al., ����; Gani, ����)

%̂01 =
#C(0 , 1)
#C(0 ,+)

. (�.�)

Because of the constraint that
Õ
12✓ %01 = 1 for all 0 2 ✓ in any stochastic matrix ?, the

minimal representation of eq. (�.�) actually requires that ⇥ have dimension |✓|2 � |✓| � :,

where : 2 {0, 1, . . . , |✓|2 � |✓|} is the number of entries of ? that equal zero (Stefanov, ����,

§ �; however, the dimension can be reduced by another multiple of |✓| if we take C to be a

random stopping time in terms of #C . See Stefanov, ����; and for more on this topic, see

Stefanov, ����, Eq. �, but we will not address stopping times further in this article). (We

have to be careful about zero entries because we take logarithms in eq. (�.�).) The upshot is

that the dimension of the sufficient statistic O(|✓|2).

We review the Darmois-Koopman-Pitman theorems available for discrete state

spaces.

Theorem �.�.� (Darmois-Koopman-Pitman on Discrete State Spaces). Let ⇠ = {⇠✓ | ✓ 2 ⇥}

be a family of probability distributions on some discrete space✓ and the elements of⇥ have dimension

3.

Diaconis and Freedman (����) Suppose✓ is the integers and the distributions of⇠ have common

support. If, for each C 2 N>0, the sum of C ��� random variables distributed according to ⇠✓ is

sufficient for ✓, then ⇠ is an exponential family.

Denny (����) Suppose ✓ is countably infinite. If ⇠ is not an exponential family, ✓ has an infinite

subset � such that

⌧ (G1 , . . . , GC) = ⌧ (H1 , . . . , HC) =) (G1 , . . . , GC) =
�
H�(1) , . . . , H�(C)

�

for any (G1 , . . . , GC), (H1 , . . . , HC) 2 � and for at least one permutation � of [C].

Andersen (����) Suppose ✓ = {1, . . . , B}, ⇠✓(0) > 0 for all ✓ 2 ⇥ and all 0 2 ✓, and 3 = 1.

Further, suppose that if 9 = 1, 2, @ = �(G1 , . . . , GC), @1 = �(G1 , . . . , G9�1 , G
0
9
, G9+1 , . . . , GC),

and @2 = �(G1 , . . . , G9�1 , G
00
9
, G9+1 , . . . , GC), then @1 < @ < @2 implies G9 exists with either

G
0
9
 G9  G00

9
or G00

9
 G9  G0

9
. Then ⇠ is an exponential family with sufficient statistic � of

dimension one.
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Gani (����) Suppose ✓ is finite and 3 = 1. If � is real valued and is formally differentiable7 with

respect to the entries of the contingency table NC(+, ·), then ⇠ is an exponential family whose

sufficient statistic is a function of �.8

�.� Conditional Exponential Families

A conditional exponential family (Feigin, ����, Def. A) (���) is a family of transition

matrices % B {%✓ | ✓ 2 ⇥} such that each row of %✓ is an exponential family with the same

parameter function ⌘ and same parameter space ⇥, i.e.,

%✓(0 , 1) = �(0 , 1)4⌘(✓)·⌧ (0 ,1)�✓(0 ,✓). (�.�)

The natural parameter space for this ��� is the set of all � 2 R✓ such that

’
12✓

�(0 , 1)4� ·⌧ (0 ,1)

is finite for all 0 2 ✓. We always stipulate that ⌘(⇥) lies in the natural parameter space

(Feigin, ����, p. ���); hence 0 < 4
✓(0 ,✓) < 1 for all ✓ 2 ⇥ and all 0 2 ✓.

The ��� is a conditionally additive exponential family (����) if ✓(0 , ✓) = #(0))(✓)

for some functions ) : ⇥ ! R and # : ✓ ! R (The original definition required that #

were such that the range of # contains either one or an interval (0, ⇣) for some ⇣ > 0.

In our context, ✓ is a discrete space, so #(✓) cannot contain an interval. We can make

1 2 #(✓) by rescaling ), so we have not included these constraints in our definition.

The original definition appears at Feigin, ����, Def. B). Finally, we say that a ���� is a

Markovian exponential family (���) if #(0) is a non-zero constant for all 0 2 ✓, i.e.,

✓(0 , ✓) = ✓(1 , ✓) C ✓(✓) so that (cf. eq. (�.�) and Hudson, ����, Eq. �.�)

%✓(0 , 1) = �(0 , 1)4⌘(✓)·⌧ (0 ,1)�✓(✓). (�.�)

�.�.� Literature Review. Suppose - = {-C}C2N is a Markov chain whose transition matrix

is drawn from a family % = {%✓ | ✓ 2 ⇥}. Gani (����, ����) showed that when ✓ is finite,

7"Gani (����) concludes using this assumption that � is a function of a linear combination of of the
entries of the contingency table.

8"Gani (����) additionally requires that ⇠ be differentiable with respect to . This assumption can be
dropped by applying the factorization theorem to d!C ()/d!C (0) for some fixed 0 2 ⇥ rather than to !C ().
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⇥ is a scalar set, and every transition matrix of % has a stationary distribution9 and is

differentiable with respect to ,10 for !C✓,G0
(G1 , . . . , GC) (defined in eq. (�.�)) to have a one-

dimensional sufficient statistic for  required that % be an ���. This is also true of chains

with a single absorbing state and a random stopping time. Bhat and Gani (����) extends

this result to the case where the initial state-0 is also random with a distribution depending

on the same parameter. Bofinger (����) gives an analogous result for time-inhomogeneous

Markov chains (but the result is closer to ���s than ���s(Bofinger, ����, Eq. �)). Adke

and Swamy (����) and Mitrofanova (����/����) extend the time-homogeneous case to

continuous state spaces.

Apparently unaware of Gani (����), Heyde and Feigin (����) proposed ����s

(which they called conditional exponential families (Feigin, ����, p. ���)) when trying

to define asymptotic efficiency for estimation when observing from dependent sequences

of random variables. Their definition was in terms of the score function induced by the

transition densities. Feigin (����) introduced the more general class of ���s with vector pa-

rameters over R? and studied their statistical properties. The functional form of ���s with

a scalar parameter first appears in Gani (����). Adke and Swamy (����), Bhat (����), Bhat

and Gani (����), Bofinger (����), Gani (����), and Mitrofanova (����/����) all cite Gani

(����), but Feigin (����), Heyde and Feigin (����), and Küchler and Sørensen (����, ����)

do not.11 Hudson (����) introduced the name Markovian exponential families(Hudson, ����,

p. ��) and vector parameters, but with the particular form (We take the liberty of replacing

some of the letters with those matching eq. (�.�) compared to Hudson, ����, Eq. �.�)

�(G , H) exp(↵(✓) ·m(G , H) � ✏(✓))(G) � ✓(✓)) (�.�)

for some nonnegative function ). The author concludes that the presence of the ) term

9"Gani (����) assumed that the Markov chain had a single, irreducible, closed subset of states. A Markov
chain on a finite state space with a single, irreducible closed subset of states has a unique stationary distribution
(Hoel et al., ����, chap. �).

10"As in footnote �, differentiability with respect to  is not essential.

11"Though Küchler and Sørensen (����, p. ��) and Küchler and Sørensen (����, p. �) cite each of Bhat
(����), Feigin (����), and Heyde and Feigin (����). On February ��, ����, Google Scholar said that Gani (����)
has been cited �� times.
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prevents the joint distribution of C observations from being an exponential family. Accord-

ing to our theorem �.�.��, this was a hasty conclusion: Setting ⌘(✓) equal to the vector

(↵(✓),�✏(✓)) and ⌧ (G , H) equal to the vector (m(G , H),)(G)) would turn eq. (�.�) into an

���, thereby satisfying theorem �.�.��.

Our interest here is in the structure of ���s and ���s more so than in the statistical

properties they have. Partially this is because our interest in this problem arose in model

selection for Markov chains of networks; a better understanding of the structure of ���s

allows us in section �.� to pick models of Markov chains of networks that are interpretable

and have sufficient statistics of small, constant dimension à la theorem �.�.�.

Another reason to focus on structure over statistics is that the literature so far

has mostly focused on statistics. Gani (����) proves many results about ��� for general

discrete time and space Markov chains. Bhat and Gani (����) discuss the unbiasedness

and minimum variance properties in estimating a one-parameter ��� with random initial

state. Adke and Swamy (����) and Mitrofanova (����/����) provide statistical results for

���s defined on continuous state spaces. Heyde and Feigin (����) proposes efficiency for

stochastic processes with a scalar parameter, and shows that ��� for ����s (which Heyde

and Feigin call conditional exponential families) is efficient and strongly consistent under

certain conditions. The authors also derive the Fisher information for single-parameter

����s.

Feigin (����) extend facts about the Fisher information matrix from exponential

families to ���s, showing, for example, that the Fisher information matrix for the likeli-

hood function of C observations from a ��� is the Hessian matrix of
Õ
C�1
8=0 ✓(✓,-8), and

that this forms a zero-mean, !2(?(✓) martingale (Feigin, ����, Thm. �). In the scalar case,Œ
C�1
8=0 �(-8 ,-8+1)/✓0(,-8) is also a martingale, which converges almost surely to some func-

tion of  (Feigin, ����, Eqs. �.�–�). In the ���� (rather than ���) case, the authors derive an

explicit expression for the score function and use it to give conditions for the existence of

the ���. Further, when � is invertible in the second slot, under certain regularity conditions,

��� for ����s is strongly consistent and asymptotically normal (Feigin, ����, Thm. �). Hud-

son (����) proves that ���s are locally asymptotically mixed normal, including a central
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limit theorem for the score function an asymptotic for the likelihood ratio statistic under

regularity conditions. Bhat (����), which provides a concise summary of major results

about exponential families in general. Further, the author shows that the statistics of nat-

urally scalar parameterized ���s (he does not use this terminology) on ✓ are the same

as those of ��� sequences on ✓2 (the transitions (-8 ,-8+1) with an exponential family dis-

tribution. He does this by comparing the characteristic function exp[=(✓( + 8D) � ✓())]

of a naturally scalar parameterized exponential family with the same sufficient statistic

over ✓ to the characteristic function of eq. (�.��). The author points out that
Õ
=

8=1 �(-8)/=

is the uniformly minimum variance unbiased estimator of E(�(-)), and discusses some

sequential tests. Hwang and Basawa (����) proves asymptotic results for ���s, including

local asymptotic normality, that establish the optimality of some classical statistical tests

for hypotheses about the parameters. Stefanov (����, ����) discuss sequential estimation

of general, discrete Markov chains. Lindsey (����, § �.�) merely describes the real-valued

���s and gives a couple of examples of autoregressive generalized linear models that are

���s. Sharia (����, ����) introduce (and Zhong (����, § �.�.�) also reports) a recursive es-

timator of naturally parameterized ���s, but the algorithm requires the entire sequence

of observations; the corresponding recursive algorithm for ����s requires the entire se-

quence of observed sufficient statistics {(�(-8 ,-8+1),#(-8)) | 8  C} (Sharia, ����, Eq. �.�).

Under regularity conditions, the estimator is strongly consistent (Sharia, ����, Prop. �.�)

and asymptotically linear (Sharia, ����, Cor. A�, app. A). Al-Eideh et al. (����) proves con-

sistency of ��� for discrete Markov chains assuming only twice continuous differentiability

in the parameter and bounded third derivatives.

Some of the literature has discussed the structure of ���s and ���s, starting with

discussions in Bhat and Gani (����) and Gani (����) about the range of possible values of �

and �. Bhat (����) provided an example from that theory. We will discuss it in more depth

below. Küchler (����) and Küchler and Sørensen (����, ����) discuss structure of ���s’ joint

distributions with a focus on continuous time and continuous space. In particular, Küchler

and Sørensen (����) is a book-length treatment of stochastic processes whose likelihood

functions are drawn from exponential families. (Küchler and Sørensen (����) is largely
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an article length republication of chapter six from Küchler and Sørensen (����), which is

specifically about Markov chains.) Nagaoka (����) Considers the information geometry of

����s and gives a theorem characterizing the set of all ���s in terms of the affine geometry

of the exponents ✓ · �0(1). Sections � and � translate basic concepts from usual exponential

families to ���s. Finally it explores the information geometry of ���s. This paper in turn

inspired Hayashi and Watanabe (����) to derive ���s(That the topic is the same functional

form as eq. (�.�) is opaque, but see Hayashi & Watanabe, ����, Eq. �.�) from an information

geometry point of view, provide several information geometrical theorems characterizing

���s, and demonstrate asymptotic efficiency of the ���.

�.�.� Characterizing Exponential Families of Markov Chains. The main theorem of

this subsection, theorem �.�.�� on page ��, connects ���s, ���s, and exponential families:

a Markov chain’s probability mass function has an exponential family representation for

every length of finite sample if and only if the chain is an ���. In this sense, we might say that

a ��� is an exponential family if and only if it is an ���. From a slightly different perspective,

conditions under which a stochastic process whose joint distribution is an exponential

family also has marginal distributions from an exponential family have been studied for

continuous-time processes (Ycart, ����, ����, ����a, ����b). Küchler and Sørensen (����,

§ ��.�) summarizes these results succinctly. Our goal, however, is to find the class of

Markov chains whose transitions are exponential families that also have joint probabilities

from exponential families.

The first part of the theorem relies on Küchler and Sørensen (����, Cor. �.�.�) and

Küchler and Sørensen (����, Cor. �.��), which requires much more measure-theoretically

technical definitions than we have had so far. Even though theorem �.�.�� is the main

theorem of section �.�, we have relegated it to this subsection because we will not need all the

measure theory afterward. Much of the notation and many of the definitions below follow

Küchler and Sørensen (����, chaps. �, �) very closely. Küchler and Sørensen (����), which

is nearly but not exactly the same, also has many of these definitions and similar notation.

We will cite only the former except where the latter does something slightly different that is

more convenient. We assume the reader is familiar with �-algebras, measurability, and the
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Radon-Nikodým theorem. See Shiryaev (����, chap. �, § �.�, p. ���) for a detailed review

of the Radon-Nikodým theorem and Radon-Nikodým densities.

�.�.�.� Preparatory Definitions. Represent time with the set T , which is either N or [0,1).

Let (⌦, F ) be a measurable space. Let the parameter space ⇥ ✓ R3 be non-empty. Let

(✓,S) be any measurable state space. When ✓ is countable, we will always assume it is

endowed with the the discrete �-algebra S = 2✓, and likewise ✓C will be endowed with

its discrete �-algebra 2✓C , which is also the product �-algebra for C copies of ✓ (Tao, ����,

Exercise �.�.��(viii), p. ���). When we require measurability of a function whose codomain

is a subset of any topological space, we always assume the appropriate Borel �-algebra.

Let {FC}C2T be a filtration, which is a family of �-algebras satisfyingFB ✓ FC ✓ F for

all B  C 2 T (Øksendal, ����, Def. �.�.�, p. ��). If � is any nonnegative measure on (⌦, F ),

define �C , for each C 2 T , to be the restriction of � to the �-algebra FC , i.e., �C : FC ! [0,1]

such that �C(�) B �(�) for any � 2 FC . If % = {%✓}✓2⇥ is a set of probability measures on

(⌦, F ), then let %C B {%C✓}✓2⇥.

Suppose ⇠ and ⇡ are �-finite measures on the same space (⌦, F ). We say that ⇠ is

absolutely continuous with respect to ⇡, written ⇠ ⌧ ⇡, if ⇢ 2 F and ⇡(⇢) = 0 implies

⇠(⇢) = 0 (Jacod & Protter, ����, Def. ��.�, p. ���; Shiryaev, ����, chap. �, § �.�, p. ���).

If additionally ⇡ ⌧ ⇠ then we say that ⇠ and ⇡ are equivalent and write ⇠ ⇠ ⇡ (Jacod &

Protter, ����, Exercise ��.�, p. ���). Absolute continuity is transitive.

An ✓-valued stochastic process - is a function - : T ⇥ ⌦ ! ✓ such that -C is

measurable with respect to F and S for each C 2 T . - is adapted to {FC}C2T if -C is

measurable with respect to FC and S for each C 2 T (Øksendal, ����, Def. �.�.�, p. ��). For

each C 2 T , �(-C) denotes the smallest �-algebra containing all the subsets of ✓ that are

elements of -�1
C
(S) B {-�1

C
(�) | � 2 S}, which is always a sub-� algebra of F (Jacod &

Protter, ����, chap. ��, p. ��). If FC = �(-B | B  C) for all C 2 T then we say that - generates

the filtration {FC}C , which in turn is the filtration of the process - (Øksendal, ����, chap. �,

Exercise �.�, p. ��).

We will rely on lemma �.�.� to connect measurability and functional relationships. A

set is Polish if it’s a complete, separable metric space (Shiryaev, ����, p. ���). A �-algebraA
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separates points if 1($ 2 �) = 1(⇢ 2 �) for all � 2 A implies $ = ⇢ (Hoffmann-Jørgensen,

����, chap. �, § �, p. ���).

Lemma �.�.� (Doob-Dynkin (Hoffmann-Jørgensen, ����, chap. �, § �, pp. ���–���; the name

comes from the R=-valued case. See Øksendal, ����, Lem. �.�.�)). Let (�,A) and (⌫,B)

be measurable spaces, . : ⌦ ! (�,A) and / : ⌦ ! (⌫,B). Suppose either that � is Polish and

A is Borel �-algebra of �, or that /(⌦) 2 B and A separates points. Then �(.) ✓ �(/) �i.e., .

is measurable with respect to �(/)� if and only if there exists a measurable function 5 : (⌫,B) !

(�,A) such that . = 5 � /.

Lemma �.�.� is true for � = R= with the Borel �-algebra(Jacod & Protter, ����,

Thm. ��.�). The lemma is also true whenever (�,A) = (⇠ , 2⇠) for any at-most countable

set ⇠. An at-most countable set ⇠ is Polish when endowed with the discrete topology 2⇠ in

which every set is open (J. K. Hunter & Nachtergaele, ����, chap. �, p. ��), which it can be

via the discrete metric 3(G , H) = 1 () G < H (Reimann, ����, p. �). 2⇠ is also the �-algebra

generated by the singletons of ⇠ (Chung, ����/����, chap. �, § �, Exercise �, p. ��). This is

compatible with our assumption of using the discrete �-algebra on countable state spaces

because the Borel �-algebra for the discrete topology is the discrete �-algebra.

The measurable spaces (�,A) for which lemma �.�.� is true regardless of (⌫,B)

have been completely characterized (Pratelli, ����, Thm. �.�). All measurable Lusin spaces

satisfy the conditions (Pratelli, ����, Thm. �.�). All Polish spaces are Lusin spaces (Takesaki,

����, p. ���). )1 topological spaces also make the lemma true (Taraldsen, ����, Lem. �).

The following lemma is well known but rarely written down explicitly (We could

not find it in Chung, ����/����; Jacod & Protter, ����; Shiryaev, ����; Tao, ����).

Lemma �.�.�. A Radon-Nikodým density on a discrete state space is the simple ratio of the

probabilities. More concretely, if ⇠ and ⇡ are �-finite measures on an at-most countable space ✓ and

⇠ ⌧ ⇡, then d⇠
d⇡ (0) = ⇠({0})/⇡({0}) for all 0 2 ✓ such that ⇡({0}) < 0. In particular, if ⇡ is the

counting measure, then d⇠
d⇡ (0) = ⇠({0}).

Proof. By Radon-Nikodým theorem (Shiryaev, ����, chap. �, § �.�, p. ���), d⇠/d⇡ is the

⇡-almost-surely unique, [0,1]-valued random variable on ✓ such that ⇠(�) =
Ø
�

d⇠
d⇡ (0)⇡(d0)
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for all � 2 S. Since ✓ is at most countable, S = 2✓. Since ⇠ ⌧ ⇡, for any � ✓ ✓ and any

0 2 �, we have exactly one of

�. ⇠({0}) < 0 and ⇡({0}) < 0, or

�. ⇠({0}) = 0 and ⇡({0}) < 0, or

�. ⇠({0}) = 0 and ⇡({0}) = 0.

Applying this trichotomy to get the last equality in the first row, we have, for any � ✓ ✓,
π
�

d⇠
d⇡ (0)⇡(d0) = ⇠(�) =

’
02�

⇠({0}) =
’
02�

⇠({0})<0

⇠({0}) =
’
02�

⇡({0})<0

⇠({0})

=
’
02�

⇡({0})<0

⇠({0})
⇡({0}) ⇡({0}) =

π
�

⇠({0})
⇡({0}) ⇡(d0).

We conclude from the density’s ⇡-almost-sure uniqueness that d⇠
d⇡ (0) = ⇠({0})/⇡({0}) for

all 0 2 ✓.

When ⇡ is the counting measure, ⇡({0}) = 1 for all 0 2 ✓, so the last statement of the

lemma follows from the previous one. ⇤

�.�.�.� Exponential Families of a Stochastic Process. Let% = {%✓}✓2⇥ be a set of probability

measures on (⌦, F ). Following Küchler and Sørensen (����, chap. �) closely, we say that

% is an exponential family with respect to the filtration (Küchler & Sørensen, ����, § �.�,

p. ��) {FC}C2T if there exist

• a �-finite measure ⇠ on (⌦, F ) such that for all ✓ 2 ⇥ and C 2 T , %C✓ ⌧ ⇠C ;

• non-random functions ⌘ : ⇥! R✓ and 0C : ⇥! (0,1) for each C 2 T ;12

• a [0,1)-valued stochastic process @ and an R✓ -valued process B, called a canonical

process, both of which are {FC}C2T -adapted;13

12"While Küchler and Sørensen (����) requires that 0 have right continuity and left limits, Küchler and
Sørensen (����) does not require the same of � log 0. We stick with the simpler definition here. That ⌘ does not
depend on time C renders % time homogeneous.

13"While Küchler and Sørensen (����) requires that @ and B have right continuity and left limits, Küchler
and Sørensen (����) does not. We stick with the simpler definition here.
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such that for all C 2 T and ✓ 2 ⇥, the Radon-Nikodým density of %C✓ with respect to ⇠C is

d%C✓
d⇠C

= 0C(✓)@C exp(⌘(✓) ·BC). (�.��)

If - = {-C}C2T is a stochastic process and generates {FC}C , then and % is an exponential

family of the stochastic process - (Küchler & Sørensen, ����, § �.�, p. ��, requires that the

filtration be right continuous by replacing FC with FC+ B
—
B>C FB for each C 2 T ; however

Küchler & Sørensen, ����, Def. �.�, p. �, does not. We stick with simpler definition here. ).

Our goal for the remainder of this sub-subsection is to prove lemma �.�.� on the next

page, which characterizes the relationship between exponential families and exponential

families for a stochastic process in discrete time and space. For the remainder of sub-

subsection �.�.�.� we assume the following.

Assumption �.�.�. Suppose that ✓ is at most countable and T = N. Let - = {-C}C2N be

an ✓-valued stochastic process on (⌦, F ) generating the filtration {FC}C2N. For any C 2 N,

define XC B (-0 , . . . ,-C), an ✓C+1-valued random variable. Assume F = �(-).

Keep in mind throughout that because ✓C is at most countable for each C 2 N, its

�-algebra is 2✓C . This means that, for all C 2 N, XC generates the �-algebra

FC = �(XC) = X�1
C

⇣
2✓C+1

⌘
=

�
X�1
C
(�)

��
� ✓ ✓C+1 

where, for all � ✓ ✓B+1, � is at most countable, so

X�1
B
(�) = {XC 2 �} =

ÿ
x2�

X�1
C
(x) =

ÿ
x2�

{XC = x}.

Since the smallest �-algebra containing each event of the form {XC = x}, x 2 ✓C+1, contains

all countable unions of them and they partition ⌦, they generate FC . To summarize, we

have the following lemma.

Lemma �.�.�. Under assumption �.�.�,

FC =
(ÿ
x2�

{XC = x}
����� � ✓ ✓C+1

)
= �

⇣�
{XC = x}

�� x 2 ✓C+1 ⌘
.
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By lemma �.�.�, the class of events
�
{XC = x}

�� x 2 ✓C+1 [ {;} generates FC . That

class is closed under finite intersections, all such intersections just being the empty set. By

Jacod and Protter (����, Cor. �.�, p. ��) and the fact that the measure of ; is always zero,

if &C and '
C are two probability measures on (⌦, FC) such that &C(XC = x) = '

C(XC = x),

then &C = '
C . In other words, the singletons on ✓C+1 uniquely characterize &C .

We may think of the stochastic process - with state space ✓ as a random variable

with state space✓N, the set of all✓-valued sequences (Øksendal, ����, p. ��). The �-algebra

SN =
À1

8=0 2✓ of ✓N is generated by sets of the form
�
{G8}1

8=0 2 ✓N
��
GC1 2 �1 , . . . , GC: 2 �:

 
for : , C1 , . . . , C: 2 N and �1 , . . . ,�: ✓ ✓ (Øksendal, ����, p. ��; Jacod & Protter, ����, p. ��;

Shiryaev, ����, chap. �, § �.�, pp. ���–���).SN is the smallest �-algebra containing
–1
C=0 2✓C .

Likewise, �(-) is generated by sets of the form

{$ 2 ⌦ | -C1($) 2 �1 , . . . ,-C: ($) 2 �:}

for : , C1 , . . . , C: 2 N and �1 , . . . ,�: ✓ ✓ (Øksendal, ����, p. ��; Jacod & Protter, ����, p. ��).

�(-) is the smallest �-algebra containing
–1
C=0 FC .

Lemma �.�.�. Under assumption �.�.�, define !C✓ to be the law of XC under %C✓ for all C 2 N

and ✓ 2 ⇥. % is an exponential family of the stochastic process - if and only if, for each C 2 N,

!
C B {!C✓}✓2⇥ is an exponential family on ✓C+1 with the same parameter function ⌘ : ⇥! R✓ for

all C 2 N and obeying the consistency condition that !C+1
✓ (� ⇥ ✓) = !

C

✓(�) for all  2 ⇥ and

� ✓ ✓C+1.

Proof. Let ⇡C be the counting measure on ✓C+1 for all C 2 N. For any C 2 N, the Radon-

Nikodým theorem (Shiryaev, ����, chap. �, § �.�, p. ���) and the definition of law of a

random variable gives us that, for all � ✓ ✓C+1,

%
C

✓(XC 2 �) = !
C

✓(�) =
π
�

d!C✓
d⇡C

(x)⇡C(dx) =
’
x2�

d!C✓
d⇡C

(x),

and in particular, %C✓(XC = x) = !
C

✓({x}) =
�
d!C✓

�
d⇡C

�
(x) for all x 2 ✓C+1. According to the

discussion after lemma �.�.�, the forms of !C✓({x}),
�
d!C✓

�
d⇡C

�
(x), and %

C

✓(XC = x) each

uniquely determine all of !C✓, d!C✓
�

d⇡C , and %C✓.
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( =) ) (This direction of the lemma appears without proof in Küchler & Sørensen,

����, p. ��). Suppose % is an exponential family of the stochastic process- such that eq. (�.��)

is true. Fix an arbitrary time C 2 N.

Since @ and B are adapted to the filtration {FC}C2N generated by -, lemma �.�.�

creates functions :C : ✓C+1 ! ' and ⌧C : ✓C+1 ! R✓ such that @C = :C(XC) and BC = ⌧C(XC).

For each ✓ 2 ⇥, let ✓(✓) B � log 0C(✓). Applying the Radon-Nikodým theorem (Shiryaev,

����, chap. �, § �.�, p. ���) to eq. (�.��) yields

%
C

✓(XC = x) =
π
{$2⌦|XC ($)=x}

d%C✓
d⇠C

($)⇠C(d$)

=
π
{$2⌦|XC ($)=x}

0C(✓)@C($) exp(⌘(✓) ·BC($))⇠C(d$)

=
π
{$2⌦|XC ($)=x}

0C(✓):C(XC($)) exp(⌘(✓) · ⌧C(XC($)))⇠C(d$)

= 0C(✓):C(x) exp(⌘(✓) · ⌧C(x))⇠C(XC = x) = �(x) exp(⌘(✓) · ⌧C(x) � ✓(✓)),

where we have put �C(x) = :C(x)⇠C(XC = x). This satisfies eq. (�.�) when the state space is

✓C+1 and the parameter function is ⌘ regardless of C. The parameter space does not depend

on C because %C✓ is defined for all ✓ 2 ⇥. The consistency condition follows from Shiryaev

(����, chap. �, § �.�, Eq. �� and Remark �, pp. ���–���).

((= ) (For a discussion of the complications to this direction of the lemma that arise

in more general settings, see Küchler & Sørensen, ����, pp. ��–��). Suppose that for each

C 2 N, there exist functions ⌧C : ✓C+1 ! R✓ , �C : ✓C+1 ! [0,1), and ✓C : ⇥! R such that

!
C

✓({x}) = �C(x) exp(⌘(✓) · ⌧C(x) � ✓C(✓))

for any x = (G0 , . . . , GC) 2 ✓C+1 and any ✓ 2 ⇥, and that the consistency condition holds. By

lemma �.�.� this defines the probability mass function with respect to the counting measure.

We want to extend !C✓ on length C + 1 vectors to a measure !✓ on sequences. For each

✓ 2 ⇥ we can do this because, for each C 2 N, !C✓ is a probability measure on (✓C+1
, 2✓C+1)

that obeys the consistency condition. As we discussed in sub-subsection �.�.�.� and after

lemma �.�.�, ✓C+1 is a complete, separable metric space under the discrete metric, and 2✓C+1

is the Borel �-algebra for that metric. Thus we can apply to {!C✓}C2N a generalization of
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Kolmogorov’s extension theorem, which says that there is a probability measure !✓ on

(✓N
,SN) such that !✓({G 2 ✓N | (G0 , . . . , GC) 2 �}) = !

C

✓(�) for all � ✓ ✓C+1 for all C 2 N

(Shiryaev, ����, chap. �, § �.�, Thm. � and Remark �, pp. ���–���).

The following definition, which entails the ensuing equalities, then extends %C✓ to %✓:

%✓({$ 2 ⌦ | XC($) 2 �}) B !✓({G 2 ✓N | (G0 , . . . , GC) 2 �}) = !
C

✓(�) = %C✓(XC 2 �)

for all � ✓ ✓C+1 and all C 2 N. Since sets of the form {$ 2 ⌦ | XC($) 2 �} generate �(-)

and are closed under finite intersections, !✓ uniquely determines %✓ (Jacod & Protter, ����,

Cor. �.�, p. ��). Thus %C✓ is the restriction of %✓ to FC .

To prove eq. (�.��), we need a common dominating measure, which % will provide

for itself. Fix C 2 N. If �C(x) = 0 for some x 2 ✓C+1, then !C✓({x}) = 0 for all ✓ 2 ⇥. Hence

!
C

✓ ⇠ !C✓0
for all ✓, ✓0 2 ⇥. Fix some ✓0 2 ⇥. Moreover, for each x 2 ✓C+1 and ✓ 2 ⇥, we have

%
C

✓(XC = x) = !
C

✓({x}), so %C✓ ⇠ %C✓0
for all ✓ 2 ⇥. Notice that %C✓0

dominates %C✓, and, being

finite, %✓0 is �-finite.

We have, for all x 2 ✓C+1 such that �C(x) < 0,

%
C

✓(XC = x)
%
C

✓0
(XC = x)

=
!
C

✓({x})
!
C

✓0
({x})

= exp[(⌘(✓) � ⌘(✓0)) · ⌧C(x) � (✓C(✓) � ✓C(✓0))]. (�.��)

Therefore,

%
C

✓(XC = x) = exp[(⌘(✓) � ⌘(✓0)) · ⌧C(x) � (✓C(✓) � ✓C(✓0))]%C✓0
(XC = x)

=
π
{$2⌦|XC ($)=x}

exp[(⌘(✓) � ⌘(✓0)) · ⌧C(XC($)) � (✓C(✓) � ✓C(✓0))]%C✓0
(d$)

To establishes eq. (�.��), define @C($) B 1 andBC($) B ⌧C(XC($)) for all $ 2 ⌦, which makes

@C and BC adapted to {FC}C . Let 0C(✓) B 4
�(✓C (✓)�✓C (✓0)). By the %C✓0

-almost sure uniqueness of

Radon-Nikodým densities (Shiryaev, ����, chap. �, § �.�, Radon-Nikodým theorem, p. ���),

we have, for %C✓0
-almost all $ 2 ⌦,

d%C✓
d%C✓0

($) = exp[(⌘(✓) � ⌘(✓0)) · ⌧C(XC($)) � (✓C(✓) � ✓C(✓0))] (�.��)

= 0C(✓)@C($) exp((⌘(✓) � ⌘(✓0)) ·BC($)). ⇤

�.�.�.� Initial-Condition Exponential Families. We now introduce notation terminology,

most of it from Küchler and Sørensen (����, chap. �), that will allow us to condition joint
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probabilities for an ✓-valued stochastic process - = {-C}C2T on the initial event or initial

condition {-0 = G} for some G 2 ✓. We do not usually care what G is. Assume that

the filtration {FC}C2T is generated by -. Let ( ✓ ✓. Let &( B {&✓,G}✓2⇥,G2( be a set of

probability measures on (⌦, F ) such that &✓,G(-0 = G) = 1 for all ✓ 2 ⇥ and G 2 (, and

such that G 7! &✓,G(�) is measurable with respect to S for every ✓ 2 ⇥ and every � 2 F .

We say that &( is an (-initial-condition exponential family for - 14 if there exist

• some ✓0 2 ⇥ such that for every ✓ 2 ⇥, every G 2 (, and every C 2 T , we have that

&
C

✓,G ⇠ &C

✓0 ,G
;

• non-random functions ⌘ : ⇥! R✓ and ✓C : ⇥! R for each C 2 T such that ✓0(✓) = 0

for all ✓ 2 ⇥;

• an {FC}C2T -adapted, R✓ -valued stochastic process B such that B0 = 0;

such that
d&C

✓,G

d&C

✓0 ,G

= exp(⌘(✓) ·BC � ✓C(✓)) (�.��)

for all G 2 ( and C 2 T . If ( = ✓ we say that & B &✓ is an initial-condition exponential

family for -.

Exponential families of stochastic processes and initial-condition exponential fam-

ilies are related via the distribution on the initial condition of the stochastic process. Let

� = {�✓}✓2⇥ be a family of distributions on ✓, and define (Küchler & Sørensen, ����, § �.�,

p. ��)

&✓,�✓ (⇢) B
π
✓

&✓,G(⇢)�✓(dG) (�.��)

for all ⇢ 2 F and ✓ 2 ⇥. This implies that &✓,�✓ (-0 2 () = �✓(() for all measurable ( 2 S.

For this reason we call �✓ the initial distribution of &✓,�✓ .

Lemma �.�.� (Küchler and Sørensen, ����, Prop. �.�.�, p. ��). {&✓,�✓ }✓2⇥ is an exponential

family of the stochastic process - if and only if {�✓}✓2⇥ is an exponential family of initial distribu-

14"Küchler and Sørensen (����, Def. �.�.�, p. ��) uses the term (-conditional exponential family, but we
renamed it here to avoid clashing with eq. (�.�).
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tions on ✓ and there exists ( 2 S such that �✓0(() = 1 for some ✓0 2 ⇥ and {&✓,G}✓2⇥,G2( is an

(-initial-condition exponential family for -.

The following corollary puts initial-condition exponential families in the more fa-

miliar terms of conditional probabilities.

Corollary �.�.�. Let % B {%✓}✓2⇥ be an exponential family of the ✓-valued stochastic process

- = {-C}C2T on (⌦, F ). Suppose that -0 takes on at most countably many values %✓0-almost

surely for some ✓0 2 ⇥. Define &✓,G(⇢) B %✓(⇢ | -0 = G) for each ⇢ 2 F , ✓ 2 ⇥, and G 2 ✓

with %✓0(-0 = G) > 0. �Assume the �-algebra S on ✓ contains all countable subsets of ✓.15� Then

{&✓,G}✓2⇥,G2✓ is an initial-condition exponential family for -.

Proof. For each ✓ 2 ⇥, define �✓ to be the law of -0, meaning �✓(�) B %✓(-0 2 �) for

all � 2 S. If we can show that {&✓,�✓ }✓2⇥ = % then it’s an exponential family and, by

lemma �.�.�, {&✓,G}✓2⇥,G2✓ is an initial-condition exponential family for -.

To prove this equality, we need to show that eq. (�.��) equals %✓(⇢) for all ✓ 2 ⇥

and ⇢ 2 F . Define ( B {G 2 ✓ | %✓0(-0 = G) > 0}, which is countable, and, by hypothesis,

�✓0(() = %✓0(() = 1. Moreover, �✓(() = %✓(() = 1 for all ✓ 2 ⇥ because the probability

measures in % are all equivalent (Küchler & Sørensen, ����, chap. �, § �, p. ��). Thus, for

all ✓ 2 ⇥ and ⇢ 2 F , the inverse image of the mapping G 7! &✓,G(⇢) = %✓(⇢ |-0 = G) is a

subset of ( and is thereby countable, so the mapping is measurable. We compute eq. (�.��)

for any ✓ 2 ⇥ and ⇢ 2 F to be
π
✓

&✓,G(⇢)�✓(dG) =
’
G2(

&✓,G(⇢)�✓({G}) =
’
G2(

%✓(⇢ | -0 = G)%✓(-0 = G) = %✓(⇢). ⇤

We have the following partial converse.

Lemma �.�.�. Suppose& is the (-initial-condition exponential family for - in the definition above.

For all G 2 (, {&✓,G}✓2⇥ is an exponential family for the stochastic process . = {.C}C2T defined by

.0 B G and .C B -C if C > 0.

15"This is a weak, purely technical requirement. The Borel �-algebra for R= , discrete spaces, and other
Polish spaces all satisfy it.
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Proof. Fix any G 2 (. &C

✓,G ⌧ &
C

✓0 ,G
for all C 2 T and all ✓ 2 ⇥, and &✓0 ,G is �-finite because

it’s finite. Thus we may choose ⇠ B &✓0 ,G as the dominating measure. Put 0C(✓) B 4
�✓C (✓)

for all ✓ 2 ⇥ and @C($) B 1 for all $ 2 ⌦. Then, from eq. (�.��), since &✓,G(-0 < G) = 0 and

⇠C = &C

✓0 ,G
, we have

d&C

✓,G

d⇠C
=

d&C

✓,G

d&C

✓0 ,G

= exp(⌘(✓) ·BC � ✓C(✓)) = 0C(✓)@C exp(⌘(✓) ·BC)

= 0C(✓)@C exp
�
⌘(✓) ·BC 1(-0 = G)

�

⇠C-almost surely for all ✓ 2 ⇥ and C 2 T . This satisfies eq. (�.��). Finally, BC 1(-0 = G)

is adapted to the filtration that . generates because BC 1(-0 = G) = 0 is constant on

{-0 < G}. ⇤

�.�.�.� The Main Theorem. All of that work was just so we could present the following

lemma by Küchler and Sørensen, which we will use to prove the main theorem of this

subsection.

Lemma �.�.� (Küchler and Sørensen, ����, Cor. �.�.�; Küchler and Sørensen, ����, Cor. �.��).

Suppose ✓ is a Polish space �Küchler & Sørensen, ����, Condition �.�.�, p. ��� Küchler & Sørensen,

����, Assumption �.�, p. ���. Let T = N and let & = {&✓,G}✓2⇥,G2✓ be an initial-condition

exponential family for -, where - = {-C}C2N is a Markov chain with transition functions )✓ : ✓ ⇥

S ! [0, 1] for each ✓ 2 ⇥, so that )✓(0 , ⌫) = &✓,0(-1 2 ⌫). Then the transition functions )✓(0 , ⌫)

form an exponential family of probabilities on (✓,S). In particular, if d&C

✓,G

.
d&C

✓0 ,G
is given by

eq. ��.���, we have
)✓(0 , d1)
)✓0(0 , d1)

= exp[⌘(✓) · ⌧ (0 , 1) � ✓1(✓)], (�.��)

where ⌧ is a measurable function on ✓ ⇥✓ such that B1($) = ⌧ (-0($),-1($)).

Conversely, if eq. ��.��� holds, then one can construct an initial-condition exponential family

for the Markov chain - with a representation eq. ��.���, where the ⌘ is the same as in eq. ��.���,

BC B
Õ
C

8=1 ⌧ (-8�1 ,-8), and ✓C(✓) B C✓1(✓).

The essence of the proof, which we omit here, is that when time is discrete and ✓

is Polish, the fact that B1 is measurable with respect to F1 = �(-0 ,-1) means that there is
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some measurable function ⌧ : ✓2 ! R✓ such thatB1 = ⌧ (-0 ,-1) by lemma �.�.�. Further, in

the case when ✓ is discrete, )✓(0 , 1) = &✓,0(-1 = 1) is the law of -1 under&✓,0 ; lemma �.�.�

says the law must be an exponential family if and only if {&✓,0}✓2⇥ is an exponential family

for a stochastic process, which it must be by lemma �.�.�.

Lemma �.�.��. Suppose that✓ is at most countable and that ) B {)✓}✓2⇥ is a family of transition

matrices and ✓0 is a fixed element of ⇥. Then eq. ��.��� holds for all 1 2 ✓ for which )✓0(0 , 1) < 0

if and only if ) is the ��� such that

)✓(0 , 1) = �(0 , 1) exp[⌘(✓) · ⌧ (0 , 1) � ✓(✓)] (�.��)

for all ✓ 2 ⇥ and all 0 , 1 2 ✓, where �(0 , 1) = )✓0(0 , 1) and ✓ = ✓1.

Proof. Most of this proof is just reading eq. (�.��) correctly. In lemma �.�.�, )✓ is a transition

function, so )✓(0 , ⌫) = &1
✓,0(-1 2 ⌫) for all ✓ 2 ⇥, 0 2 ✓, and ⌫ 2 S. That means that )✓(0 , ·)

is the law of -1 under &1
✓,0 . Since &1

✓,0 ⌧ &
1
✓0 ,0

by the definition of an initial-condition

exponential family, we also have )✓(0 , ·) ⌧ )✓0(0 , ·). The left-hand side of eq. (�.��) is the

Radon-Nikodým density of )✓(0 , ·) with respect to )✓0(0 , ·). By lemma �.�.� with ⇠ = )✓(0 , ·)

and ⇡ = )✓0(0 , ·), we therefore have that eq. (�.��) equals )✓(0 , 1)/)✓0(0 , 1) . Read in this light,

eq. (�.��) is exactly the same as eq. (�.��) after replacing �(0 , 1) with )✓0(0 , 1), and ✓ with

✓1: when )✓0(0 , 1) < 0, just multiply or divide both sides of eq. (�.��) or eq. (�.��) to get the

other; when )✓0(0 , 1) = 0, absolute continuity guarantees us that )✓(0 , 1) = 0.

Equation (�.��) looks like the definition of ��� in eq. (�.�) on page �� when we

replace %✓(0 , 1) with )✓(0 , 1). Notice that ✓0 is fixed and does not depend on ✓, so � does

not depend on the parameter. ⇤

Theorem �.�.��. Let T = N, ✓ be at most countable, and - = {-C}C2N be an ✓-valued stochastic

process. Suppose that - is a Markov chain under all the probability measures in the family & B

{&✓,G}✓2⇥,G2✓, each with a corresponding transition matrix in ) B {)(✓)}✓2⇥ and satisfying

&✓,G(-0 = G) = 1. That is, )0 ,1(✓) = &✓,0(-1 = 1) for all ✓ 2 ⇥ and all 0 , 1 2 ✓. Define !C✓,G0
to

be the law of -1 , . . . ,-C under &C

✓,G0
for all ✓ 2 ⇥, C 2 N, and G0 2 ✓.
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Then ) is the ��� in eq. ��.��� on the previous page with �(0 , 1) = )✓0(0 , 1) for some

✓0 2 ⇥ and all 0 , 1 2 ✓ if and only if {!C✓,G0
}✓2⇥ is the exponential family on ✓C given by

!
C

✓,G0
(G1 , . . . , GC) B !

C

✓,G0
({(G1 , . . . , GC)})

= exp

 
⌘(✓) ·

C�1’
8=0
⌧ (G8 , G8+1) � C✓(✓)

!
C�1÷
8=0

�(G8 , G8+1) (�.��)

for all G0 , G1 , . . . , GC 2 ✓ and all C 2 N, and �(0 , 1) = !
1
✓0 ,0

(1) for some ✓0 2 ⇥ and all 0 , 1 2 ✓.

Proof. The right-hand side of eq. (�.��) is an exponential family representation with sufficient

statistic
Õ
C�1
8=0 ⌧ (-8 ,-8+1), carrier measure

Œ
C�1
8=0 �(G8 , G8+1), parameter function ⌘, parameter

space ⇥, and log-partition function C✓.

( =) ). Suppose ) is the ��� in eq. (�.��) with �(0 , 1) = )✓0(0 , 1) for some ✓0 2 ⇥

and all 0 , 1 2 ✓. Fix C 2 N, G0 , G1 , . . . , GC 2 ✓, and ✓ 2 ⇥. Since - is a Markov chain under

&✓,G0 , we have

!
C

✓,G0
(G1 , . . . , GC) =

C�1÷
8=0

)✓(G8 , G8+1) =
C�1÷
8=0

�(0 , 1) exp[⌘(✓) · ⌧ � ✓(✓)],

which equals the right-hand side of eq. (�.��).

By hypothesis, �(0 , 1) = )✓0(0 , 1) = !
1
✓0 ,0

(1) for any 0 , 1 2 ✓.

((= ). Suppose {!C✓,G0
}✓2⇥ is the exponential family on ✓C given by eq. (�.��) and

�(0 , 1) = )✓0(0 , 1) for some ✓0 2 ⇥.

We want to apply lemma �.�.�, so we first prove the consistency condition

!
C+1
✓,G0

({(G1 , . . . , GC)} ⇥✓) = !
C

✓,G0
(G1 , . . . , GC).

Fix C 2 N, G0 , G1 , . . . , GC 2 ✓, and ✓ 2 ⇥. In the second step below we factor, and all the work

afterward is simplifying:

!
C+1
✓,G0

({(G1 , . . . , GC)} ⇥✓)

=
’
H2✓

exp

"
⌘(✓) ·

 
C�1’
8=0
⌧ (G8 , G8+1) + ⌧ (GC , H)

!
� (C + 1)✓(✓)

#
�(GC , H)

C�1÷
8=0

�(G8 , G8+1)

=

 
exp

"
⌘(✓) ·

C�1’
8=0
⌧ (G8 , G8+1) � C✓(✓)

#
C�1÷
8=0

�(G8 , G8+1)
! ’
H2✓

�(GC , H)4⌘(✓)·⌧ (GC ,H)�✓(✓)

= !
C

✓,G0
(G1 , . . . , GC)

’
H2✓

!
1
✓,GC

(H) = !
C

✓,G0
(G1 , . . . , GC).
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By lemma �.�.�, if G0 2 ✓, then {&✓,G0}✓2⇥ is an exponential family for the stochastic

process -. Moreover, since !C✓,G0
(G1 , . . . , GC) = &

C

✓,G0
(-1 = G1 , . . . ,-C = GC) = 0 if and only

if
Œ

C�1
8=0 �(G8 , G8+1) = 0, we can conclude that &C

✓,G0
⇠ &

C

✓0 ,G0
for all C 2 N, G0 2 ✓, and

✓, ✓0 2 ⇥. Plugging ! into eq. (�.��) and replacing %✓ in eq. (�.��) with &✓,G0 , setting

⌧C(x) B
Õ
C�1
8=0 ⌧ (G8 , G8+1), and setting ✓C(✓) B C✓(✓), we get from eq. (�.��) that

d&C

✓,G

d&C

✓0 ,G

($) = exp

"
(⌘(✓) � ⌘(✓0)) ·

C�1’
8=0
⌧ (-8($),-8+1($)) � C(✓(✓) � ✓(✓0))

#
(�.��)

&
C

✓0
-almost all $ 2 ⌦, all ✓ 2 ⇥, all C 2 N, and all G0 2 ✓. This satisfies eq. (�.��).Õ

C�1
8=0 ⌧ (-8 ,-8+1) is adapted to �(-0 , . . . ,-C), and&✓,G0(-0 = G0) = 1 for all ✓ 2 ⇥ and G0 2 ✓.

G0 7! &✓,G(⇢) is S-measurable for all ⇢ 2 F and all ✓ 2 ⇥ because S = 2✓, so every function

is measurable. Therefore {&✓,G0}✓2⇥,G02✓ is an initial-condition exponential family for -.

Moreover, by hypothesis, we have �(0 , 1) = !
1
✓0 ,0

(1) = �(0 , 1)4⌘(✓)·⌧ (0 ,1)�✓(✓) for all

0 , 1 2 ✓. Since )✓(0 , 1) = !
1
✓,0(1) for any 0 , 1 2 ✓ and every ✓ 2 ⇥, we have that either

⌘(✓) · ⌧ (0 , 1) = ✓(✓) or )✓0(0 , 1) = 0. But
Œ

C�1
8=0 �(-8 ,-8+1) = 0 implies !C✓,-0

(-1 , . . . ,-C) = 0

by eq. (�.��), which implies that &C

✓,G0

⇣Œ
C�1
8=0 �(-8 ,-8+1) = 0

⌘
= 0, which in turn implies that

eq. (�.��) equals zero on
�Œ

C�1
8=0 �(-8 ,-8+1) = 0

 
for all ✓ 2 ⇥. Thus

Õ
C�1
8=0 ⌘(✓) · ⌧ (-8 ,-8+1) =

C✓(✓) &✓0 ,G0-almost surely for all G0 2 ✓. Hence, eq. (�.��) equals eq. (�.��) &✓0 ,G0-almost

surely.

By lemma �.�.�, eq. (�.��) obtains. By lemma �.�.��, eq. (�.��) holds. ⇤

�.�.� ��� Likelihood Functions. Algebraically, the difference between ���s and ���s is the

asymmetry of the log-partition functions. To show this, we first need a lemma that makes

it easier to apply the distributive law.

Lemma �.�.��. Let T be a non-empty, finite set. Let {⌫8}82T be a family of sets� ⌫ B
–
82T ⌫8�

' be a commutative ring� 58 : ⌫8 ! ' for each 8 2 T � and FT =
�
H 2 ⌫T

��
H8 2 ⌫8 for all 8 2 T

 
.

Suppose that, for all 8 2 T , either ⌫8 is finite� or ⌫8 is countable and ' is endowed with a topology

in which
Õ
12⌫8 58(1) converges. Then

÷
82T

’
12⌫8

58(1) =
’
H2FT

÷
82T

58(H8). (�.��)
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Proof. We proceed by induction on the cardinality of T . Assume that ⌫8 < ; for all 8 2 T

because otherwise both sides of eq. (�.��) would contain sums over empty sets and thus be

zero, rendering the lemma true anyway. For both the base and inductive cases, we’ll need to

fix some specific element 9 2 T .

Base case. If |T | = 1, then T = { 9}, FT = { 9} ⇥ ⌫9 , and

÷
82T

’
12⌫8

58(1) =
’
12⌫9

59(1) =
’
H2⌫{ 9}

9

59(H9) =
’
H2FT

÷
82T

58(H8).

Inductive case. Suppose that |T | > 1 and eq. (�.��) holds for index sets one smaller

than T , such as the set* = T \ { 9}. Then the inductive hypothesis tells us that

÷
82U

’
12⌫8

58(1) =
’
H2F*

÷
82*

58(H8). (�.��)

SinceU is finite and
Õ
12⌫8 58(1) is a finite sum or converges in ' for all 8 2 U , eq. (�.��)’s

left-hand side is in '. Therefore its right-hand side is either a finite sum or converges in '.

Thus,

÷
82T

’
12⌫8

58(1) = ©≠
´
’
12⌫9

59(1)™Æ
¨
 ÷
82*

’
12⌫8

58(1)
!
= ©≠

´
’
12⌫9

59(1)™Æ
¨
©≠
´
’
H2F*

÷
82*

58(H8)™Æ
¨

Either because ⌫9 is finite or because
Õ
12⌫9 59(1) converges and

Õ
H2F*

Œ
82* 58(H8) is a

constant with respect to 1, we can distribute:

=
’
12⌫9

©≠
´
59(1)

’
H2F*

÷
82*

58(H8)™Æ
¨

Either because F* is finite or because
Õ
H2F*

Œ
82* 58(H8) converges and 59(1) is a constant

with respect to H, we can distribute:

=
’
12⌫9

©≠
´
’
H2F*

59(1)
÷
82*

58(H8)™Æ
¨

=
’
H92⌫9

’
H2F*

÷
82T

58(H8) =
’
H2FT

÷
82T

58(H8). ⇤

In the lemma, T ’s being non-empty is important because otherwise the left side of

eq. (�.��) would be one and the right side zero.
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Theorem �.�.��. Let ✓ be at most countable and ✓ 2 ⇥. Suppose - is a Markov chain whose

transition matrix %✓ is given in eq. ��.��. Write the vector
�
✓(0 , ✓)

�
02✓ as ⇣(✓) 2 R✓. For time

C > 0 and x 2 ✓C+1 the joint probability mass function for -1 , . . . ,-C conditional on -0 = G0 is

!
C

✓,G0
(G1 , . . . , GC) = exp

 
⌘(✓) ·

C�1’
8=0
⌧ (G8 , G8+1) � ⇣(✓)«=C1

!
C�1÷
8=0

�(G8 , G8+1) (�.��)

=
exp

⇣
⌘(✓) ·ÕC�1

8=0 ⌧ (G8 , G8+1)
⌘ Œ

C�1
8=0 �(G8 , G8+1)

Õ
H2✓C+1
H0=G0

exp
⇣
⌘(✓) ·ÕC�1

8=0 ⌧ (G8 , H8+1)
⌘ Œ

C�1
8=0 �(G8 , H8+1)

. (�.��)

where =C is the transition-count matrix for G1 , . . . , GC .

Proof. Fix time C � 1. Equation (�.��) follows from the usual calculations with Markov chains

(Hoel et al., ����, chap. �).

!
C

✓,G0
(G1 , . . . , GC) =

C�1÷
8=0

%✓(G8 , G8+1) =
exp

⇣
⌘(✓) ·ÕC�1

8=0 ⌧ (G8 , G8+1)
⌘ Œ

C�1
8=0 �(G8 , G8+1)Œ

C�1
8=0 exp(✓(G8 , ✓))

.

In the denominator, we group factors by values of G8 :

C�1÷
8=0

4
✓(G8 ,✓) =

÷
02✓

C�1÷
8=0
G8=0

4
✓(0 ,✓) =

÷
02✓

⇣
4
✓(0 ,✓)

⌘
=C (0 ,+)

= exp

 ’
02✓

✓(0 , ✓)(=C1)0

!

= exp
�
⇣(✓)«=C1

�

since the number of times 8 < C that G8 = 0 is =C(0 ,+) by eq. (�.�).

Now, to prove eq. (�.��), we use eq. (�.�) to write

C�1÷
8=0

4
✓(G8 ,✓) =

C�1÷
8=0

’
12✓

�(G8 , 1) exp(⌘(✓) · ⌧ (G8 , 1))

We apply lemma �.�.�� as follows. Let T B {0, . . . , C � 1}, and, for each 8 2 T , let ⌫8 B ✓

(which is finite) and 58(1) B �(G8 , 1) exp(⌘(✓) · ⌧ (G8 , 1)) for each 1 2 ✓. The range of all the

58s is R, a topological field, and, we have the following sum or (absolute) convergence from

eq. (�.�) for each finite or countably infinite ⌫8 , 8 2 T :

’
12⌫8

58(1) =
’
12✓

�(G8 , 1) exp(⌘(✓) · ⌧ (G8 , 1)) = 4
✓(G8 ,✓)

,
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which is finite because we assumed at the outset that ⌘(✓) lies inside the natural parameter

space. The set FT from lemma �.�.�� is just ✓C . Plugging these definitions into lemma �.�.��

allows us to write

C�1÷
8=0

’
12✓

�(G8 , 1) exp(⌘(✓) · ⌧ (G8 , 1)) =
’
H2✓C

C�1÷
8=0

�(G8 , H8) exp(⌘(✓) · ⌧ (G8 , H8))

=
’
H2✓C

exp

 
⌘(✓) ·

C�1’
8=0
⌧ (G8 , H8)

!
C�1÷
8=0

�(G8 , H8)

Reindex (H0 , . . . , HC�1) as (G0 , H1 , . . . , HC) to match indexing of G = (G0 , G1 , . . . , GC):

=
’
H2✓C+1
H0=G0

exp

 
⌘(✓) ·

C�1’
8=0
⌧ (G8 , H8+1)

!
C�1÷
8=0

�(G8 , H8+1). ⇤

We get eq. (�.��) and a similar result for ����s from eq. (�.��) as follows. First, in

the ���� case, suppose ✓(0 , ✓) = )(✓)#0 , and denote the vector  = (#0 | 0 2 ✓). Then

÷
02✓

⇣
4
✓(0 ,✓)

⌘
=C (0 ,+)

=
⇣
4
)(✓)

⌘Õ
02✓ #0=C (0 ,+)

=
⇣
4
)(✓)

⌘ ·nC (·,+)
.

Then, in the ��� case, #0 = 1 for all 0 2 ✓, and
Õ
02✓ =C(0 ,+) = C.

Theorem �.�.�� facilitates our intuition about theorem �.�.�� should be true. In the

��� case, applying eq. (�.�) to eq. (�.��) shows that

4
C✓(✓) =

’
H2✓C+1
H0=G0

exp

 
⌘(✓) ·

C�1’
8=0
⌧ (H8 , H8+1)

!
C�1÷
8=0

�(H8 , H8+1). (�.��)

The difference between the G8 and the H8 in the first slot is the difference between ���s’

having exponential family likelihood functions with sufficient statistics

C�1’
8=0

�(-8 ,-8+1), (�.��)

the sum of the sufficient statistics seen so far, and ���s’ having exponential family likelihood

functions with sufficient statistics #C .

The difference in dimension of the sufficient statistics between the ��� case in

eq. (�.��) and the ��� case in eq. (�.��) can be large when ✓ is large. For example, if ✓ is
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the set of graphs on the vertex set [=] for some = 2 N, the minimal representation of #C has

|✓|2 � |✓| degrees of freedom (Stefanov, ����, § �) where

|✓|2 � |✓| =
⇣
2(=2)

⌘2
� 2(=2) = O

⇣
2=2

⌘
.

In contrast, eq. (�.��) has dimension ✓ .

The following example illustrates how eq. (�.��) is not equal to eq. (�.��).

Example �.�.��. Let the state space✓ = {1, 2}, the dimension of the parameter and sufficient

statistic be ✓ = 1, the parameter  = 1, �01 = 1 for all 0 , 1 2 ✓, and

� =

2666664
log 1 log 2

log 3 log 4

3777775
, so that %01 =

4
�(0 ,1)Õ

B2✓ 4�(0 ,B)
=) % =

2666664
1/3 2/3

3/7 4/7

3777775
.

This is a ��� not an ��� because the denominator three in the first row does not equal the

denominator seven in the second row. For C = 2, consider calculating the joint probability

that (-0 ,-1 ,-2) = (G0 , G1 , G2) = (1, 2, 1) conditional on -0 = 1. This probability is 2
3 ⇥ 3

7 = 2
7 .

The numerators of eqs. (�.��) and (�.��) are both

exp(�12 + �21) = 2 ⇥ 3 = 6.

The denominator of eq. (�.��) is

’
H2✓3
H0=G0

exp(�(G0 , H1) + �(G1 , H2))

= exp(�11 + �21) + exp(�11 + �22) + exp(�12 + �21) + exp(�12 + �22)

= 1 ⇥ 3 + 1 ⇥ 4 + 2 ⇥ 3 + 2 ⇥ 4 = 21.

The denominator of eq. (�.��) is

’
H2✓3
H0=G0

exp(�(H0 , H1) + �(H1 , H2))

= exp(�11 + �11) + exp(�11 + �12) + exp(�12 + �21) + exp(�12 + �22)

= 1 ⇥ 1 + 1 ⇥ 2 + 2 ⇥ 3 + 2 ⇥ 4 = 17.

Equation (�.��) gives the correct joint probability of 2
7 whereas eq. (�.��) gives the incorrect

value of 6
17 . ⇤
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Despite this, some ���s are ���s. A first example is when �(0 , 1) is constant in 0,

meaning that transition probabilities from the current state to the next state do not depend

on the current state. Such a � would ignore the GC term in the denominator of eq. (�.��) and

make the Markov chain an ��� sequence. The next subsection discusses the structure of ���

transition matrices to constrain the search for such models.

�.�.� The Structure of ��� Transition Matrices. Let % = {%✓ | ✓ 2 ⇥} be the ��� defined

in eq. (�.�). Since %✓ is a stochastic matrix, 1 =
Õ
12✓ %✓(0 , 1), so

4
✓(✓) =

’
12✓

�(0 , 1) exp(⌘(✓) · ⌧ (0 , 1)) =
’
12✓

�(2 , 1) exp(⌘(✓) · ⌧ (2 , 1)). (�.��)

for all 0 , 2 2 ✓ and all ✓ 2 ⇥.

Since exponential functions G 7! 4
AG are linearly independent for different scalars

A (Axler, ����; Tsumura, ����, August ��/����), we can set some of the coefficients equal

(The first to point this out in the scalar case were Gani, ����, pp. ���–���; Bhat & Gani,

����, p. ���; a scalar example can be found in Bhat, ����, Example �). To handle vector

parameters we need some notation. Define

'(✓) B {⌘(✓) · �(0 , 1) 2 R | 0 , 1 2 ✓ and �(0 , 1) < 0},

the set of possible values of the exponents, for each ✓ 2 ⇥. The first implication of eq. (�.��)

is that, for all 0 2 ✓ and all ✓ 2 ⇥, we have

'(✓) = {⌘(✓) · �(0 , 1) 2 R | 1 2 ✓ and �(0 , 1) < 0}. (�.��)

Equation (�.��) means that every row of %✓ has the same values in the exponent. (See

example �.�.�� on the following page.) Moreover, |'(✓)|  |✓| for every ✓ 2 ⇥. This proves

the following theorem.

Theorem �.�.��. For all 0 , 1 , 2 2 ✓ such that �(0 , 1) < 0 and all ✓ 2 ⇥, there exists G 2 ✓ such

that ⌘(✓) · ⌧ (0 , 1) = ⌘(✓) · ⌧ (2 , G), i.e., ⌘(✓) · (⌧ (0 , 1) � ⌧ (2 , G)) = 0.

Even if eq. (�.�) is a minimal representation, we cannot conclude from theorem �.�.��

that ⌧ (0 , 1) = ⌧ (2 , G). The value of G may depend on the values of ✓ or of 0, 1, or 2. However,

we can say something weaker in the scalar case.
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Proposition �.�.�� (Gani, ����, pp. ���–���). For the ��� defined in eq. ��.�� with ✓ = 1

�i.e., ◆() is a scalar�, and supposing that ◆(⇥) contains a number other than zero, we have, for all

0 , 2 2 ✓,

{�(0 , 1) 2 R | 1 2 ✓} = {�(2 , 1) 2 R | 1 2 ✓}.

Proof. Pick 0 , 1 , 2 2 ✓ arbitrarily and  2 ⇥with ◆() < 0. From theorem �.�.�� obtain G 2 ✓

with ◆()�(0 , 1) = ◆()�(2 , G), so �(0 , 1) = �(2 , G). This proves both set inclusions. ⇤

We now examine the coefficients in the sum in eq. (�.��). For each 2 , 3 2 ✓, ✓ 2 ⇥,

and A 2 '(✓), define (2(✓, A) to be the set of all columns in row 2 and (3(✓, A) to be the set

of all rows in column 3 in the transition matrix %✓ whose exponent on 4 is equal to A:

(2(✓, A) = {3 2 ✓ | ⌘(✓) · �(2 , 3) = A}, (�.��)

(
3(✓, A) = {2 2 ✓ | ⌘(✓) · �(2 , 3) = A}.

Then, from eq. (�.��), we have our second implication:

’
22(0(✓,A)

�(0 , 2) =
’

22(1(✓,A)
�(1 , 2) for all A 2 '(✓) (�.��)

for all 0 , 1 2 ✓, all ✓ 2 ⇥. This sum can never be zero lest it violate eq. (�.��).

Example �.�.�� (Gani, ����, Example ��.�·�, pp. ���–���). The following is an example of

an ��� with a scalar parameter. Set ✓ B {1, 2, 3}, ⇥ B (0,1), ◆() B log(),

� B

2666666664

1 1 3

3 3 1

1 3 3

3777777775
, and � B

2666666664

2 1 1

1
3

2
3 3

11
4 1 1

4

3777777775
, so % =

1
3 + 3

2666666664

2  3

1
3

3 2
3

3 3

11
4  3 1

4
3

3777777775
.

Further, '() = {log, 3 log}, so

(
1(, log) = {1, 3} (

2(, log) = {1} (
3(, log) = {2}

(
1(, 3 log) = {2} (

2(, 3 log) = {2, 3} (
3(, 3 log) = {1, 3}

(1(, log) = {1, 2} (2(, log) = {3} (3(, log) = {1}

(1(, 3 log) = {3} (2(, 3 log) = {1, 2} (3(, 3 log) = {2, 3}. ⇤
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We now apply similar logic for eigenvectors of%✓. The word every in the first sentence

is key to applying linear independence in the proof. The importance of the theorem is if

it can be applied to reversible MEFs to obtain bounds on the second largest eigenvalue as

such bounds would help determine mixing times (see Levin & Peres, ����, § ��.�).

Theorem �.�.��. For the ��� defined in eq. ��.�� and every ✓ 2 ⇥, suppose u 2 C✓ and ⌫ 2 C

are such that u«%✓ = ⌫u«. Then for all 1 2 ✓ and ✓ 2 ⇥,

⌫D1 =

Õ
02(1(✓,A) D0�(0 , 1)Õ
02(1(✓,A) �(1 , 0)

for any A 2 '(✓).

In particular, %✓ is symmetric if and only if

’
02(1(✓,A)

�(1 , 0) =
’

02(1(✓,A)
�(0 , 1) for any A 2 '(✓)

for all 1 2 ✓ if and only if

log �(0 , 1)
�(1 , 0) = ⌘(✓) · (⌧ (0 , 1) � ⌧ (1 , 0))

for all 0 , 1 2 ✓.

Proof. The 1th coordinate of the equation u«%✓ = ⌫u« is ⌫D1 =
Õ
02✓ D0%✓(0 , 1), so, multiply-

ing both sides by 4✓(✓) and plugging in eq. (�.�), we have

⌫D1
’
22✓

�(3, 2) exp(⌘(✓) · ⌧ (3, 2)) =
’
02✓

D0�(0 , 1) exp(⌘(✓) · ⌧ (0 , 1)),

where 3 could be any element of✓, including 1. By the linear independence of the exponential

functions, we have

⌫D1
’

22(1(✓,A)
�(1 , 2) =

’
02(1(✓,A)

D0�(0 , 1)

for each A 2 '(✓). The sum on the left is never zero by eq. (�.��).

Symmetry in a stochastic matrix happens if and only if the matrix is doubly stochastic

if and only if 1 is a left eigenvector corresponding to eigenvalue �. Plugging these in for u

and ⌫ respectively gives the second to last part of the theorem. The last part follows from

expanding and simplifying %✓(0 , 1) = %✓(1 , 0). ⇤
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We end with a theorem of a more statistical flavor. It allows us to dispose of temporal

dependence when we just need the mean parameter E[⌧ (-C ,-C+1)], which is crucial for

maximum likelihood estimation (Fienberg & Rinaldo, ����a; E. L. Lehmann & Casella,

����, Thm. �.�, pp. ���–���). We will prove a counterpart in theorem �.�.�.

Theorem �.�.��. Let - = {-C}C2N be a ��� with transition matrices given by eq. ��.��. Let ✓ 2 ⇥

such that ⌘(✓) is in the interior of the natural parameter space and ⌘ is differentiable at ✓ with

Jacobian matrix �✓. Then, for any C 2 N, E✓[⌧ (-C ,-C+1)] = �
�1
✓ r✓(✓).

Proof. By Feigin (����, Thm. �(i)), if ⌘ is the identity, and -’s transition matrix is more

generally the ��� given in eq. (�.�), then E✓[⌧ (-C ,-C+1) | -0 , . . . ,-C] = r✓(-C , ✓) for any

C 2 N. If ⌘ is not the identity function we apply the chain rule, replacing r✓(-C , ✓) with

�
�1
✓ r✓(-C , ✓), as in E. L. Lehmann and Casella (����, Problem �.�(b), p. ��). However, because

-’s transition matrix is the ��� eq. (�.�), ✓ is constant with respect to -C , so we must replace

�
�1
✓ r✓(-C , ✓) with ��1

✓ r✓(✓). Taking expectations on both sides we get, for any C 2 N,

�
�1
✓ r✓(✓) = E✓

�
E✓[⌧ (-C ,-C+1) | -0 , . . . ,-C]

�
= E✓[⌧ (-C ,-C+1)]. ⇤

�.�.�.� ��� Representations of ���s. By theorem �.�.��, if a stochastic process - = {-C}C2N

is a Markov chain under any of the transition matrices in ) B {)✓}✓2⇥, then ) is an ��� if

and only if -’s distribution ! has an exponential family representation. The theorem makes

explicit how the representations of) and ! relate. This allows us to recognize an exponential

family of distributions from a transition matrix, or an ��� from a distribution. However,

this just pushes recognizing an ��� from other ���s from ! back down to ). In this sub-

subsection, we give some necessary conditions to recognize the ��� ) from theorem �.�.��

when ) is presented as a ���. In the scalar-parameter case, proposition �.�.�� is a powerful

tool for this purpose already—see subsection �.�.� for some examples of this. The results

below are more useful for vector parameters.

Suppose ) is the ��� in eq. (�.��) on page ��:

)✓(0 , 1) = �(0 , 1) exp(⌘(✓) · ⌧ (0 , 1) � ✓(✓)) (�.�� revisited)

with )✓0(0 , 1) = �(0 , 1) for some ✓0 2 ⇥ and all 0 , 1 2 ✓. Each row of )✓0 is a probability
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mass function, so we have that
Õ
12✓ �(0 , 1) = 1 for all 0 2 ✓. Further, since �(0 , 1) =

�(0 , 1) exp(⌘(✓0) · ⌧ (0 , 1) � ✓(✓0)), we have that ⌘(✓0) · ⌧ (0 , 1) = ✓(✓0) for all 0 , 1 2 ✓. When

) is a minimal representation, ⌧ has affinely independent coordinates, so ⌘(✓0) = 0 and

✓(✓0) = 0 in such a case.

Further, suppose that for some : : ✓2 ! [0,1), h : ⇥ ! R= , m : ✓2 ! R= , and

⌫ : ✓ ⇥ ⇥! R [ {1}, we also have the following ��� representation of ):

)✓(0 , 1) = :(0 , 1) exp(h(✓) ·m(0 , 1) � ⌫(0 , ✓)) (�.��)

for all ✓ 2 ⇥ and 0 , 1 2 ✓. The following results provide necessary conditions to recognize

the ��� representation as the ��� it really is. However, the most important follows directly

from eqs. (�.��) and (�.��): �(0 , 1) = 0 () :(0 , 1) = 0 for all 0 , 1 2 ✓.

Lemma �.�.��. If = = ✓ , h = ⌘ and m = ⌧ then

4
⌫(2 ,✓)

4
⌫(0 ,✓) =

Õ
12✓ :(2 , 1)Õ
12✓ :(0 , 1)

.

Proof. From the equality of eqs. (�.��) and (�.��), for any ✓ 2 ⇥ and 0 , 1 2 ✓ for which

:(0 , 1) < 0, we have 4✓(✓)
.
4
⌫(0 ,✓) = �(0 , 1)/:(0 , 1) . The right side cannot depend on ✓ and

the left side cannot depend on 1, so both sides equal a constant ?(0) depending on 0. This

way we can write ?(0):(0 , 1) = �(0 , 1) = )✓0(0 , 1). Hence ?(0) = 1/Õ
12✓ :(0 , 1) . For any

0 , 2 2 ✓, we may compute the ratio

4
✓(✓)

.
4
⌫(0 ,✓)

4
✓(✓)�

4
⌫(2 ,✓) =

?(0)
?(2) =

Õ
12✓ :(2 , 1)Õ
12✓ :(0 , 1)

. ⇤

Lemma �.�.��. If : = �, = = ✓ , h = ⌘ is continuous, and ⌘(⇥) contains an ✓ -dimensional open

set, then eq. ��.��� is an ��� representation if and only if ⌧ (0 , 1) �m(0 , 1) = ⌧ (2 , 1) �m(2 , 1)

for all 0 , 1 , 2 2 ✓.

Proof. From the equality of eqs. (�.��) and (�.��), for any ✓ 2 ⇥ and 0 , 1 2 ✓ for which

�(0 , 1) < 0, we have ⌘(✓) · (⌧ (0 , 1) �m(0 , 1)) = ⌫(0 , ✓)� ✓(✓). Subtracting this equation with

0 replaced with 2 from the equation with 0 yields that

⌘(✓8) · (⌧ (0 , 1) �m(0 , 1) � ⌧ (2 , 1) +m(2 , 1)) = ⌫(0 , ✓8) � ⌫(2 , ✓8).
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for each 8 2 {1, . . . , ✓ }. Let � be the matrix whose columns are ✓ linearly independent vectors

⌘(✓1), . . . , ⌘(✓✓ ). Let d be the vector whose 8th row is ⌫(0 , ✓8) � ⌫(2 , ✓8). Then

�(⌧ (0 , 1) �m(0 , 1) � ⌧ (2 , 1) +m(2 , 1)) = d.

The columns of � are linearly independent, so ⌧ (0 , 1) �m(0 , 1) = ⌧ (2 , 1) �m(2 , 1) if and

only if ⌫(0 , ✓8) = ⌫(2 , ✓8) for each 8 2 {1, . . . , ✓ }. However, 0 , 1 , 2 2 ✓ were arbitrary, the ✓8

were arbitrary, and ⌘ was continuous. We can perturb the ✓8s in an open set in ⇥ to show

the foregoing result for all ✓ on the open set. Since ⌘ is continuous, so is ⌫(0 , ·) for each 0.

Thus ⌫(0 , ·) = ⌫(2 , ·) for all 0, and 2, i.e., eq. (�.��) is an ��� representation of ). ⇤

Recall from eq. (�.��) that (0(✓, A) = {1 2 ✓ | ⌘(✓) · ⌧ (0 , 1) = A}.

Lemma �.�.��. If : = �, then for all 0 2 ✓, ✓ 2 ⇥, and A 2 R, then there exists @ 2 R such that

{1 2 ✓ | ⌘(✓) · ⌧ (0 , 1) = A} = {1 2 ✓ | h(✓) ·m(0 , 1) = @}.

Proof. From the equality of eqs. (�.��) and (�.��), for any ✓ 2 ⇥ and 0 , 1 2 ✓ for which

�(0 , 1) < 0,

⌘(✓) · ⌧ (0 , 1) � h(✓) ·m(0 , 1) = ✓(✓) � ⌫(0 , ✓).

Fix 0 2 ✓, ✓ 2 ⇥, and A 2 R such that ⌘(✓) · ⌧ (0 , 1) = A for some 1 2 ✓. Suppose 2 is

another element of ✓ such that ⌘(✓) · ⌧ (0 , 2) = A. Then

⌘(✓) · ⌧ (0 , 1) � h(✓) ·m(0 , 1) = ✓(✓) � ⌫(0 , ✓) = ⌘(✓) · ⌧ (0 , 2) � h(✓) ·m(0 , 2).

Canceling ⌘(✓) ·⌧ (0 , 2) on both sides yields that h(✓) ·m(0 , 1) = h(✓) ·m(0 , 2) C @. Equality

of the sets is obtained by swapping the roles of m and ⌧ . ⇤

Lemma �.�.��. If : = � and m = ⌧ and eq. ��.��� is a minimal representation, then eq. ��.��� is

an ��� representation such that h = ⌘ and ⌫(0 , ✓) = ✓(✓) for all 0 2 ✓ and ✓ 2 ⇥.

Proof. From the equality of eqs. (�.��) and (�.��), for any ✓ 2 ⇥ and 0 , 1 2 ✓ for which

�(0 , 1) < 0,

(⌘(✓) � h(✓)) · ⌧ (0 , 1) = ✓(✓) � ⌫(0 , ✓).

The right side is constant with respect to 1, so the minimality of eq. (�.��) implies that

✓(✓) = ⌫(0 , ✓) and ⌘(✓) = h(✓) for all 0 2 ✓ and ✓ 2 ⇥. ⇤
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�.� Permutation-Uniform Markov Chains

In this section, we show that if a transition matrix is permutation uniform, meaning

that every row is a permutation of every other row, then we may identify the corresponding

Markov chain with an ��� sequence on the same state space. This identification, which is the

main theorem of this section and is presented in theorem �.�.�, preserves the functional form

of the transition matrix when it is transformed to the distribution for the ��� sequence. In

this way, we can translate an ���’s likelihood function to an exponential family distribution

for an ��� sequence, perform statistical analysis on that ��� sequence, and draw conclusions

about the Markov chain. Autoregressive processes on discrete state spaces and several of

the examples in section �.� provide applications for this technique. Shalizi and Rinaldo

(����, § �) calls for ways of analyzing independent random variables in place of dependent

random variables in Markov chains of networks. The novelty of the techniques in this

paper are disposing of the temporal dependence in a Markov chain, and maintaining

interpretability of parameters and sufficient statistics while doing so.

The main concept in this section is permutation uniformity, the property that “every

row is a permutation of every other row.” We make this rough definition precise as follows.

Let ⇡ be any set. For each 0 2 ✓, define the 0th row of a function or matrix 5 : ✓ ⇥✓! ⇡

to be the function or row vector 1 7! 5 (0 , 1). We write permutations on ✓ (i.e., bĳections

✓ ! ✓) juxtaposed with other permutations on ✓ to denote composition and juxtaposed

with elements of ✓ to denote application. Let � B {�0}02✓ be a set of permutations on ✓.

We say that 5 is permutation uniform, or p-uniform, under � if 5 (0 ,��1
0
2) = 5 (1 ,��1

1
2) for

all 0 , 1 , 2 2 ✓. We say that a Markov chain is a permutation-uniform Markov chain, or a

p-uniform chain, if its transition matrix is p-uniform.

Example �.�.�. The following are examples of p-uniform matrices or functions.

2666664
 1 � 

1 �  

3777775
,

2666666664

2/7 4/7 1/7

4/7 1/7 2/7

1/7 2/7 4/7

3777777775
,

2666666664

1 0 0

1 0 0

1 0 0

3777777775
,

2666666664

⇥ 3
4
⇤ ⇥ 1

6
⇤ ⇥ 9

2
⇤

⇥ 9
2
⇤ ⇥ 3

4
⇤ ⇥ 1

6
⇤

⇥ 1
6
⇤ ⇥ 3

4
⇤ ⇥ 9

2
⇤

3777777775
. ⇤

Generalizing the definition of p-uniform from Yano and Yasutomi (����b, Def. �.�),
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we can characterize p-uniform transition matrices as follows.

Lemma �.�.�. A function 5 : ✓ ⇥✓! ⇡ for some set ⇡ is p-uniform if and only if there exists a

function 6 : ✓! ⇡ and a set {�0}02✓ of permutations such that

5 (0 , 1) = 6(�01) for all 0 , 1 2 ✓. (�.��)

In this case, 6 is unique up to permutation.

If ✓ is at most countable and 5 is a p-uniform stochastic matrix on ✓, then 6 is a stochastic

vector, i.e., a probability mass function.

Proof. Equation (�.��) follows directly from the definition of permutation uniformity.

Suppose 6 , ⌘ : ✓! ⇡ and {�0}02✓ and {B0}02✓ are sets of permutations such that

5 (0 , 1) = 6(�01) = ⌘(B01) for all 0 , 1. Then for any 1 2 ✓, 6(1) = 6(�0��1
0
1) = 5 (0 ,��1

0
1) =

⌘(B0��1
0
1). That is, 6 is the composition of ⌘ and the permutation B0��1

0
.

The last part of the proof follows from the definition of a stochastic matrix. ⇤

The selection of the permutations �0 is unique up to permutation only trivially in

the sense that every permutation is the permutation of another permutation. When ✓ is

finite and every row of a transition matrix % is the uniform distribution ✓, then any choice

of permutations will satisfy %01 = 1/|✓| .

Example �.�.� (Continuation of example �.�.�). Consider the arrays in example �.�.�. For

each one, the function 6 of lemma �.�.� could be the first row of the array and �1 could be

the identity permutation. Then the permutation vectors for the second or third rows of the

respective arrays in example �.�.� are

(2, 1),
(2, 3, 1)

(3, 1, 2)
,

(1, 2, 3)

(1, 2, 3)
,

(3, 1, 2)

(2, 1, 3)
. ⇤

The following lemma will be useful in subsection �.�.� when we discuss finite

exchangability.

Lemma �.�.�. Suppose ✓ bears an equivalence relation ⇠, and let 5 and 6 be as they are in

lemma �.�.�. Let 0, 1, and 2 generically represent elements of ✓. Consider the following conditions�
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�a� 1 ⇠ 2 =) 6(1) = 6(2).

�b� 1 ⇠ 2 =) 5 (0 , 1) = 5 (0 , 2) for all 0.

�c� 1 ⇠ 2 =) �01 ⇠ �0 2 for all 0.

�d� 1 ⇠ 2 =) ��1
0
1 ⇠ ��1

0
2 for all 0.

Then �c�’s converse () �d�� �d�’s converse () �c�� �b� and �d� =) �a�� �a� and �c� =) �b��

�b�’s converse and �a� =) �d�� and �a�’s converse and �b� =) �c�. If � is closed under inversion

or if ✓ is finite, then �c� () �d�. Finally, if there is an 0 for which 1 ⇠ 2 =) 5 (0 , 1) = 5 (0 , 2)

and �c� and �d� both hold, then �b� holds.

Proof. Assume (c)’s converse and 1 ⇠ 2. Then �0��1
0
1 ⇠ �0��1

0
2 for all 0. Condition (c)’s

converse implies ��1
0
1 ⇠ ��1

0
2 for all 0. Hence (d).

Assume (d) and �01 ⇠ �0 2 for all 0. Condition (d) implies ��1
3
�01 ⇠ ��1

3
�0 2 for all 0

for all 3 2 ✓, including 3 = 0, so ��1
0
�01 ⇠ ��1

0
�0 2, and so 1 ⇠ 2. Hence (c)’s converse.

Assume (d)’s converse and 1 ⇠ 2. Then ��1
0
�01 ⇠ ��1

0
�0 2 for all 0. Condition (d)’s

converse implies �01 ⇠ �0 2 for all 0. Hence (c).

Assume (c) and ��1
0
1 ⇠ ��1

0
2 for all 0. Condition (c) implies �3��1

0
1 ⇠ �3��1

0
2 for all

0 for all 3 2 ✓, including 3 = 0, so �0��1
0
1 ⇠ �0��1

0
2, and so 1 ⇠ 2. Hence (d)’s converse.

Assume (b) and (d) and 1 ⇠ 2. Condition (d) implies ��1
0
1 ⇠ ��1

0
2 for all 0. Equa-

tion (�.��) and condition (b) then imply 6(1) = 5 (0 ,��1
0
1) = 5 (0 ,��1

0
2) = 6(2) for all 0.

Hence (a).

Assume (a) and (c) and 1 ⇠ 2. Condition (c) implies�01 ⇠ �0 2 for all 0. Equation (�.��)

and condition (a) then imply 5 (0 , 1) = 6(�01) = 6(�0 2) = 5 (0 , 2) for all 0. Hence (b).

Assume (b)’s converse and (a) and 1 ⇠ 2. Equation (�.��) and condition (a) imply

5 (0 ,��1
0
1) = 6(1) = 6(2) = 5 (0 ,��1

0
2) for all 0. The converse of (b) then implies ��1

0
1 ⇠ ��1

0
2

for all 0. Hence (d).

Assume (a)’s converse and (b) and 1 ⇠ 2. Equation (�.��) and condition (b) imply

6(�01) = 5 (0 , 1) = 5 (0 , 2) = 6(�0 2) for all 0. The converse of (a) then implies �01 ⇠ �0 2 for

all 0. Hence (c).

Suppose � is closed under inverses, and assume (c) and 1 ⇠ 2. Since � contains

its inverses, to each 0 belongs some 3(0) 2 ✓ such that �
3(0) = ��1

0
() ��1

3(0) = �0 .

Condition (c) implies �01 ⇠ �0 2 for all 0. Therefore ��1
3(0)1 ⇠ ��1

3(0)2 for all 0. Suppose by way
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of contradiction that there is some 4 2 ✓ such that ��1
4
< ��1

3(0) for all 0. But �
3(4) = ��1

4
and

�
3(3(4)) = ��1

3(4) = �4 . Thus ��1
4

= ��1
3(0) for 0 = 3(4), contradicting our choice of 4. Therefore,

0 7! ��1
3(0) is surjective onto {��1

0
}02✓, and ��1

0
1 ⇠ ��1

0
2 for all 0. Hence (d).

Suppose � is closed under inverses, and assume (d) and 1 ⇠ 2. Condition (d) implies

��1
0
1 ⇠ ��1

0
2 for all 0. Using 3 as defined in the previous paragraph, we have ��1

3(0)1 ⇠ ��1
3(0)2

for all 0, and therefore �01 ⇠ �0 2 for all 0. Hence (c).

Suppose ✓ is finite, and assume (c) and 1 ⇠ 2. Condition (c) implies �=
0
1 ⇠ �=

0
2 for all

0 and all = 2 N (by induction on =). Since ✓ is finite, to each 0 belongs some =(0) 2 N such

that �=(0)
0

= ��1
0

(Clark, ����/����, paras. ��, ��). Therefore ��1
0
1 ⇠ ��1

0
2 for all 0. Hence (d).

Suppose ✓ is finite, and assume (d) and 1 ⇠ 2. Condition (d) implies ��=
0
1 ⇠ ��=

0
2

for all 0 and all = 2 N. Using = as defined in the previous paragraph, we have, for each 0,

��=(0)
0

=
⇣
�=(0)
0

⌘�1
=

�
��1
0

��1 = �0 . Therefore �01 ⇠ �0 2 for all 0. Hence (c).

Finally, assume (c) and (d) and there is an 0 for which 1 ⇠ 2 =) 5 (0 , 1) = 5 (0 , 2). If

1 ⇠ 2, then ��1
0
1 ⇠ ��1

0
2 by (d), and eq. (�.��) implies 6(1) = 5 (0 ,��1

0
1) = 5 (0 ,��1

0
2) = 6(2);

hence (a). Then (a) and (c) =) (b). ⇤

�.�.� Literature Review. Rosenblatt (����, § �) first named and studied p-uniform chains,

calling them simply uniform chains.16 Rosenblatt showed that when a p-uniform chain - on

a countable state space with transition matrix % has distinct numbers in every entry of a

row of %, -8 and -8+1 almost surely uniquely determine a random variable /8+1, and the

/8s are ��� and independent of -8�1 ,-8�2 , . . . (Rosenblatt, ����, Lem. �).

Rosenblatt (����) constructs an ��� sequence of random variables /C , uniformly

distributed on the interval [0, 1], such that -C is a function of all the preceding /8s. Under

the conditions of the theorem, this is applicable to a wider variety of Markov chains than

theorem �.�.�, but offers less control over the / process. In Rosenblatt’s construction, - can

be any discrete-valued, irreducible, aperiodic Markov chain indexed by time set Z rather

than N, meaning there’s no initial value. The infinitude of the past is crucial to the proof,

as it relies on the Borel-Cantelli lemma. However, since the /Cs are [0, 1]-valued, they are

16We add the p- to p-uniform both to follow Yano and Yasutomi (����b, Def. �.�) and to avoid confusion
with uniform distributions. The p stands for permutation.
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defined on a different sample space from the -Cs, and the function that links the /Cs to

the -Cs is not constructed, as its existence is inferred from the some intermediate limit

results. Wu and Mielniczuk (����, § �) gives a more readable description of the theory. In

the extension of this result to continuous state spaces given by Hanson (����), indexing

time by Z rather than N turns out to be crucial. Blum and Hanson (����) and Rosenblatt

(����) give further results in this vein, and Laurent (����, Problem �) summarizes some of

the results.

Diaconis and Freedman (����) gives a model of Markov chains induced by iterating

functions from the state space to itself chosen randomly independently. We will explore

this connection in some detail in subsection �.�.�.

Rubshtein (����) classifies Markov shifts of p-uniform Markov chains, which the

author calls ⌧-uniform stochastic graphs, in the language of dynamic systems.

�.�.� Independence. In this subsection, we derive ��� /8s uniquely determined by a p-

uniform Markov chain - with transition matrix %✓0 for some fixed ✓0 2 ⇥. In contrast with

our inspiration for this technique, Rosenblatt (����, Lem. �), we can drop “distinct” and

the “uniquely” from the requirements of the transition probabilities, and our input Markov

chain - does not go infinitely into the past.

Our /8s’ distributions can stand in for the -8s’, thus making statistical inference on

the time-dependent -8s easier by using the independent /8s. This makes the Markov chain

- resemble a random walk. We explore this connection more after the main theorems.

-’s being p-uniform imposes enough structure for us to observe the desired ���

sequence / from -, which we mean in the following sense. We say that the ✓-valued

sequence of random variables /1 , . . . , /C , C 2 N>0, has a joint distribution similar under

P to that of ✓-valued sequence of random variables -0 ,-1 , . . . ,-C ’s for some probability

measure P if and for all G0 , G1 , . . . , GC 2 ✓ there exists I1 , . . . , IC 2 ✓ such that

P(-C = GC , . . . ,-1 = G1 | -0 = G0) = P(/C = IC , . . . , /1 = I1).

For {/C}1
C=1 to be ��� with a common law (whose ��� under P is) ⇠ means that P(/C =

I) = ⇠(I) for all C 2 N>0 and all I 2 ✓. As has been our wont, we do not worry about the
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(common) sample probability space for - and / or the nature of the measure P, but rather

just assume that some such P is fixed for the current discussion. In the parameterized case

such as when - is a Markov chain whose transition matrix is drawn from a ���, precisely

which P we are discussing will depend on the parameter. The next theorem does not

assume a ���.

Theorem �.�.�. Suppose ✓ is at most countable. Let � B {�0}02✓ be a set of permutations on

✓, and let - B {-C}C2N be an ✓-valued stochastic process. - is a Markov chain on ✓ under

probability measure P with transition matrix % p-uniform under � if and only if there exists

a probability measure ⇠ on ✓, a sequence of ✓-valued random variables / B {/C}1
C=1, and an

✓-valued random variable -0 such that

�a� / is ��� with common law ⇠�

�b� -C+1 = ��1
-C

/C+1 P-almost surely for all

C 2 N�

�c� %(0 , 1) = ⇠(�01) for all 0 , 1 2 ✓� and

�d� -0 , /1 , . . . , /C are mutually independent for

all C 2 N>0.

When such a / exists, - and / have similar joint distributions. Further, for all C 2 N, /C+1

and any random vector of the form (-81 , . . . ,-8= ,-C) for 81 , . . . , 8= 2 {0, 1, . . . , C � 1} and = 2

{0, 1, . . . , C � 1} are pairwise independent.

If we are given a p-uniform Markov chain - with transition matrix %, lemma �.�.�

already tells us what ⇠ has to be: any permutation of any row of %. We are free to choose

any permutation of a row of % that is convenient because we can choose any permutations

{�0}02✓ that make %(0 , 1) = ⇠(�01) true. In this sense, once we’re given %, we have no choice

over ⇠; we can only choose the permutations �0 . The choice of permutations �0 determines

the sequence/ almost surely from-. Applying theorem �.�.� thus comes down to choosing

�0s. Conversely if we are given / with the common law ⇠, different choices of �0s give rise

to different Markov chains -. We will see examples of this phenomenon in section �.�.

In the proof below, we can define random variables as we see fit because we have

implicitly assumed the use of the discrete �-algebras on ✓ and ✓⇥✓. The function (0 , 1) 7!

�01 is measurable with respect to the discrete �-algebra on ✓ ⇥✓.
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Proof of theorem �.�.�. Forward Implication. Suppose - is a Markov chain on ✓ under

probability measure P with transition matrix % p-uniform under �.

Lemma �.�.� provides for the existence of a probability measure ⇠ on ✓ such that

%(0 , 1) = ⇠(�01), condition (c). -0 is an ✓-valued random variable because - is a Markov

chain.

We can define the ✓-valued random variables / = {/C}C2N>0 by

/C+1 B �-C-C+1 for all C 2 N.

This equality holds everywhere in the sample space and �0 is invertible for all 0 2 ✓,

so -C+1 = ��1
-C

/C+1 holds P-almost surely for all C 2 N, establishing condition (b). In the

remainder of this direction of the proof, we will make use of the equivalence between /C = I

and -C = ��1
-C�1

I when C 2 N>0.

Now we must show that / is ��� with common law ⇠, which is condition (a). The work

to prove it will also prove condition (d). To do so, we fix an arbitrary sequence {IC}C2N>0 ✓ ✓

and time ) 2 N>0, and we show that

P(/1 = I1 , . . . , /) = I)) = ⇠(I1) · · ·⇠(I)). (�.��)

For each C 2 [)], /C = IC determines a transition. Stringing together all ) transitions

determines the state of the Markov chain through time ) if we know the starting position -0.

This suggests starting the proof with the left-hand-side expression in eq. (�.��) and using

the law of total probability:

P(/1 = I1 , . . . , /) = I)) =
’
02✓

P(/1 = I1 , . . . , /) = I) | -0 = 0)P(-0 = 0). (�.��)

We can formalize what we meant by “stringing together” the transitions as follows.

For each C 2 N, let GC : ✓! ✓ be defined recursively by

GC(0) B

8>>>><
>>>>:
0 C = 0

��1
GC�1(0)IC C > 0.

For a given 0 2 ✓, {GC(0)}C2N is a deterministic sequence of elements of ✓. Let 0 2 ✓ such

that P(-0 = 0) > 0.
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As we now prove by induction, the event � in which /1 = I1 , . . . , /) = I) , and

-0 = 0 is almost surely the same event as the event ⌫ in which -0 = G0(0), . . . ,-) = G)(0).

Let C 2 [)]. First suppose we are in event �, so /C = IC and -0 = 0 = G0(0). Under the

induction hypothesis that -C�1 = GC�1(0), we have -C = ��1
-C�1

/C = ��1
GC�1(0)IC = GC(0). Thus we

are in event ⌫ as well. Second suppose we are in event ⌫, so -0 = G0(0) = 0, -C�1 = GC�1(0),

and -C = GC(0). Then /C = �-C�1-C = �
GC�1(0)GC(0) = �

GC�1(0)�
�1
GC�1(0)IC = IC . Thus we are in

event � as well. Consequently, we may expand the left term in the summand of eq. (�.��)

using these equivalent events for 0 2 ✓:

P(/1 = I1 , . . . , /) = I) | -0 = 0) = P(-1 = G1(0), . . . ,-) = G)(0) | -0 = 0) (�.��)

- is a Markov chain so we can expand the right side of eq. (�.��) as

P(-1 = G1(0), . . . ,-) = G)(0) | -0 = 0) =
)÷
C=1

%(GC�1(0), GC(0)). (�.��)

Applying condition (c), we can then write for any C 2 [)]

%(GC�1(0), GC(0)) = ⇠(�
GC�1(0)GC(0)) = ⇠(�

GC�1(0)�
�1
GC�1(0)IC) = ⇠(IC). (�.��)

Putting together eqs. (�.��) to (�.��), we get

P(/1 = I1 , . . . , /) = I) | -0 = 0) =
)÷
C=1

⇠(IC). (�.��)

This is almost what we need. Combining eq. (�.��) with eq. (�.��) yields our goal from

eq. (�.��):

P(/1 = I1 , . . . , /) = I)) =
’
02✓

P(/1 = I1 , . . . , /) = I) | -0 = 0)P(-0 = 0)

=
’
02✓

"
)÷
C=1

⇠(IC)
#
P(-0 = 0) =

)÷
C=1

⇠(IC)
’
02✓

P(-0 = 0) =
)÷
C=1

⇠(IC).

This establishes condition (a). Between eqs. (�.��) and (�.��), we see that -0 , /1 , . . . , /) are

independent, establishing condition (d).

Backward Implication. We must show that - = {-C}C2N , defined in condition (b), is

a Markov chain with a transition matrix %, defined in condition (c), and that % is p-uniform
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under �. To do so, we fix an arbitrary time C 2 N and vector x = (G0 , . . . , GC+1) 2 ✓C+2 such

that P(-C = GC) > 0, and we show that

P(-C+1 = GC+1 | -0 = G0 , . . . ,-C = GC) = ⇠(�GC GC+1) (�.��)

P(-C+1 = GC+1 | -C = GC) = ⇠(�GC GC+1) (�.��)

Proving eqs. (�.��) and (�.��) together will show that - has the Markov property, and

proving eq. (�.��) will show that - is p-uniform by lemma �.�.� and eq. (�.��). Since the

time C is arbitrary, proving eq. (�.��) will also establish that - is homogeneous, so that

%(0 , 1) = ⇠(�01) is the transition matrix for -. By lemma �.�.�, this will establish that % is

p-uniform under �.

As we now prove by induction, the event ⇠ in which -0 = G0 , . . . ,-) = G) (on which

the left side of eq. (�.��) is conditioned) is, for all ) 2 N, almost surely the same event as

event⇡ in which -0 = G0 and /1 = �G0G1 , . . . , /) = �G)�1G) . We prove this for the case when

) > 0. Let B 2 [)]. First suppose we are in event ⇠, so -B�1 = GB�1, -B = GB , and -0 = G0.

We have GB = -B = ��1
-B�1

/B = ��1
GB�1/B a.s., so /B = �GB�1GB a.s. Thus we are in event ⇡ as

well. Second suppose we are in event ⇡, so /B = �GB�1GB , /1 = �G0G1, and -0 = G0. Under

the induction hypothesis that -B�1 = GB�1 a.s., we have -B = ��1
-B�1

/B = ��1
GB�1�GB�1GB = GB a.s.

Thus we are in event ⇠ as well.

We prove eq. (�.��) as follows. The first equality uses ⇠ = ⇡ a.s. for ) = C, and the

second uses /’s ��� ⇠ from condition (a) and the independence of -0 , /1 , . . . , /C+1 from

condition (d).

P(-C+1 = GC+1 | -0 = G0 ,-1 = G1 , . . . ,-C = GC)

= P(/C+1 = �GC GC+1 | -0 = G0 , /1 = �G0G1 , . . . , /C = �GC�1GC) = ⇠(�GC GC+1).

We prove eq. (�.��) as follows. The first and third equalities below apply ⇠ = ⇡
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a.s. for ) = C � 1, and the second uses conditions (a) and (d).

P(-C+1 = GC+1 ,-C = GC | -0 = G0 ,-1 = G1 , . . . ,-C�1 = GC�1)

= P(/C+1 = �GC GC+1 , /C = �GC�1GC | -0 = G0 , /1 = �G0G1 , . . . , /C�1 = �GC�2GC�1)

= ⇠(�GC GC+1)P(/C = �GC�1GC | -0 = G0 , /1 = �G0G1 , . . . , /C�1 = �GC�2GC�1)

= ⇠(�GC GC+1)P(-C = GC | -0 = G0 ,-1 = G1 , . . . ,-C�1 = GC�1).

Apply the law of total probability with fixed GC and GC+1 and sum over x = (G0 , . . . , GC�1):

P(-C+1 = GC+1 ,-C = GC)

=
’
x2✓C

P(-C+1 = GC+1 ,-C = GC | -0 = G0 , . . . ,-C�1 = GC�1)P(-0 = G0 , . . . ,-C�1 = GC�1)

= ⇠(�GC GC+1)
’
x2✓C

P(-C = GC | -0 = G0 , . . . ,-C�1 = GC�1)P(-0 = G0 , . . . ,-C�1 = GC�1)

= ⇠(�GC GC+1)P(-C = GC).

Dividing both sides by P(-C = GC) yields eq. (�.��), as desired.

Finishing the Proof. The fact that ⇠ = ⇡ a.s. proves - and / have similar distri-

butions. Finally, to prove that /C+1 and (-81 , . . . ,-8= ,-C) are independent, let I 2 ✓ and

observe that

P(/C+1 = I | -C = GC ,-8=
= G8=

, . . . ,-81 = G81)

= P(-C+1 = ��1
GC
I | -C = GC) = ⇠(�GC��1

GC
I) = P(/C+1 = I). ⇤

Diaconis and Freedman (����) proposed a model of Markov chains induced by

random functions, of which theorem �.�.� turns out to be a sub-model. Let⌦ be an arbitrary

set. Fix some family � = { 5$}$2⌦ of functions from ✓ to itself indexed by ⌦. Let ⇠ be

a probability measure defined on ⌦. A Markov chain induced by � and ⇠ is a process

- = {-C}C2N starting at -0 = G0 2 ✓ and such that, for C 2 N, -C+1 = 5,C+1(-C), where

, = {,C}C2N is an ��� sequence of ⌦-valued random variables with common law ⇠. When

⌦ is discrete, we have that

P(-C+1 = 1 | -C = 0) = P( 5,C+1(0) = 1) =
’
$2⌦
5$(0)=1

⇠({$}).
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Adopting the notation of theorem �.�.�, let - be a p-uniform Markov chain with

permutations {�0}02✓ and ��� sequence / with common law ⇠. Setting ⌦ = ✓ and 50(1) =

��1
1
0, we have that - is induced by � and ⇠:

-C+1 = ��1
-C

/C+1 = 5/C+1(-C).

In this case, {$ 2 ⌦ | 5$(0) = 1} = {�01}, so that P(-C+1 = 1 | -C = 0) = ⇠(�01) as desired

under p-uniformity.

P-uniformity forces us to restrict the functions 50 . Since the �0s are bĳective, 0 7! 50

is injective in the set of functions✓! ✓, and 0 7! 50(1) is bĳective in✓. The latter assertion

follows straight from the definition of 50 ; to see the former, note that

50 = 51 () 50(2) = 51(2) 82 () ��1
2
0 = ��1

2
1 82 () 0 = 1.

Example �.�.� (Modular Autoregressive Model (Diaconis & Freedman, ����, Example �.�,

p. ��)). Let ✓ = Z/=Z be the set of = � 1 integers modulo =. Fix some initial state G0 2 ✓ and

set -0 = G0. Then define -C+1 = -C + /C+1 (mod =), where the /Cs are uniform, ��� random

variables taking values zero or one each with probability a half: ⇠(0) = ⇠(1) = 1/2 . Then

/C+1 = -C+1 � -C (mod =), and, since modular subtraction is bĳective, - is a p-uniform

chain with �8 9 = 9 � 8 (mod =) for each 8 , 9 2 ✓. In terms of iterating random functions,

59(8) = ��1
8
9 = 9 + 8 (mod =), and we can write -C+1 = 5/C+1(-C). Notice that we apply only

either 50(8) = 8 or 51(8) = 8 + 1 (mod =).

The transition matrix % is defined by %(8 , 9) = ⇠(�8 9) = ⇠(9 � 8 (mod =)), which is a

half if 8� 9 (mod =) is either zero or one, and is zero otherwise.- is irreducible and aperiodic,

its stationary distribution is uniform, and it converges to the stationary distribution at an

exponential rate. 50 and 51 are Lipschitz continuous with Lipschitz constant one under the

metric ⌧ on ✓ defined by ⌧(8 , 9) = min{ 9 � 8 (mod =), 8 � 9 (mod =)}, the shortest modular

addition distance from 8 to 9 in either direction. ⇤

Example �.�.� (Vector Autoregressive Model (Hoff, ����, p. ����)). Hoff (����, p. ����)

introduces a multilinear tensor autoregressive model for network data similar to ��� models

(cf. Wooldridge, ����, August/����, p. ���). Let X8 be the vectorization of a network’s
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weighted adjacency matrix at time 8. The bilinear version of Hoff’s model is

X8 = X8�1 +Z8 , E(Z8) = 0, E(Z8Z
«
9
) =

8>>>><
>>>>:
⌃ 8 = 9

0 8 < 9 ,

where  and⌃ are matrices of parameters to be estimated. Hoff used variations of this model

on a time series of verbal and material diplomatic actions among �� countries between

���� and ����. Geographically nearby countries’ actions were the best predictors of each

country’s actions, with the exceptions of the United Kingdom and Australia and of the

United States and certain other countries. The analysis also found that the relations between

two countries depends on other countries’ relations.

With a couple simple restrictions, this model becomes a p-uniform Markov chain.

First, we must restrict all values to rationals so that the state space for the X8s is countable.

Second, we must assume that the Z8s are ���, which is compatible with the assumptions

that E(Z8) = 0 and E(Z8Z«
9
) = 0 if 8 < 9. Then the set � of permutations under which the

X8s are p-uniform are those for which �X8�1X8 = X8 � X8�1 = Z8 . ⇤

More resources on random walks on finite sets include Diaconis (����), Hildebrand

(����), Hirayama and Yano (����), and Yano and Yasutomi (����a, ����b).

�.�.� Consequences of Independence. When - is a p-uniform Markov chain, its corre-

sponding ��� sequence /—which may not be unique (even almost surely) as a function of

the underlying state space—conveys all the probabilistic information about -, modulo the

initial value-0. One common way to measure information is entropy. The entropy of a prob-

ability vector p on✓ is�(p) = �Õ
02✓ ?0 log ?0 , where we define 0 log 0 B 0 (Shiryaev, ����,

chap. �, § �.�). If % is a transition matrix on ✓ with a stationary distribution v, the entropy

rate of the corresponding Markov chain - is �(-) = �Õ
02✓ E0

Õ
12✓ %(0 , 1) log%(0 , 1)

(Yano & Yasutomi, ����b, § �.�).

Theorem �.�.�. Let - be a p-uniform Markov chain on ✓ with transition matrix % and let /

be the same as it was in the statement of theorem �.�.� with common law ⇠. If % has a stationary

distribution v, the entropy rate of - equals the entropy of /’s common law ⇠.
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Proof. Since %(0 , 1) = ⇠(�01) for all 0 , 1 2 ✓, the entropy rate of - reduces to

�(-) = �
’
02✓

E0

’
12✓

⇠(�01) log⇠(�01).

However, for each 0 2 ✓, �0 in the summand above is a permutation, so

�
’
12✓

⇠(�01) log⇠(�01) = �
’
12✓

⇠(1) log⇠(1) = �(⇠).

Therefore

�(-) = �
’
02✓

E0

’
12✓

⇠(�01) log⇠(�01) =
’
02✓

E0�(⇠) = �(⇠)
’
02✓

E0 = �(⇠). ⇤

A statistical consequence of a Markov chain’s p-uniformity is that we can apply ���

convergence theorems to the Markov chain. In the case of p-uniform Markov chains that

are ���s, theorem �.�.� strengthens results in the literature for ���s where the function ⌧

in the theorem is the sufficient statistic. Stefanov (����, Prop. �.�) proved convergence in

probability of the time-average of an ���’s sufficient statistic. Theorem �.�.� strengthens

this convergence to almost-sure and !
1 convergence. Coupling theorem �.�.� with theo-

rem �.�.�� gives a limit to the mean parameter of the ���.

Feigin (����, Thm. �, p. ���) has such a result for ���s, but only in expectation

conditional on the past state of the chain, with which condition theorem �.�.�� dispenses.

Theorem �.�.�. Suppose - is a Markov chain on ✓ under P with transition matrix % p-uniform

under �. Let ⌧ : ✓ ⇥ ✓ ! R✓ be p-uniform under � such that
Õ
12✓ ⌧ (0 , 1)%(0 , 1) converges

absolutely for all 0 2 ✓. Then, for any 0 2 ✓ and any B 2 N,

1
C

C�1’
8=0
⌧ (-8 ,-8+1)! EP[⌧ (-B ,-B+1)] =

’
12✓

⌧ (0 , 1)%(0 , 1) as C !1

where convergence is both almost sure and in !1 under P. In particular, the limit does not depend on

B, the expectation does not depend on the initial distribution of -0, and the equation does not depend

on 0.

Proof. By theorem �.�.�, /8 B �-8�1-8 , 8 2 N>0, is a sequence of ���, ✓-valued random

variables with some common law ⇠. Since ⌧ is p-uniform under �, lemma �.�.� allows us to

define m : ✓! R✓ by m(1) B ⌧ (0 ,��1
0
1) for all 0 , 1 2 ✓.
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We claim that m(/1) has finite expectation. Since
Õ
12✓ ⌧ (0 , 1)%(0 , 1) converges

absolutely for all 0 2 ✓, the Riemann rearrangement theorem says that every rearrangement

converges absolutely to the same value (Rudin, ����, Thm. �.��). For each 0 2 ✓, ��1
0

is

bĳective, so

’
12✓

⌧ (0 , 1)%(0 , 1) =
’
12✓

⌧ (0 ,��1
0
1)%(0 ,��1

0
1) (�.��)

converges absolutely. Further, theorem �.�.� says that ⇠ satisfies %(0 , 1) = ⇠(�01) for all

1 2 ✓, so

’
12✓

⌧ (0 ,��1
0
1)%(0 ,��1

0
1) =

’
12✓

m(1)⇠(1) = E⇠[m(/1)]. (�.��)

Combining eqs. (�.��) and (�.��) yields that

’
12✓

⌧ (0 , 1)%(0 , 1) = E⇠[m(/1)] (�.��)

converges absolutely. Thus m(/1) has finite expectation.

This allows us to apply Kolmogorov’s strong law of large numbers (Jacod & Protter,

����, Thm. ��.�):

lim
C!1

1
C

C�1’
8=0

m(/8+1) = E⇠[m(/1)] (�.��)

holds both ⇠-almost surely and in !1. Since the /8s have the law ⇠ under P, eq. (�.��) holds

P-almost surely. For any C 2 N>0, we have

1
C

C�1’
8=0

m(/8+1) =
1
C

C�1’
8=0
⌧ (-8 ,��1

-8

/8+1) =
1
C

C�1’
8=0
⌧ (-8 ,-8+1). (�.��)

For any B 2 N, the definition of expectation and -’s Markov property yield

EP[⌧ (-B ,-B+1)] =
’
02✓

’
12✓

⌧ (0 , 1)P(-B = 0)%(0 , 1) =
’
02✓

P(-B = 0)
’
12✓

⌧ (0 , 1)%(0 , 1),

and, by eq. (�.��),

=
’
02✓

P(-B = 0)E⇠[m(/1)]

= E⇠[m(/1)]. (�.��)

Combining eqs. (�.��) to (�.��) yields the result. ⇤
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�.�.� Infinite State Spaces. Infinite state spaces cannot always usefully bear p-uniform

functions.

Theorem �.�.��. Suppose ✓ is countably infinite and 5 : ✓ ⇥ ✓ ! R is p-uniform. ThenÕ
0 ,12✓ 5 (0 , 1) converges absolutely if and only if 5 is identically zero.

Proof. Suppose 5 : ✓ ⇥ ✓ ! R is p-uniform. Using lemma �.�.�, pick 6 : ✓ ! R and a

set {�0}02✓ of permutations such that 5 (0 , 1) = 6(�01) for all 0 , 1 2 ✓. Order ✓ as, say,

{B1 , B2 , . . . } = ✓.

For each 0 2 ✓, the ✓ 1(✓) norm of row 0 of 5 is

k 5 (0 , ·)k1 =
’
12✓

| 5 (0 , 1)| =
’
12✓

|6(�01)| =
1’
8=1

|6(�0 B8)|.

Because of the absolute value bars, the series either diverges or converges absolutely. By the

Riemann rearrangement theorem, for all 0, k 5 (0 , ·)k1 =
Õ
12✓ |6(1)| C ⌘ either converges

absolutely to the common value ⌘ or diverges to ⌘ = 1 (because �0 is a bĳection) (Rudin,

����, Thm. �.��). In particular, our choice of order for ✓ did not matter.

By Fubini’s theorem (J. K. Hunter & Nachtergaele, ����, Thm. ��.��),
Õ
0 ,12✓ 5 (0 , 1)

converges absolutely if and only if

’
0 ,12✓

| 5 (0 , 1)| =
’
02✓

"’
12✓

| 5 (0 , 1)|
#
.

The right-hand side equals
Õ
02✓ k 5 (0 , ·)k1 =

Õ
02✓ ⌘. However,

Õ
02✓ ⌘ converges if and only

if ⌘ = 0 if and only if 5 is identically zero. ⇤

The Riemann rearrangement theorem says that a conditionally convergent series

that does not converge absolutely can be rearranged to converge to any value at all or to

diverge (Rudin, ����, Thm. �.��). If we an pick a good ordering of ✓ = {B1 , B2 , . . . } and the

permutations {�0}02✓ are well chosen, a p-uniform 5 could yield a sequence of k 5 (B8 , ·)k1

whose series converges. But this requires getting lucky.

Corollary �.�.��. Suppose ✓ is countably infinite, and let 5 : ✓ ⇥ ✓ ! R be p-uniform. Order

✓ = {B1 , B2 , . . . }. Then
Õ1
8 , 9=1 5 (B8 , B9) converges only if 5 is identically zero or

Õ1
9=1 5 (0 , B9)

converges conditionally but not absolutely for all 0 2 ✓.
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Proof. The proof of theorem �.�.�� explains why
Õ1
9=1 5 (0 , B9) must converge but not abso-

lutely for all 0 2 ✓. If 5 is identically zero, then the series converges absolutely and thus also

conditionally. ⇤

�.�.� Finite State Spaces. In this subsection we discuss the linear algebraic structure of

p-uniform stochastic matrices over non-empty, finite state spaces with = 2 N elements. For

8 2 [=], let e8 be the 8th standard basis vector in R= and let 1 = (1, . . . , 1). If µ is an =-vector,

then 1«µ = 1 · µ =
Õ
=

8=1 ⇠8 .

Does being p-uniform constrain a matrix’s rank? According to the next theorem,

not only is the answer no as long as the rows of the matrix aren’t the uniform distribution,

but the complexity is low for the the permutations needed to achieve a full rank, p-uniform

matrix. In particular, the set ' in the statement contains only 2
�
=

2
�

permutations.

Theorem �.�.��. Let µ be a stochastic vector in R= . Pick 8 < 9 2 [=] such that ⇠8 < ⇠9 , or, if

those don’t exist, pick any 8 , 9 2 [=]. Denote the set of permutations on [=] by (= . Let ' ✓ (= be

the set of permutations on [=] including permutations of the forms (: 8)(✓ 9) and (8 9)(: 9)(✓ 8) for

: < ✓ 2 [=], where we interpret permutations of the form (8 8) to be the identity. Let � and ⌫ be

the sets of =-vectors obtained by applying some permutation in ' or (= , respectively, to µ. Denote

+ B span�.

Then + = span ⌫. If µ is the uniform distribution, then + = span{µ} = span{1}. If µ is

not the uniform distribution, then + = R= .

Proof. Since � ✓ ⌫ ✓ R= , we have � ⇢ span� = + ✓ span ⌫ ✓ R= , and hence dim+ 

dim span ⌫. µ’s entries are nonnegative and sum to one, so µ is not the zero vector, and hence

0 < dim+ . If µ is the uniform distribution, then all entries of µ are equal, so � = ⌫ = {µ},

and+ = span ⌫ = span{1} since 1 = =µ. span{1} is the set of all vectors whose coordinates

are constant.

Thus we may assume µ is not uniform, so it has two entries not equal to each other,

⇠8 < ⇠9 , where 8 < 9 2 [=]. If we can prove that + = R= , then + ✓ span ⌫ = R= as well.

First we show that +? ✓ span{1}. Our proof of this claim follows Lahtonen (����).

Suppose to the contrary that +? * span{1}, so that for some u 2 +?, D: < D✓ for some
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: < ✓ 2 [=]. Let ↵ 2 � be the vector whose entries are those of µ under the permutation

(: 8)(✓ 9), and � 2 � be the same but under (8 9)(: 9)(✓ 8) = (8 : 9 ✓ ). In other words,

�: = ⇠9 = �✓ �8 = ⇠: = �8

�✓ = ⇠8 = �: � 9 = ⇠✓ = � 9

and �⌘ = ⇠⌘ = �⌘ , for all ⌘ 2 [=] \ {8 , 9 , : , ✓ }. Then ↵ � � = (⇠8 � ⇠9)e: + (⇠9 � ⇠8)e✓ . Since

u 2 +? and ↵,� 2 � ⇢ + , we also have u«↵ = 0 = u«�. Hence

0 = 0 � 0 = u«↵ � u«� = u«(↵ � �)

= (⇠8 � ⇠9)D: + (⇠9 � ⇠8)D✓

= (⇠8 � ⇠9)(D: � D✓ ).

But ⇠8 < ⇠9 and D: < D✓ , so this is a contradiction. Therefore +? contains no vector with

unequal coordinates, i.e., +? ✓ span{1}.

That +? = {0}, and thus + = R= , follows from the fact that 1 8 +?. This is because

µ 2 + and 1«µ = 1 < 0. +? is a subspace contained in span{1} but not containing 1. The

only such subspace is {0}. ⇤

The following characterization of p-uniform matrices will facilitate the next several

results.

Lemma �.�.��. Let % be a p-uniform = ⇥ = matrix, and let µ be a permutation of a row of %. Then,

for some permutation matrices ⇧A , A 2 [=], we have

% =
=’
A=1

eA⇠«⇧A . (�.��)

Further, for all stochastic vectors v 2 R= there exists a doubly stochastic matrix ⇡ 2 R=⇥= such that

v«% = µ«⇡.

Proof. For each row A, let ⇧A be the = ⇥ = permutation matrix such that the Ath row of % is

⇠«⇧A (so ⇧A is the permutation matrix corresponding to ��1
A

in the notation of lemma �.�.�).

This proves eq. (�.��).
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Let v be a stochastic =-vector, so
Õ
=

A=1 EA = 1 and v > 0. Then we have v«% =Õ
=

A=1 EAµ
«⇧A = µ«(Õ=

A=1 EA⇧A). By the Birkhoff-von Neumann theorem (see, e.g., Bertsimas

& Tsitsiklis, ����, Exercise �.��; but the theorem may have first appeared in König, ����,

chap. ���, § �), the matrix ⇡ =
Õ
=

A=1 EA⇧A is doubly stochastic. ⇤

For much more on the relationship between doubly stochastic matrices and the set

of permutations of a vector, see Marshall et al. (����). This includes a characterization of the

convex hull of the set of permutations of a vector µ as the image of µ under all the doubly

stochastic matrices. We include just one application here to the stationary distributions of

p-uniform stochastic matrices. If x 2 R= , let G(8) denote the 8th order statistic of x, meaning

the 8th smallest entry of x, so G(1)  · · ·  G(=). If x, y 2 R= , we write x � y and say that y

majorizes (Marshall et al., ����, Def. �.�.A.�, p. �) x if

:’
8=1

G(=�8+1) 
:’
8=1

H(=�8+1) for all : 2 [= � 1] and
=’
8=1

G8 =
=’
8=1

H8 .

Theorem �.�.��. Let % be an = ⇥ =, p-uniform, stochastic matrix with a stationary distribution v.

Then any permutation of a row of % majorizes v.

Proof. Let µ be any permutation of a row of %, as in lemma �.�.�. By lemma �.�.��, there

exists some doubly stochastic, = ⇥ = matrix ⇡ such that µ«⇡ = v«% = v«, so v = ⇡
«µ. Since

⇡ is doubly stochastic, so is ⇡«. By the Hardy-Littlewood-Pólya theorem (Marshall et al.,

����, Thm. �.�.B.�, p. ��), v � µ. ⇤

A corollary(Marshall et al., ����, Cor. �.�.B.�, p. ��) to the Hardy-Littlewood-Pólya

theorem implies that

v 2 conv hull{⇧µ | ⇧ is a permutation matrix},

but this is weaker than the simpler statement that v is in the convex hull of the rows of %.

The next lemma helps bound the norm of a p-uniform matrix.

Lemma �.�.��. Let % be a p-uniform = ⇥ = matrix, and let µ be a permutation of a row of %. The

diagonal entries of %%« are all equal to k⇠k22.
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Proof. The A , 2 entry of %%« is the dot product of the Ath and 2th rows of %. Using eq. (�.��),

the Ath row of % is µ«⇧A for some permutation, hence orthogonal, matrix ⇧A . Thus the A , A

entry of %%« is (µ«⇧A)(µ«⇧A)« = µ«⇧A⇧«Aµ = µ«�µ = µ«µ = kµk22. ⇤

Recall that if % is an = ⇥ = real matrix, its Hilbert-Schmidt or Frobenius norm

k%k� =
p

tr%%«, the the square root of the sum of squares of the singular values of %, which

is also equal to the square root of the sum of squares of the entries of % (Trefethen & Bau,

����, pp. ��–��). The �-norm k%k1, �-norm k%k2, and 1-norm k%k1 are the maximum

absolute column sum, largest singular value, and maximum absolute row sum respectively

(Trefethen & Bau, ����, pp. ��–�� and Thm. �.�). ⌧(%) is the spectral radius, i.e., the

maximum absolute value of an eigenvalue of % (Trefethen & Bau, ����, Exercise �.�). Golub

and Van Loan (����/����, Eq. �.�.�� on p. ��) says that 1p
=

k%k1  k%k2. We can say much

more about p-uniform matrices and especially p-uniform, stochastic matrices.

Lemma �.�.�� (Norms). Let % be a p-uniform = ⇥ = matrix whose rows are permutations of

the =-vector µ. Then k%k� =
p
=kµk2,

p
=

A
kµk2  k%k2 

p
=kµk2 where A = rank%, and

k%k1  =kµk1. These inequalities are sharp.

Additionally, if µ is a stochastic vector so that % is a stochastic matrix, then | det% |  1

and

1
=

 kµk1  kµk2  kµk1 = k%k1 = 1 = ⌧(%)  k%k2 
8>>><
>>>:
k%k� =

p
=kµk2p

k%k1 
p
=kµk1


p
=.

These inequalities are sharp. Finally, k%k1 = 1 if and only if % is doubly stochastic if and only if

k%k2 = 1.

Proof. First suppose % is p-uniform and that its rows are permutations of the vector µ. Each

diagonal entry of %%« equals kµk22 by lemma �.�.��, so k%k2
�
= tr%%« =

Õ
=

8=1 kµk22 = =kµk22.

Denote %’s singular values as B1 � B2 � · · · � BA > 0 = BA+1 = · · · = B= (Trefethen & Bau, ����,

Thm. �.�). By Trefethen and Bau (����, Thm. �.�), k%k22 = B
2
1  B2

1 + · · · + B2
A
= k%k2

�
= =kµk22.

Thus =kµk22 =
Õ
A

8=1 B
2
8
 Õ

A

8=1 B
2
1 = AB

2
1 . These inequalities are sharp, for example in the case
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µ = 1
=
1 so that A = 1. By Trefethen and Bau (����, Example �.�),

k%k1 = max
22[=]

=’
8=1

|%8 ,2 | 
=’
8=1

max
22[=]

|%8 ,2 | 
=’
8=1
kµk1 = =kµk1.

This inequality is sharp, for example in the case that % = 1e«1, the matrix whose first column

is all ones and has zeros everywhere else.

Now suppose further that µ is a stochastic vector so that % is a stochastic matrix. This

means that 1 =
Õ
=

8=1 µ8 
Õ
=

8=1 kµk1 = =kµk1, so 1/=  kµk1. This is sharp by µ = 1
=
1.

That kµk1  kµk2  kµk1 comes from Golub and Van Loan (����/����, Eqs. �.�.�–� on

p. ��), and is sharp by µ = e1. kµk1, the sum of the entries of µ, is the sum of the entries

of every row of % and thus equals kµk1 = k%k1, the largest such sum. % is stochastic, so

k%k1 = 1, and %1 = 1.

The latter equation shows that 1  ⌧(%). By Gerschgorin’s circle theorem (Trefethen

& Bau, ����, Exercise ��.�), every eigenvalue ⌫ of % lies in one of the closed circular disks

in the complex plane centered at a diagonal entry %8 ,8 of % with radius
Õ
2<8 %8 ,2 . %’s being

stochastic means that
Õ
2<8 %8 ,2 = 1 � %8 ,8 . Therefore |%8 ,8 � ⌫|  1 � %8 ,8 , so |⌫|  1, and thus

⌧(%)  1. Consequently, 1 = ⌧(%) and | det% |  (⌧(%))= = 1.

It is always the case that ⌧(%)  k%k2 (Trefethen & Bau, ����, Exercise �.�). We

already showed above that k%k22  k%k2� = =kµk22  =.

Golub and Van Loan (����/����, Cor. �.�.� on p. ��) says that k%k2 
p
k%k1k%k1

always, so in our case in which k%k1 = 1, we also have k%k2 
p
k%k1. This is sharp

when both values equal one, for example when µ = 1
=
1. We already showed above that

k%k1  =kµk1  =.

Finally we prove that k%k1 = 1 if and only if % is doubly stochastic if and only if

k%k2 = 1. First suppose that % is doubly stochastic. Then every column of % sums to one, so

k%k1 = 1. Second suppose that k%k1 = 1. Since 1  k%k2 
p
k%k1 = 1, we have k%k2 = 1.

Third suppose that k%k2 = 1 but that % is not column stochastic (i.e., % is a stochastic matrix

but not a doubly stochastic matrix) (The remainder of this proof follows user����, ����).

Then 1«% is not a scalar multiple of 1 and thus the Cauchy-Schwarz theorem (Axler, ����,

Thm. �.�) says that |1«%1| < k1«%k2k1k2. % is stochastic so |1«%1| = =, and we know that
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k1k2 =
p
=. Thus

p
= < k1«%k2. By the definition of the �-norm (Trefethen & Bau, ����,

Eq. �.�), k1«%k2  k1k2k%k2, but k%k2 = 1, so
p
= < k1«%k2  k1k2 =

p
=, a contradiction.

Therefore % is doubly stochastic. ⇤

The bound
p
=

A
kµk2  k%k2 is not useful—we already know 1  k%k2—unlessp

A

=
 kµk2. The rank A of % depends not just on µ but also on the permutations �8 that

each row %
«
8

is of µ. For example, if µ = 1
=
1, A = 1 since every row is the same regardless

of the permutations. If µ = e1, % could be the matrix 1e«1 or the identity �, or something

in between, depending on the permutations. The first has rank A = 1 and the second rank

A = =. The first has k1e«1k2 =
p
= and the second has k�k2 = 1.

�.�.�.� Symmetry. A sufficient condition for a stochastic matrix to be doubly stochastic is

that it be symmetric, because then 1« = (%1)« = 1«%« = 1«%. In this sub-subsection we look

at some necessary and sufficient conditions for this.

Let � B {�8}=
8=1 be a set of permutations of [=]. We say that � is symmetric if

�8 9 = � 9 8 for all 8 , 9 2 [=]. A Latin square is an = ⇥ = matrix that contains each number one

through = exactly once in each row and exactly once in each column (Marshall et al., ����,

Example �.�.H.�, p. ��). We say that � determines a Latin square if the matrix (�8 9)=
8 , 9=1 is a

Latin square. A quasi-group (& , ⇤) is a set& together with a binary operation ⇤ : &⇥& ! &

such that, for each G , H 2 &, there is a unique D 2 & with D ⇤ G = H and a unique E 2 & with

G ⇤ E = H (Robinson, ����, Exercise ��.�.�, p. ���). We say that � determines a quasi-group

if ⇤ : [=] ⇥ [=]! [=] defined by 8 ⇤ 9 = �8 9 makes ([=], ⇤) a quasi-group. The multiplication

table of a quasi-group is the matrix (8 ⇤ 9)8 , 92& . Every Latin square is the multiplication table

of some finite quasi-group and every finite quasi-group’s multiplication table is a Latin

square (Robinson, ����, Exercises ��.�.� and ��.�.�, p. ���).

Lemma �.�.��. Let % be a p-uniform = ⇥ = matrix with permutations � B {�8}=
8=1, and let µ be

an =-vector such that %89 = ⇠�8 9 . If � is symmetric, then it determines a symmetric Latin square

and a commutative quasi-group, and % is symmetric. Conversely, if % is symmetric and the entries

of µ are all distinct, then � is symmetric.

Proof. ( =) ). Suppose � is symmetric, so �8 9 = � 9 8 for all indices 8 and 9. Then %89 = ⇠�8 9 =
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⇠�9 8 = %98 for all indices 8 and 9. Define the = ⇥ = matrix � B (�8 9)=
8 , 9=1. Let 8 and : be

numbers from one to =. �8 is a permutation, so there is exactly one 9 such that �89 = �8 9 = :.

Thus : shows up exactly once on row 8 of �. Now we know that : also appears at least

once in column 9 at row 8. Suppose it exists also in another row, say A, in column 9. Then

� 9 8 = �8 9 = �A 9 = � 9 A. � 9 is a permutation, so we can cancel it from both sides of the

equation, leaving 8 = A. This violates our choice of A, so no such A exists. Thus � is Latin

square, and moreover a symmetric one since �89 = �8 9 = � 9 8 = �98 for all indices 8 and 9.

That is, � determines a symmetric Latin square.

Finally, � determines a quasi-group where ([=], ⇤), ⇤ : [=] ⇥ [=] ! [=] defined by

8 ⇤ 9 = �8 9. This is because if 8 , : 2 [=], then : = D ⇤ 8 = �D 8 = �8D and : = 8 ⇤ E = �8E imply

that D = ��1
8
: = E uniquely. The quasi-group is commutative because 8 ⇤ 9 = �8 9 = � 9 8 = 9 ⇤ 8.

% is symmetric because %89 = ⇠�8 9 = ⇠�9 8 = %98 .

( (= ) Suppose % is symmetric and the entries of µ are unique. %’s symmetry

implies that for some indices 8 and 9, ⇠�8 9 = %89 = %98 = ⇠�9 8 . The uniqueness of the entries

of µ implies that �8 9 = � 9 8. ⇤

A loop is a quasi-group that also has an identity element (Smith & Romanowska,

����, chap. �, § �, p. ��).

Corollary �.�.��. If � is symmetric and there is some I 2 [=] such that �I is the identity

permutation, then I is the only H 2 [=] such that �H is the identity permutation, and � determines

a commutative loop with identity element I and where the inverse of 8 2 [=] is ��1
8
I.

Proof. By lemma �.�.��, � determines a commutative quasi-group where ([=], ⇤), ⇤ : [=] ⇥

[=]! [=] defined by 8 ⇤ 9 = �8 9. To see that I is an identity of the quasi-group, take 8 2 [=].

Since �I is the identity, 8 = �I 8. By symmetry, �I 8 = �8 I. Thus 8 = I ⇤ 8 = 8 ⇤ I.

If H 2 [=] were such that �H were the identity permutation, then �8 H = 8 ⇤ H = 8 =

8 ⇤ I = �8 I, so H = I since �8 is a permutation. Consequently I is the unique such element.

Finally (��1
8
I) ⇤ 8 = 8 ⇤ (��1

8
I) = �8��1

8
I = I, so ��1

8
I is the inverse of 8 in the

quasi-group. ⇤

Loops are important because they arise from a commonly used set operator.
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Example �.�.��. If � and ⌫ are sets, then the symmetric difference �4⌫ is defined as

�4⌫ B (� [ ⌫) \ (� \ ⌫) = (� \ ⌫) [ (⌫ \ �), all the elements in exactly one of � or ⌫.

If the state space ✓ is a field of sets (closed under intersection and union), then we can

define permutations �� : ✓! ✓ for each � 2 ✓ by ��⌫ B �4⌫. The symmetric difference

operator is commutative because unions are commutative. The empty set ; is the identity

for 4 because ;4⌫ = ⌫. Every set is its own inverse under 4 because �4� = ;. Thus, by

corollary �.�.��, {��}�2✓ determines a loop (✓, 4) with identity ; and where the inverse

of each element is the element itself. (In fact, because 4 is associative, (✓, 4) is an abelian

group.) ⇤

The next example shows that symmetric permutations always exist for finite state

spaces.

Example �.�.��. For each 8 2 [=], let 8%= denote the integer value (rather than the modular

congruence class) remaining after = divides 8, but identify 0 with =. More precisely,

8%= =

8>>>><
>>>>:
9 if 8 ⌘ 9 (mod =) for some 9 2 {1, . . . , = � 1}

= if 8 ⌘ 0 (mod =).

In particular, (8%=) is the unique integer in [=] = {1, . . . , =} such that (8%=) ⌘ 8 (mod =).

Define the permutation �8 for 8 2 [=] by �8 9 = (8 + 9 � 1)%=. � inherits its symmetry

from addition’s commutativity. For each 9 2 [=], the identity permutation is �1 because

�1 9 = (1 + 9 � 1)%= = 9%= = 9. Thus, corollary �.�.�� says that � determines a loop with

identity 1. The inverse of 9 is the unique solution G to the equation 1 = � 9 G. We can verify

that G = ��1
9

1 = 2 � 9 because � 9 G = (9 + 2 � 9 � 1)%= = 1%= = 1.

To give a sense of the structure of �, below is the matrix (�8 9)=
8 , 9=1 for = = 7, and, for

contrast, the circulant matrix ⇠ for =-vectorµ defined by ⇠ = (⇠[8�9 (mod =)]+1)=
8 , 9=1 (Trefethen
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& Bau, ����, p. ���).
266666666666666666666664

1 2 3 4 5 6 7

2 3 4 5 6 7 1

3 4 5 6 7 1 2

4 5 6 7 1 2 3

5 6 7 1 2 3 4

6 7 1 2 3 4 5

7 1 2 3 4 5 6

377777777777777777777775|                        {z                        }
matrix for �

266666666666666666666664

1 7 6 5 4 3 2

2 1 7 6 5 4 3

3 2 1 7 6 5 4

4 3 2 1 7 6 5

5 4 3 2 1 7 6

6 5 4 3 2 1 7

7 6 5 4 3 2 1

377777777777777777777775|                        {z                        }
circulant matrix for (1,...,7)

⇤

The effect of symmetry on transition matrices is on the eigenspace, specifically the

stationary distribution.

Corollary �.�.��. Let % be a p-uniform =⇥= stochastic matrix with a symmetric set of permutations

{�8}=
8=1 such that %

8 ,��1
8
9
= %

: ,��1
:
9
for all 8 , 9 , : 2 [=]. Then % is symmetric and doubly stochastic,

so the uniform distribution is a stationary distribution. If % is also irreducible, then %’s unique

stationary distribution is the uniform distribution.

Proof. %’s symmetry and double stochasticity follow from lemma �.�.�� and the paragraph

before it. The second statement follows from the Perron-Frobenius theorem (Godsil & Royle,

����, Thm. �.�.�). ⇤

In the symmetric� case, the doubly stochastic matrix⇡ that lemma �.�.�� says must

exist in the equation 1
=
1«% = µ«⇡ is ⇡ = 1

=

Õ
=

A=1⇧A = 1
=
11«, where ⇧A is the permutation

matrix corresponding to ��1
A

according to the proof of lemma �.�.��. That 1
=

Õ
=

A=1⇧
«
A
= 1

=
11«

follows from the symmetry of � because if ⇧«
@

and ⇧«
A

both had a one in the :th row, then

�@ : = �A : and thus �: @ = �:A by symmetry. Since �: is a permutation, @ = A.

The following corollary applies theorem �.�.�� to derive a general theorem about

majorization.

Corollary �.�.��. Every stochastic =-vector µ majorizes 1
=
1, meaning that

:

=

�
:’
8=1

⇠(8) for all : 2 [=]. (�.��)
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Proof. Use the permutations � defined in example �.�.�� to come up with the = ⇥ = matrix %

by %89 = ⇠�8 9 , which is doubly stochastic with stationary distribution 1
=
1 by corollary �.�.��.

From theorem �.�.��, 1
=
1 � µ, and by the definition of majorization, the inequalities in

eq. (�.��) follow. ⇤

�.�.� Permutation Uniformity and ���s. In this subsection, we show that p-uniformity

preserves ��� structure; we have already discussed convergence of mean parameters of

p-uniform ���s in and around theorem �.�.�.

Feigin (����) presented a theorem about ����s in a spirit similar to our present

investigation of ���s’ relationship with ��� sequences. It supposed - was real valued and

✏ was a ���� as in eq. (�.�) whose natural parameter space is open. Feigin (����, Thm. �)

derived an additive process (partial sums of ��� real-valued random variables) with the

same law as a certain function of - when ⌧ (0 , ·) is invertible in the second slot. On a finite

state space and with �(0 , ·) constant, invertibility of ⌧ (0 , ·) in the second slot is equivalent

to the transition matrix’s having distinct numbers in every entry of a row. This is similar

to the distinctness requirement of Rosenblatt (����, Lem. �). Feigin (����, Thm. �) derived

strong consistency of ��� and a central limit theorem for the Fisher information of a ����

under the invertibility assumption.

In terms of theorem �.�.�, the next proposition and its corollary show that if - is

p-uniform, then its distribution comes from an ��� if and only if /’s distribution comes

from an exponential family. We say that✏ is p-uniform under� if %✓(0 ,��1
0
2) = %✓(1 ,��1

1
2)

for all 0 , 1 , 2 2 ✓ and all ✓ 2 ⇥. In this case, for each ✓ 2 ⇥, lemma �.�.� says that there

exists a ��� ⇠✓ such that %✓(0 , 1) = ⇠✓(�01) for all 0 , 1 2 ✓. Put � B {⇠✓}✓2⇥.

Proposition �.�.��. Suppose ✏ is p-uniform as above. If ✏ is the ��� given in eq. ��.��, then �

is an exponential family� ⇠✓(1) = �(0 ,��1
0
1) exp

�
⌘(✓) · ⌧ (0 ,��1

0
1) � ✓(0 , ✓)

�
for any 0 , 1 2 ✓

and ✓ 2 ⇥. Conversely, if � is the exponential family given in eq. ��.��, then ✏ is an ����

%✓(0 , 1) = �(�01) exp
�
⌘(✓) · ⌧ (�01) � ✓(✓)

�
for any 0 , 1 2 ✓ and ✓ 2 ⇥.

Proof. Prove the forward implication by plugging ⇠✓(1) = ⇠✓(�0��1
0
1) = %✓(0 ,��1

0
1) into

eq. (�.�). Prove the converse by plugging %✓(0 , 1) = ⇠✓(�01) into eq. (�.�). ⇤
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Corollary �.�.��. If ✏ is p-uniform and a ���, then it is an ���.

Proof. Proposition �.�.�� says that, if ✏ is p-uniform and a ���, then � is an exponential

family, which in turn implies that ✏ is an ���. ⇤

Next, observation �.�.�� and theorem �.�.�� give necessary and sufficient conditions

for an ��� to be p-uniform in terms of the p-uniformity of the carrier measure � and

sufficient statistic ⌧ . First we give the sufficient condition.

Observation �.�.��. If ✏ is the ��� given in eq. (�.�) and ⌧ and � are p-uniform both under �,

then ✏ is p-uniform under �.

Proof. For all 0 , 1 , 2 2 ✓ and all ✓ 2 ⇥,

%✓(0 ,��1
0
1) = �(0 ,��1

0
1) exp

⇣
⌘(✓) · ⌧ (0 ,��1

0
1) � ✓(0 , ✓)

⌘
(�.��)

= �(2 ,��1
2
1) exp

⇣
⌘(✓) · ⌧ (2 ,��1

2
1) � ✓(0 , ✓)

⌘
(�.��)

We set � equal to the sum of eq. (�.��) over all 1 2 ✓ and rearrange to obtain

exp(✓(0 , ✓)) =
’
12✓

�(0 ,��1
0
1) exp

⇣
⌘(✓) · ⌧ (0 ,��1

0
1)
⌘
. (�.��)

Doing the same thing to eq. (�.��) and replacing 0 with 2 in eq. (�.��) reveals that

✓(0 , ✓) = ✓(2 , ✓). Thus eq. (�.��) equals

�(2 ,��1
2
1) exp

⇣
⌘(✓) · ⌧ (2 ,��1

2
1) � ✓(2 , ✓)

⌘
= %✓(2 ,��1

2
1). ⇤

The exact converse of the above Observation is not quite true. If � is zero in a couple

positions, then the corresponding values of ⌧ are unconstrained. We also need ⇥ to be big

enough to determine which hyperplanes the different values of ⌧ lie in. We manage the

latter concern in theorem �.�.�� by assuming that ⌘ has affinely independent entries.

Theorem �.�.��. Suppose that ✏ is the ��� from eq. ��.�� and is p-uniform under �. Then �

is p-uniform under �. Further, if � is never zero and ⌘ has affinely independent entries, then ⌧ is

p-uniform under �.



��

Proof. Fix 0 , 1 , 2 2 ✓. If �(0 ,��1
0
1) = 0, then 0 = %✓(0 ,��1

0
1) = %✓(2 ,��1

2
1) for all ✓ 2 ⇥.

Since exp > 0 on R, we must have �(2 ,��1
2
1) = 0 as well.

By the same token, suppose �(0 ,��1
0
1) > 0, and notice that �(2 ,��1

2
1) > 0 as well.

Then rearranging the equation %✓(0 ,��1
0
1) = %✓(2 ,��1

2
1) yields

⌘(✓) · [⌧ (2 ,��1
2
1) � ⌧ (0 ,��1

0
1)] = log

�(0 ,��1
0
1)

�(2 ,��1
2
1)

for all ✓ 2 ⇥.

Since the right side is constant with respect to ✓, affine independence of ⌘’s entries implies

that ⌧ (2 ,��1
2
1) � ⌧ (0 ,��1

0
1) = 0 and log(�(0 ,��1

0
1)

�
�(2 ,��1

2
1) ) = 0. ⇤

A variety of hypotheses familiar in exponential family theory imply that ⌘ has

affinely independent entries, justifying the application of theorem �.�.��. These hypotheses

assume alternately that �. eq. (�.�) is a minimal representation of the 0th row of % 2 ✏,

meaning that ⌧ (0 , ·) and ⌘ both have affinely independent entries (Barndorff-Nielsen, ����,

Cor. �.�, p. ���; Küchler & Sørensen, ����, p. ��; Wainwright & Jordan, ����, p. ��); �. ⌘(⇥)

contains an open, ✓ -dimensional set (Casella & Berger, ����, Thms. �.�.�� or �.�.��, pp. ���,

���); or �. ⌘(⇥) contains ✓ + 1 affinely independent vectors (E. L. Lehmann & Casella, ����,

Cor. �.��, p. ��). Item � implies item �, which in turn implies that ⌘ has affinely independent

entries; the straightforward proof is as follows.

To prove the first implication, for 8 2 [✓ ], let e8 be the 8th standard basis vector in R✓ .

The open set contains an open ball centered at some vector c with radius some A. The list

of ✓ + 1 vectors c, A2e1 + c, . . . , A2e✓ + c is affinely independent.

For the second implication, consider any ✓ + 1 affinely independent vectors in

⌘(⇥), say, ⌘(✓0), . . . , ⌘(✓✓ ). Then ⌘(✓1) � ⌘(✓0), . . . , ⌘(✓✓ ) � ⌘(✓0) are linearly indepen-

dent(Bertsimas & Tsitsiklis, ����, chap. �, § �, Def. �.�, p. ���). Form an ✓ ⇥ ✓ matrix �

with these vectors as columns. Suppose � 2 R✓ and ⌘ 2 R are such that � · ⌘(✓) = ⌘ for

all ✓ 2 ⇥. Then � · (⌘(✓8) � ⌘(✓0)) = 0 for all 8 2 [✓ ], and hence �«� = 0. By the linear

independence of �’s columns, � = 0, and thus ⌘ = 0. Hence ⌘ has affinely independent

entries.

Recall from eq. (�.��) that for an ��� % defined in eq. (�.�), we defined '(✓) =

{⌘(✓) · ⌧23 | �23 < 0} and (2(✓, A) = {3 | ⌘(✓) · ⌧23 = A} for A 2 '(✓). When % is p-uniform,
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we can strengthen eq. (�.��) with the following result.

Lemma �.�.��. If % is a p-uniform ��� defined in eq. ��.�� such that ⌧ is p-uniform with the same

permutations {�0}02✓ as %, then, for all ✓ 2 ⇥, A 2 R(✓), and 0 , 1 2 ✓, (0(✓, A) is isomorphic to

(1(✓, A) under the bĳection ��1
0
�1 .

Proof. Suppose 2 2 (0(✓, A). A = ⌘(✓) · ⌧ (0 , 2) = ⌘(✓) · ⌧ (1 ,��1
1
�0 2). Thus ��1

1
�0 2 2 (1(✓, A).

The backward implications are also true. ⇤

�.� Markov Chains of Graphs

In this section, we apply the theories of ���s and of p-uniform Markov chains to

some of the network models that Hanneke et al. (����) proposed. We find that some of

them are p-uniform and thus ���s. For two of the models, we can avoid ���� for ���,

which is what Hanneke et al. used; instead we give a closed form for the ���. We also

explore the relationships among p-uniformity, ���s, and statistical independence of the

random edges in the graphs. The main result in theorems �.�.� and �.�.� is that we may

replace C observations of a p-uniform Markov chain of graphs with a single observation of

a corresponding multigraph. We introduce exponential random C-multigraph models for this

purpose.

Let the state space ✓ be the set G= ,C of loopless multigraphs on the vertex set

[=] B {1, . . . , =} (= � 2) where each edge has multiplicity at most C 2 N>0. Each potential

edge or non-edge comes from the set D= B
�[=]

2
�

of dyads whose elements {8 , 9} ✓ [=]

we may write as 8 9 or 98 when the meaning is clear. Let # B |D= | =
�
=

2
�
. We identify

a multigraph 6 with its edge-multiplicity vector g 2 {0, 1, . . . , C}D= ⌘ G= ,C . This is the

vectorization of the adjacency matrix of 6. If g 2 G= ,C and 5 2 D= , then 6( 5 ) is the

multiplicity of dyad 5 . The edge set ⇢(g) is { 5 2 D= | 6( 5 ) > 0}. The complement of g is

g B C1 � g.

An exponential random graph model (����) is an exponential family defined on

simple graphs, G= ,1. We introduce the analogous family of models for multigraphs.

Definition �.�.�. We call an exponential family defined on G= ,C an exponential random

C-multigraph model (C-�����).
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The choice of which ���� to use in practice depends on identifying the sufficient

statistics appropriate for specific data. Those statistics may incorporate node covariates,

leading to models that Fienberg et al. (����) introduced and whose ��� Yan et al. (����)

investigated. Fienberg et al. contrasted microanalytic studies, such as Snĳders (����), em-

ploying node covariates with macroanalytic studies solely of network topology—our focus

in the sequel. Many popular macroanalytic models, which Goldenberg et al. (����) sur-

veyed, rely on statistics built on subgraph counts. The simplest choice of subgraph is the

single edge.

Example �.�.� (Erdős-Rényi Graph Model). This ���� arises by choosing edges of random

graph G independently each with probability ?. The probability of G = g is ?⇢(g)(1 �

?)#�⇢(g) = exp
⇥
log(?/(1 � ?) )⇢(g) + # log(1 � ?)

⇤
. The parameter function is◆(?) = log ?

1�? ,

sufficient statistic is ⇢(g), and the log-partition function is �# log(1 � ?) (Chatterjee &

Diaconis, ����, § �.�). ⇤

Chatterjee and Diaconis (����) treated subgraph counts in a general context. Specific

choices of subgraphs were made in the studies in Bannister et al. (����) of counts of triangles,

in Park and Newman (����) of counts of two-stars, or in Snĳders et al. (����) of a complicated

combination of degree counts, triangles, and �-stars. Chatterjee et al. (����), Holland and

Leinhardt (����), and Rinaldo et al. (����) used degree sequences—equivalent to counting

labeled :-stars.

Example �.�.� (� Model). This is the ���� whose sufficient statistic is the degree sequence

�(G). The probability of G = g is exp
�
�(g) · log✓ � ✓(✓)

�
= 4

�✓(✓) Œ
DE2⇢(g) DE . The

parameter E represents the attractiveness of vertex E (Petrović, ����). The log-partition

function is ✓(✓) = Œ
=

D=1
Œ

D�1
E=1(DE + 1) (Chatterjee et al., ����, § �.�). Chatterjee et al. (����,

Thm. �.�) gave an algorithm for the ��� of ✓. ⇤

�.�.� Literature Review. Since the ����s exponential random graph models (����s) have

proved successful for modeling single observations of random networks whose probabili-

ties are parameterized functions of certain observables, called sufficient statistics, such as

the number of edges, the degree sequence, or the counts of specified subgraphs. These
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are generative statistical models, allowing scientists to estimate parameters that weight

the importance of different sufficient statistics in explaining why a network has a certain

topology. In the succeeding decades, statisticians have developed sophisticated techniques

for estimating these parameters and testing goodness of fit for these models. For surveys

of this literature, see Goldenberg et al. (����), Kolaczyk (����), and Kolaczyk and Csárdi

(����/����b, pp. ��–��).

Stochastic models of change over time in social networks started with the discrete-

time, dyadically independent model of Katz and Proctor (����). Later models viewed the

underlying social process as a continuous-time Markov chain that we observe at discrete

time points. The earliest of these studies, such as Sørensen and Hallinan (����), did not

model the entire social network, focusing instead on triads (three mutual friends). By

assuming dyadic independence—that friendships between two people only depend on

the people in question—Holland and Leinhardt (����) and Wasserman (����) derived the

equilibrium behavior of the Markov chain separately for each dyad in terms of the model’s

parameters. We will use the assumption of dyadic independence in subsection �.�.�. Time-

evolving stochastic actor-oriented models introduced in Snĳders (����) have a game theoretic

flavor, allowing optimizations at each node of the network to drive the stochastic evolution.

Time series of ����s first appeared in Wasserman and Iacobucci (����). In that pa-

per’s model, time is discrete and all time periods’ distributions are mutually independent.

Each time period’s ���� has the same sufficient statistics as all the others, but parameters are

allowed to change over time. Grindrod and Higham (����) focused on range-dependent ran-

dom graphs where nodes are numbers and transition probabilities depend on the distance

between them. Grindrod and Parsons (����) considered stochastic processes of graphs

where each edge is independent and has memory longer than one step. Robins and Patti-

son (����) introduced Markov chains of networks whose transition probabilities constitute

exponential families. Hanneke et al. (����) and Hanneke and Xing (����) explored this

family of models, calling them temporal ����s (�����s), and focused on the dyadic in-

dependence case. Krivitsky and Handcock (����) introduced separable �����s, which are

�����s in which the edges formed and edges dissolved at each time step are parameter-
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ized separately. Rastelli et al. (����) extended the stochastic block model to a time series of

networks where the block allocations form independent Markov chains for each node. In

particular Hanneke et al. explored a couple methods for parameter estimation of this class

of Markov chains and discussed degeneracy issues in the selection of sufficient statistics.

Frank and Strauss (����) investigate how dependence among dyads determines

which subgraph counts should be the sufficient statistics, concluding that triangles and stars

are sufficient for shared-neighbor-only dependence. More generally, let d be the dependence

graph of a G= ,1-valued random variable G, that is, d’s vertex set is D= and it has edges

between dyads 5 , ⌘ 2 D= if ⌧( 5 ) and ⌧(⌘) are not independent conditional on the rest of

G. Then the probability distribution of G is a log-linear model whose sufficient statistics

are the indicator functions for the presence of the cliques of d in G (Frank & Strauss,

����, Thm. � and Eq. �.�). Thus every distribution over G= ,1 is an ����, albeit one with a

potentially very high dimensional sufficient statistic.

Grindrod and Higham (����) and Grindrod et al. (����) proposed a way of summa-

rizing time-respecting communicability within a sequence of (possibly directed) graphs. If

�C1 , . . . ,�C: 2 0, 1=⇥= is a sequence of : adjacency matrices of graphs with no loops, define

(0 = 0 2 R=⇥= and (8 = (� + 4�1(C8�C8�1)
(8�1)(� � 0�C8 )�1 � �. For this to work, 0 must be less

than the reciprocal of the largest spectral radius of any of the �8s, and 1 must be positive.

The (8s count the number of time-respecting walks from each node to each other node,

exponentially discounting old edges (41⇥time) and distant edges (0distance). Communication

from or to a node can then be summarized as (:1 or («
:
1.

�.�.� Finite Exchangeability. We say that b, c 2 G= ,C are isomorphic and write b ⇠ c if there

exists a bĳection ) on [=] such that 1()(8))(9)) = 2()(8))(9)) for all 8 , 9 2 [=]. Isomorphism

is an equivalence relation. If ⇠ is any ��� (or any other function) on G= ,C , we say that ⇠ is

finitely exchangeable if b ⇠ c =) ⇠(b) = ⇠(c) (cf. lemma �.�.�’s condition (a)). Lauritzen et

al. (����) and Lauritzen et al. (����) defined and analyzed finitely exchangeable ���s onG= ,1.

The former showed that the set of all such ���s on G= ,1 form an exponential family whose

sufficient statistic counts subgraphs of the random network by isomorphism class. The

latter related the finitely exchangeable distributions of random networks to the marginal
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distributions of their subgraphs, and gave a de Finetti-like theorem for representing those

distributions.

We can use lemma �.�.� to extend finite exchangeability from a transition matrix %

on G= ,C ⇥ G= ,C p-uniform under � to or from a ��� ⇠ on G= ,C such that %(a, b) = ⇠(�ab). To

do so requires that ⇠ be invariant under � in the sense of lemma �.�.�’s condition (c). Since

G= ,C is finite, ⇠ is invariant under � if and only if ⇠ is invariant under ��1 B {��1
a }a2G= ,C ,

which is lemma �.�.�’s condition (d). We summarize these considerations as follows.

Corollary �.�.�. Suppose % and⇠ are as above for✓ = G= ,C . If either of lemma �.�.�’s conditions �c�

and �d� or their converses hold, then ⇠ is finitely exchangeable if and only if every row of % is, and

every row of % is finitely exchangeable if and only if some row of % is.

Proof. In lemma �.�.�, replace ✓ by G= ,C (which is finite), 5 by %, and 6 by ⇠. ⇤

One permutation set � preserving isomorphism classes has �ab = b for all a, b 2

G= ,C . Finitely exchangeable distributions include any in exponential families for which the

carrier measure and the sufficient statistic are finitely exchangeable. Edge counts (exam-

ple �.�.�) are constant on isomorphism classes. Degree sequence (example �.�.�) is not

constant on isomorphism classes, but degree distribution, a contingency table of degree

counts (Lauritzen et al., ����, § �), the degree sequence after sorting, or any other of

unlabeled subgraphs are.

�.�.� Dyadic Independence. Suppose G is a G= ,C-valued random variable. If {⌧( 5 ) |

5 2 D=} are mutually independent then G (or equivalently, its distribution) is dyadically

independent (Goodreau, ����, “Methods”). Imposing dyadic independence on a model can

be appropriate in “settings where the drivers of link formation are predominately bilateral

in nature, as may be true in some types of friendship and trade networks as well as in

models of (some types of) conflict between nation-states.” (Graham, ����, p. ����). Further,

dyadically dependent ����s are known to be prone to model degeneracy, wherein nearly

all the probability mass of the model lies on a small subset of the sample space, such as the

empty and complete graphs (Handcock, ����; Rinaldo et al., ����, §§ �.�–�). The remainder

of this subsection describes conditions under which G is dyadically independent and how



��

dyadic independence interacts with p-uniformity. The main result, theorem �.�.�, will allow

us quickly to convert C + 1 samples from a p-uniform ��� of simple graphs into a single

observation of a C-�����.

�.�.�.� Exponential Random Multigraph Models. In this sub-subsection, the main result is

lemma �.�.�, which characterizes a C-�����’s dyadic independence in terms of its sufficient

statistic and carrier measure. When the carrier measure is constant and C = 1—the ����

case—it is already known that an ���� is dyadically independent if and only if its sufficient

statistic is dyadditive (D. R. Hunter et al., ����, § �.�; Shalizi & Rinaldo, ����, Eq. ��): We

say that a function ⌧ : G= ,C ! R✓ is dyadditive, or factors over edges (Hanneke et al., ����,

Eq. �), if there are functions ⌧ 5 : {0, 1, . . . , C}! R✓ for each dyad 5 2 D= such that

⌧ (g) =
’
5 2D=

⌧ 5 (6( 5 )). (�.��)

When C = 1, ⌧ is dyadditive if and only if there is a real, ✓ ⇥ D= matrix & such that

&g = ⌧ (g) � ⌧ (0); then the 5 th column of & is ⌧ 5 (1) � ⌧ 5 (0).

Example �.�.�. Let g 2 G= ,1. The sufficient statistic in the Erdős-Rényi graph model is the

number |⇢(g)| of edges. The number of edges is dyadditive because |⇢(g)| = 1 · g.

The � model’s sufficient statistic, the degree sequence �(g), is dyadditive. To see

this, let  2 {0, 1}=⇥D= be the complete graph’s incidence matrix, whose columns are the

indicator =-vectors of the two-element sets constitutingD= . Then �(g) =  g.

Statistics that rely on cliques larger than single edges are not dyadditive. ⇤

When an ����’s carrier measure is not constant, lemma �.�.� still specifies some

cases where dyadditivity of the sufficient statistic implies dyadic independence. To describe

those cases, we say that a function � : G= ,C ! R is dyadically multiplicative if there are

functions � 5 : {0, . . . , C}! R for each dyad 5 2 D= such that

�(g) =
÷
5 2D=

� 5 (6( 5 )). (�.��)

Dyadically multiplicative carrier measures in ����s include the common cases in which

the carrier measure is constant.
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Lemma �.�.�. G is aG= ,C-valued random variable with the ��� in eq. ��.�� such that ⌧ is dyadditive

as in eq. ��.��� and � is dyadically multiplicative as in eq. ��.��� if and only if, for each 5 2 D= ,

⌧( 5 ) is a {0, . . . , C}-valued random variable with the ���

⇠ 5✓(<) =
� 5 (<) exp

�
⌘(✓) · ⌧ 5 (<)

�
Õ
C

A=0 � 5 (A) exp
�
⌘(✓) · ⌧ 5 (A)

� , (�.��)

and G is dyadically independent.

Proof. That G is a G= ,C-valued random variable if and only if ⌧( 5 ) is a {0, . . . , C}-valued

random variable follows directly from the definition of G= ,C . For some ✓ 2 ⇥, define ⇠✓ as

in eq. (�.�) and ⇠ 5✓ as in eq. (�.��). The backward implication will follow if we can show

that, for all g 2 G= ,C ,
Œ

5 2D=

⇠ 5✓(6( 5 )) = ⇠✓(g), where eqs. (�.��) and (�.��) define ⌧ and � in

terms of {⌧ 5 } 5 2D=
and {� 5 } 5 2D=

, respectively. The forward implication will follow if we can

show that, for all 5 2 D= , ’
g2✓

6( 5 )=<

⇠✓(g) = ⇠ 5✓(<),

where eqs. (�.��) and (�.��) define {⌧ 5 } 5 2D=
and {� 5 } 5 2D=

in terms of ⌧ and �, respectively.

Then the dyadic independence of G will follow from the equality established when proving

the backward implication.

Forward Implication. Fix an arbitrary dyad 5 2 D= . For tidiness we write ✓ = G= ,C .

The probability that ⌧( 5 ) = < 2 {0, . . . , C}, is

’
g2✓

6( 5 )=<

⇠✓(g) =

’
g2✓

6( 5 )=<

�(g) exp(⌘(✓) · ⌧ (g))

C’
A=0

’
x2✓
G( 5 )=A

�(x) exp(⌘(✓) · ⌧ (x))
,

where we have used eq. (�.�). Using eqs. (�.��) and (�.��), define

D(g) B
÷
⌘2D=

⌘< 5

�⌘(6(⌘)) exp(⌘(✓) · ⌧⌘(6(⌘)).

⌧ is dyadditive and � is dyadically multiplicative, so

�(g) exp(⌘(✓) · ⌧ (g)) = � 5 (6( 5 )) exp
�
⌘(✓) · ⌧ 5 (6( 5 ))

�
D(g).
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The expression for D(g) does not involve 6( 5 ), so D(g) = D(x) regardless of whether g,x 2 ✓

have edge 5 the same number of times. Consequently,

’
g2✓

6( 5 )=<

D(g) =
’
x2✓
G( 5 )=A

D(x) (�.��)

for each A 2 {0, . . . , C}. Factoring out this sum gives’
g2✓

6( 5 )=<

�(g) exp(⌘(✓) · ⌧ (g))

C’
A=0

’
x2✓
G( 5 )=A

�(x) exp(⌘(✓) · ⌧ (x))
=

� 5 (<) exp
�
⌘(✓) · ⌧ 5 (<)

� ’
g2✓

6( 5 )=<

D(g)

C’
A=0

� 5 (A) exp
�
⌘(✓) · ⌧ 5 (A)

� ’
x2✓
G( 5 )=A

D(x)
,

which, after canceling out eq. (�.��) in the numerator and denominator, equals eq. (�.��).

Backward Implication. First off, for any x 2 G= ,C , we have

÷
5 2D=

� 5 (G( 5 )) exp
�
⌘(✓) · ⌧ 5 (G( 5 ))

�
= exp©≠

´
⌘(✓) ·

’
5 2D=

⌧ 5 (G( 5 ))™Æ
¨
÷
5 2D=

� 5 (G( 5 ))

= �(x) exp(⌘(✓) · ⌧ (x)), (�.��)

where we have defined ⌧ and � via eqs. (�.��) and (�.��).

Fix an arbitrary graph g 2 G= ,C . Then, using eq. (�.��), the (joint) probability that

G = g is

÷
⌘2D=

⇠⌘✓(6(⌘)) =
�(g) exp(⌘(✓) · ⌧ (g))Œ

⌘2D=

Õ
C

A=0 �⌘(A) exp(⌘(✓) · ⌧⌘(A))
.

This matches eq. (�.�) if we can show that the denominator equals 4✓(✓). To that end,

we exchange
Œ

5 2D=

and
Õ
C

A=0 using lemma �.�.��. In the language of lemma, set T B D= ,

and ⌫⌘ B {0, . . . , C} and 5⌘(A) B exp(⌘(✓) · ⌧⌘(A)) for each A 2 ⌫⌘ and each ⌘ 2 T . Then

FT = G= ,C , and

÷
⌘2D=

C’
A=0

�⌘(A) exp(⌘(✓) · ⌧⌘(A)) =
’

x2G= ,C

÷
⌘2D=

�⌘(G(⌘)) exp(⌘(✓) · ⌧⌘(G(⌘))) (�.��)

=
’

x2G= ,C
�(x) exp(⌘(✓) · ⌧ (x)) = exp ✓(✓),

where the second equality follows from eq. (�.��) and the last from eq. (�.�). ⇤
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Calculating the log-partition function, and thus ���, of an ���� is computationally

intractable for large =: it is ;P-hard and inapproximable in polynomial time (Bannister

et al., ����). However, for the special case of dyadically independent ����s, computing the

log-partition function requires a number of multiplications merely quadratic in = (Frank &

Strauss, ����, Example �). The following corollary of lemma �.�.�, which follows directly

from expanding eq. (�.��), generalizes this existing result to C-�����s.

Observation �.�.�. Under the conditions of lemma �.�.�, the partition function is

4
✓(✓) =

=÷
D=1

D�1÷
E=1

C’
A=0

�DE(A) exp(⌘(✓) · ⌧DE(A)).

There are tractable solutions to the partition function for some other sufficient

statistics. When ⌧ (a) is a vector of the number of different sized stars in graph a, Chatterjee

and Diaconis (����) approximated the partition function as the solution to a variational

problem. Park and Newman (����) used techniques from physics to solve the partition

function if the sufficient statistic is the vector of the number of edges and the number of

two-stars.

�.�.�.� Independent Sequences and Multigraphs. Because of theorem �.�.�, we may be

able to derive an ��� sequence of simple graphs from a Markov chain of simple graphs.

In this sub-subsection, we consider how to turn an ��� sequence of C ����s into a single

observation of a C-�����. Define the multigraph union of z1 , . . . , zC 2 G= ,B to be their vector

sum z1 + · · ·+zC 2 G= ,BC . Let / = (Z1 , . . . ,ZC) be an ��� sequence of dyadically independent,

G= ,1-valued random variables with multigraph union W . Fix I = (z1 , . . . , zC) 2 GC
= ,1 with

multigraph union w.

The following theorem roughly says that the order of the appearance of edges in /

does not matter to W .

Theorem �.�.� (Dyadically Independent Multigraphs). With the notation above,W is dyadically

independent and

P(W = w) = P(/ = I)
÷
5 2D=

✓
C

F( 5 )

◆
. (�.��)
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Proof. First we show dyadic independence. By the law of total probability,

P(W = w) =
’
G2GC

= ,1Õ
8
x8=w

P(Z1 = x1 , . . . ,ZC = xC) =
’
G2GC

= ,1Õ
8
x8=w

÷
5 2D=

C÷
8=1

P(/8( 5 ) = G8( 5 ))

since / is ��� and dyadically independent.

To apply lemma �.�.�� on page �� to swap the sum and product above, notice that

T B D= is a finite set. For each 5 2 D= , take ⌫5 to be the set of indicator vectors for the

time periods  C at which 5 could enter the multigraph union: ⌫5 B {b 2 {0, 1}C | ÕC

8=1 18 =

F( 5 )}. Further, take ⌘ 5 : ⌫5 ! R such that ⌘ 5 (b) =
Œ

C

8=1 P(/8( 5 ) = 18). In the notation of

lemma �.�.��, this makes FD=
= {G 2 GC

= ,1 | ÕC

8=1 x8 = w}, so we may interchange the sum

and the product as follows.

P(W = w) =
÷
5 2D=

’
b2{0,1}CÕ
8
18=F( 5 )

C÷
8=1

P(/8( 5 ) = 18) (�.��)

=
÷
5 2D=

’
b2{0,1}CÕ
8
18=F( 5 )

P(/1( 5 ) = 11 , . . . , /C( 5 ) = 1C) (Z is ���)

=
÷
5 2D=

P

 
C’
8=1

/8( 5 ) = F( 5 )
!
=

÷
5 2D=

P(,( 5 ) = F( 5 )). (Law of total prob.)

Therefore the multiplicities of each dyad in W are independent of each other.

To prove eq. (�.��), let ⇠ 5 B P(/8( 5 ) = 1) for each 5 2 D= . Since / is ��� and

dyadically independent,

P(/ = I) =
÷
5 2D=

C÷
8=1

P(/8( 5 ) = I8( 5 )) =
÷
5 2D=

⇠F( 5 )
5

(1 � ⇠ 5 )C�F( 5 ).

Likewise, from eq. (�.��) and the combinatorial definition of the binomial coefficient, we

have

P(W = w) =
÷
5 2D=

’
12{0,1}CÕ
8
18=F( 5 )

C÷
8=1

P(/8( 5 ) = 18) =
÷
5 2D=

’
12{0,1}CÕ
8
18=F( 5 )

⇠F( 5 )
5

(1 � ⇠ 5 )C�F( 5 )

=
÷
5 2D=

✓
C

F( 5 )

◆
⇠F( 5 )
5

(1 � ⇠ 5 )C�F( 5 ) = P(/ = I)
÷
5 2D=

✓
C

F( 5 )

◆
. ⇤
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We close this subsection by showing that taking multigraph unions preserves expo-

nential family structure. The proof of the result is a straightforward combination of Casella

and Berger (����, Thm. �.�.��) with eqs. (�.�) and (�.��), using the facts that ⌧ is dyadditive

and that � is dyadically multiplicative. Notice that / does not appear in eq. (�.��).

Theorem �.�.�. Suppose the common ��� of the components of / is ⇠✓ from eq. ��.�� on page ��

such that ⌧ is dyadditive as in eq. ��.��� and � is dyadically multiplicative as in eq. ��.���. Further,

assume that ⌘(⇥) contains an open, ✓ -dimensional set. Then the ��� of W also has an exponential

family representation with the same parameter and parameter function, and with the sufficient

statistic and carrier measure respectively equal to

’
5 2D=

⌧ 5 (1),( 5 ) � ⌧ 5 (0)[C �,( 5 )] and
÷
5 2D=

✓
C

,( 5 )

◆
� 5 (1),( 5 )� 5 (0)C�,( 5 )

. (�.��)

Proof. By Casella and Berger (����, Thm. �.�.��) and eq. (�.�),

P(/ = I) =
C÷
8=1

⇠✓(z8) = exp

 
⌘(✓) ·

C’
8=1
⌧ (z8) � C✓(✓)

!
C÷
8=1

�(z8).

Next we plug this into theorem �.�.�’s eq. (�.��):

P(W = w) = exp

 
⌘(✓) ·

C’
8=1
⌧ (z8) � C✓(✓)

! "
C÷
8=1

�(z8)
# 266664

÷
5 2D=

✓
C

F( 5 )

◆377775
.

Since ⌧ is dyadditive,

C’
8=1
⌧ (z8) =

C’
8=1

’
5 2D=

⌧ 5 (I8( 5 )) =
C’
8=1

’
5 2D=

I8( 5 )⌧ 5 (1) + (1 � I8( 5 ))⌧ 5 (0)

=
’
5 2D=

C’
8=1

I8( 5 )⌧ 5 (1) + (1 � I8( 5 ))⌧ 5 (0)

=
’
5 2D=

"
⌧ 5 (1)

C’
8=1

I8( 5 ) + ⌧ 5 (0)
C’
8=1

(1 � I8( 5 ))
#

=
’
5 2D=

⌧ 5 (1)F( 5 ) + ⌧ 5 (0)(C � F( 5 )).
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Since � is dyadically multiplicative,

"
C÷
8=1

�(z8)
# 266664

÷
5 2D=

✓
C

F( 5 )

◆377775
=

266664
C÷
8=1

÷
5 2D=

� 5 (I8( 5 ))
377775
266664
÷
5 2D=

✓
C

F( 5 )

◆377775
=

÷
5 2D=

✓
C

F( 5 )

◆
C÷
8=1

� 5 (I8( 5 ))

=
÷
5 2D=

✓
C

F( 5 )

◆ 26666664

C÷
8=1

I8( 5 )=1

� 5 (1)

37777775

26666664

C÷
8=1

I8( 5 )=0

� 5 (0)

37777775
=

÷
5 2D=

✓
C

F( 5 )

◆
� 5 (1)F( 5 )� 5 (0)C�F( 5 ). ⇤

�.�.�.� Permutation Uniformity. Suppose ⌧ : G= ,C ⇥ G= ,C ! R✓ is p-uniform under �,

so that, by lemma �.�.�, there is a function ⌫ : G= ,C ! R✓ such that ⌧ (0 , 1) = ⌫(�01) for

all 0 , 1 2 G= ,C . We say that this two-argument function ⌧ is dyadditive if b 7! ⌧ (a, b)

is dyadditive for all a 2 G= ,C . Can we extend dyadditivity from ⌧ to ⌫ or from ⌫ to ⌧ ?

Generally no.

Example �.�.��. For the case of simple graphs (C = 1) and scalar sufficient statistics (✓ = 1),

we show that just because � is dyadditive, it is not necessary that ⇡ is. Suppose = = 3 and

�(a, b) = |⇢(b)|, the number 1 · b of edges of b, which is dyadditive (cf. example �.�.�). Set ⇡

and � so that

⇡(b) B

8>>>><
>>>>:
|⇢(b)| if b 2 {0, 1}

|⇢(b)| else,
�ab B

8>>>><
>>>>:
b if b 2 {0, 1}

b else,

for all a, b 2 G3,1, Hence �(a, b) = ⇡(�ab).

Suppose by way of contradiction that ⇡ is dyadditive. Per the comment after

eq. (�.��), there are real numbers @1, @2, and @3 such that ⇡(b) = Õ
5 2⇢(b) @ 5 . When b has

one edge, ⇡(b) = 2, so @1 = @2 = @3 = 2. But when b is the complete graph, we have

3 = ⇡(b) = @1 + @2 + @3 = 2 + 2 + 2, a contradiction. ⇤

There is one case where we can guarantee that dyadditivity passes from ⌧ to ⌫:

when one of the permutations is the identity permutation, such as in example �.�.��.
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Proposition �.�.��. If ⌧ is dyadditive and, for some x 2 G= ,C , �x is the identity permutation, then

⌫ is dyadditive.

Proof. For some ⌧ 5 s and all bs, ⌫(b) = ⌧ (x,��1
x b) = ⌧ (x, b) = Õ

5 2D=

⌧ 5 (x, 1( 5 )). ⇤

�.�.� Examples from the Literature. In this subsection, we run through the graph-valued

Markov chains proposed in Hanneke et al. (����), applying theory where fruitful. Through-

out, ✓ = G= ,1, and ⌧ = {G8}82N is a G= ,1-valued stochastic process that is a Markov chain

under the ��� ✏ of transition matrices %✓ from eq. (�.�) on page ��. However, we set

�(a, b) = 1 for all a, b 2 G= ,1, so %✓(a, b) = exp(⌘(✓) · ⌧ (a, b) � ✓(✓)). Hanneke et al. name

each example after natural parameter � = ⌘(✓), but we equivalently use the name for

the sufficient statistic ⌧ . All examples in this subsection have scalar sufficient statistics, so

✓ = 3 = 1 and we just write � instead of ⌧ and ✏ instead of �. Notationally, a, b, c are

generic, simple graphs in G= ,1.

Scaling a sufficient statistic ⌧ by a constant 2, often 2 = = or 2 = 1
=�1 so that ⌧ lies

in [0, =], occasionally improves interpretability while being transparent to the probability

model because (1
2
�) · (2⌧ ) = � · ⌧ . For example, in the Erdős-Rényi graph model of exam-

ple �.�.� in which the sufficient statistic is the number of edges <, the natural parameter

✏ is the log odds ratio, or logit (Casella & Berger, ����, p. ���), ◆(?) = log ?

1�? of the edge

probability ?. If the sufficient statistic is changed to 2<, we obtain exactly the same model

by taking the natural parameter to be 1
2
◆(?) = log

⇣
?

1�?

⌘ 1/2
.

Example �.�.�� (Density). �(a, b) B 1
=�1

Õ
8 92D=

1(8 9) is called density (Hanneke et al., ����,

§ �.�). It is dyadditive because

�(a, b) = 1
= � 1 |⇢(b)| =

1
= � 11 · b,

similar to the Erdős-Rényi graph model of example �.�.�. In fact, since �(a, b) = �(c, b),

so ⌧ is actually an ��� sequence of Erdős-Rényi graphs, except that the natural parameter

is ◆(?) = (= � 1) log ?

1�? for some ? 2 [0, 1]. P-uniformity is more complicated than we

need here. Applying theorem �.�.�, let W =
Õ
C

8=1 G8 , which is a single C-����� random

variable with sufficient statistic equal to the total edge count divided by = � 1. Then the
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joint probability of ⌧ is proportional, per theorem �.�.�, to the probability of W , in which

every edge is added to the multigraph by flipping a ?-weighted coin for each dyad C times.

Put differently, for each dyad 5 , ,( 5 ) is an independent, binomially distributed random

variable with parameters C and ?. ⇤

For subsequent examples, table �.� reminds the reader of some standard notation

from graph theory in terms of the edge-indicator vector notation we have been using.

Table �.�. Graph theoretic operations on edge-indicator vectors

Operation Definition
Intersection a \ b B min{a, b} = (0( 5 )1( 5 ) | 5 2 D=)

Union a [ b B max{a, b}
Complement a B 1 � a

Relative Complement a \ b B a \ b

Symmetric Difference a4b B (a \ b) [ (b \ a) = a + b (mod 2)
a, b 2 G= ,1 are edge-indicator vectors, on which all operations are entry-wise. See example �.�.�� for more on
symmetric differences.

Example �.�.�� (Stability). �(a, b) B 1
=�1

Õ
5 2D=

[1( 5 )0( 5 ) + (1 � 1( 5 ))(1 � 0( 5 ))] is called

stability (Hanneke et al., ����, § �.�). It measures the tendency of an edge to continue

existing or not existing at time 8 + 1 if it was doing so at time 8 by counting the dyads that

are not switching on or off. Mathematically, we are saying that

(= � 1)�(a, b) = 1 · (min{a, b} + min{1 � a, 1 � b}) =
���⇢ ⇣a4b⌘���,

which shows that it is dyadditive. Stability is p-uniform because b 7! a4b is bĳective.

As we shall see, the canonical parameter is ? 2 (0, 1), and the natural parameter is

◆(?) = (= � 1) log ?

1�? . Fix some value of ? and write the transition matrix for ⌧ as %.

By observation �.�.��, the transition matrix % is p-uniform. By corollary �.�.��, % is

drawn from a Markovian exponential family (���). By theorem �.�.��, the joint distribution

of ⌧ is drawn from an exponential family.

By theorem �.�.�, Z8+1 B G84G8+1, 8 2 [C � 1], is an ��� sequence of G= ,1-valued

random variables. By proposition �.�.�� and example �.�.�, the common probability vector
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µ of Z8+1 is the Erdős-Rényi graph model with sufficient statistic 1
=�1 |⇢(Z8+1)|, which is

dyadditive, and natural parameter ◆(?) = (= � 1) log ?

1�? . Thus lemma �.�.� implies that

Z8+1 is dyadically independent.

By theorem �.�.�, the mean parameter equals, for any 8 2 N,

E[�(G8 ,G8+1)] =
’

b2G= ,1
�(0, b)%(0, b) =

’
b2G= ,1

�(0, b)%(0, b) =
’

b2G= ,1

1
= � 1 |⇢(b)|⇠(b) = ?

#

= � 1 ,

where # = |D= |. That is, the average transition has the number of edges in the average

Erdős-Rényi graph with parameter ?.

Symmetric differences commute, so lemma �.�.�� implies that % is symmetric. %

is therefore is doubly stochastic. Probabilistically, the most interesting conclusion is that

the unique stationary distribution is uniform because � ⌘ 1 implies that all entries of %

are positive. See example �.�.�� and corollary �.�.��. Linear algebraically, we can say much

more.

Since a4a is the complete graph with # = |D= | edges for any a 2 G= ,1, the diagonal

elements of % are %aa = ?
# . (The factors of = � 1 in the sufficient statistic and parameter

function cancel out.) There are |G= ,1 | = 2# diagonal entries, so the trace of % is 2#?# . Every

other off-diagonal entry of % has a (1� ?) factor, so % ! � as ? ! 1� and % ! 1
2#�1 (11

« � �)

as ? ! 0+. At ? = 1
2 , every row of % = 1

2# 11
« is the uniform distribution.

The rank A or % approaches 2# as ? approaches the boundary of the parameter

space and is one in the middle, but we can also bound the subset of the parameter space in

which A > 1. Since % is doubly stochastic, lemma �.�.�� says that kµk1 2#/2
.p

A  k%k2 = 1.

Thus 2# kµk21  A. From example �.�.�, µ is monotone as a function of the number of edges

in the graph: if ? < 1
2 , then kµk1 = (1 � ?)# , and if ? � 1

2 , then kµk1 = ?
# . Therefore,

2# kµk21 = 2# max{? , 1 � ?}2#  A. The lower bound is strictly decreasing in ? when

? < 1
2 and strictly increasing in ? when ? > 1

2 . If ? < 1
2 , then A � 2# (1 � ?)2# > 1 when

? < 1 � 1
.p

2 < 0.2929, and, if ? � 1
2 , then A � 2#?2# > 1 when ? > 1

.p
2 > 0.7071.

Applying theorem �.�.�, let W =
Õ
C

8=1 Z8 , which is a single, dyadically independent

C-����� random variable with sufficient statistic equal to the total edge count divided by

= � 1. Then the joint probability of ⌧ is proportional, per theorem �.�.�, to the probability of
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W . ⇤

The next two examples are neither p-uniform nor ���s.

Example �.�.�� (Reciprocity). Our focus has been on undirected graphs, but we briefly

mention a statistic with applications to directed graphs. Defining 0/0 as zero, �(a, b) B

=

hÕ
8 92D=

0(8 9)
i�1 Õ

8 92D=

1(98)0(8 9) is called reciprocity (Hanneke et al., ����, § �.�). Since

the dyad 8 9 is the same as the dyad 98 for undirected graphs, we can write

�(a, b) = =

|⇢(a \ b)|
|⇢(a)| .

This is dyadditive, and, by lemma �.�.�, G8+1 is dyadically independent conditional on

the value of G8 . Suppose = � 3 so that # = |D= | � 2. To see that � is not p-uniform, let

e1 , . . . , e# be the standard basis of G= ,1; these are the graphs containing exactly one edge.

Then �(e1 , b) 2 {0, =} whereas �(e1 [ e2 , e1) = =/2 . In fact, by violating the conclusion of

proposition �.�.��, this also shows that % is not drawn from an ���. That proposition makes

no reference to � and its only reference to ◆ is that ◆(⇥) contains a number other than zero,

so different choices of parameterization or carrier measure do not make % an ���. Since it’s

still drawn from a ���, theorem �.�.�� gives its likelihood function. ⇤

Example �.�.�� (Transitivity). Interpreting 0/0 as zero and taking sums over triples of

vertices 8 < 9 < :, �(a, b) B =

hÕ
8 9:
0(8 9)0(9:)

i�1 Õ
8 9:
1(8:)0(8 9)0(9:) is called transitivity

(Hanneke et al., ����, § �.�). Transitivity measures the tendency of edge 8: to come into

existence in the future (graph b) if edges 8 9 and 9: exist in the present (graph a). That is

the fraction of a’s paths of length two (counted in the denominator) that try to close the

triangle in graph b. We say “try” because edges 8 9 and 9: may or may not exist in b; we’re

only measuring if the edge 8: exists in b.

Transitivity is dyadditive: b only shows up in each summand evaluated at one edge.

By lemma �.�.�, G8+1 is dyadically independent conditional on the value of G8 .

However, transitivity is not p-uniform and % is not drawn from an ��� when we

suppose = � 3 and that ◆(⇥) contains a number other than zero. When a is a graph

containing exactly two edges and those edges are adjacent, forming a path of length two,
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�(a, b) is either zero or =. �(0, b) = 0 since we’re interpreting 0/0 = 0. The non-p-uniformity

is not an artifact of this convention. Suppose c contains exactly one path of length three and

no other edges; c then contains two paths of length two. If b contains an edge completing

just one of those two triangles, then �(c, b) = =/2 . Thus � is not p-uniform, and, by

proposition �.�.�� and the fact that ✓ = 1, % is not an ���.17 As in the reciprocity example

above, different choices of parameterization or carrier measure do not make % an ���.

Finally, when ◆() < 0, % is not p-uniform: the 0th row of % is the uniform distribution,

but the ath row contains two different values.18 ⇤

�.�.� A Model of Loyalty. Motivated by the theoretical developments of the previous

sections, we introduce a new �����.

Example �.�.�� (� �����). By analogy with example �.�.� on page ��, we may define an

��� using the degree sequences of functions of the current and next graph. Using the same

notation as the previous subsection, replace 3 = ✓ B =; ⇥ B R=

>0, the positive orthant;

⌘ B log; and ⌧ (a, b) B �(�ab), where � is the degree sequence. With these choices, ✏ is an

��� p-uniform under any permutations � on G= ,1. We call the model the � ����� under �.

For example, we may take use the symmetric difference operator as the permutations:

%✓(a, b) = exp
�
�(a4b) · log✓ � ✓(✓)

�
=

Œ
DE2⇢(a4b) DEŒ

=

D=1
Œ

D�1
E=1(DE + 1)

.

Z8 B G8�14G8 is an ��� sequence of � ����s as in example �.�.�. For a given vertex E 2 [=],

as E increases, so does the probability edges lying on it appear in one or the other, but not

both, of the current and next iteration of ⌧. If an edge lying on E is in GC and it appears in

GC4GC+1, then that dyad will not appear in GC+1. Likewise, if a dyad lying on E is not in GC

and it appears in GC4GC+1, then that edge will appear in GC+1. Thus ⌧ changes the most in

the neighborhoods of vertices E with high values of E . We might say that E is loyal if it has

a low value of E (near zero) and is disloyal if it has a high value of E .

17"Since % is still drawn from a ���, theorem �.�.�� gives its likelihood function.

18"We cannot use theorem �.�.�� to show that % is not p-uniform because we already have concluded
that % is not an ���.
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�.� Conclusion

The theorems of this thesis point to a new technique for analyzing time series of

networks.

�. Verify that

• the set of edges but not the set of vertices changes over time,

• time can be meaningfully discretized so that changes that occur on the network

between snapshots can be summarized by the state of the network at each

snapshot, and

• the network has no long-term memory so that the Markov property holds.

�. Find an invariant of the transitions between snapshots of the network that allows you

to identify the transitions with some network-valued function of the current and next

states of the network. For example, imagine observing that each dyad is as likely to

go from on to off as it is to go from off to on. This suggests that transitions can be

identified with a random process on the symmetric differences of the current and

next states of the network.

�. If the invariant is in terms of dyads, carry on. If it is in terms of larger structures

such as triads, the model will lack dyadic independence and thus not be subject to

theorem �.�.�, which we need.

�. Restate the research hypothesis in terms of this invariant to identify a dyadically

independent p-uniform ���. For example, if the research hypothesis is that certain

types of nodes exhibit less frequent edge flip-flops than others, we might wish to

regress the parameters from the � ����� with respect to symmetric differences of

example �.�.�� on node type.

�. Transform the time-discretized network data according to the set of bĳections from

the chosen model. (This converts from - to / in the language of theorem �.�.�, and

will reduce the number of network snapshots by one.)
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�. Count the number of times each dyad appears in any of the post-transformation

network snapshots and record the resulting C-�����. (This converts from / to , in

the language of theorem �.�.�, and will reduce the number of network snapshots to

one.)

�. Estimate the parameters of the model on the C-�����.

�. Test for goodness of fit on the C-�����.

An extensive literature covers items � and �, so we have not discussed it in this

thesis so far. Fienberg and Rinaldo (����a) thoroughly describes parameter estimation for

����s, but its theorems are easily extended to multigraphs. Petrović (����) gives a high-

level overview and references to the literature for goodness-of-fit testing for ����s, and,

again, its discussion can be easily extended to multigraphs.
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Chapter �

HYPOTHESIS TESTS FOR MIXED MEMBERSHIP STOCHASTIC BLOCK MODELS19

�.� Model

In this chapter we define a statistical network model, the mixed-membership stochas-

tic block models (�����s), which postulate that individuals in a network have different

probabilities of forming relationships with other nodes based on some form of community

membership that may differ depending on which individual initiates the relationship. It is

an exponential random graph model in the sense introduced above. Rather than consider

a time series of such graphs, we focus on observing just one snapshot of the network’s

topology. Our model broadly follows Airoldi et al. (����) where it was first introduced.

Those authors introduced the model from a Bayesian perspective and discussed posterior

inference. Our goal is to offer an algorithm for (frequentist) hypothesis testing under the

assumption that we observe the block assignments of all nodes. Testing the the simple null

hypothesis that a particular parameter estimate is true for the observed network within

an ����� is relatively straightforward, relying on a test statistic that we introduce and

standard Monte Carlo simulation. To our knowledge, algorithms for testing a simple null

hypothesis for fixed block assignments in an ����� have not yet been offered. We show

results for some simulated data. However, testing the general null hypothesis that the true

distribution lies in an ����� in the first place poses serious challenges. In particular, there

is a divide in the statistics literature about how to test hypotheses like that. One position

requires rejecting all simple null hypotheses to reject the general null hypothesis, which

is equivalent to a certain optimization problem. The other position requires rejecting a

specific simple null hypothesis to reject the general null hypothesis. The former is more

conservative than the latter, but the latter is more typical in the discrete-statistics literature.

Section �.� describes the �����s and introduces our notation, and section �.� devel-

ops an algorithm for testing it. Subsection �.�.� introduces our test statistic. Subsection �.�.�

19This chapter includes joint work with Sonja Petrović, Debdeep Pati, and Vishesh Karwa: Karwa et al.
(����–present).
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defines a p-value from that test statistic for both the simple and general null hypotheses.

Subsection �.�.� presents an algorithm for computing the simple-hypothesis p-value and

discusses the algorithm’s convergence rate. Finally, subsection �.�.� discusses the two sides

to the literature on hypothesis testing for general null hypotheses like ours.

�.�.� Basic Notation. First we dispose of some bookkeeping notation and conventions. If

a and b are matrices or vectors of the same shape, then a · b denotes the sum product of

their entries, i.e., the standard dot product for vectors or the Frobenius inner product for

matrices. When we apply a function, such as log, defined on scalars to a vector or matrix,

we apply the function element-wise. N is the set of nonnegative integers and R ⌘ (�1,1)

is the set of real numbers. If = 2 N, then [=] B {1, . . . , =} and [=]0 B {0, 1, . . . , =}. If - is

a random variable and X is a set, then 1(- 2 X) is a random variable whose value is one

when - 2 X and zero otherwise.

To simplify the statements of certain results, we commit to the following arithmetic

conventions. We define 00 B 1, log 0 B �1, and 4
�1 B 0. The usual rules of arithmetic

in the extended reals R ⌘ [�1,1] apply (Jacod & Protter, ����, p. ��): G ±1 = ±1 for all

G 2 R [ {±1}; 0 ⇥ ±1 = 0; G ⇥ ±1 = ⌥1 for all G 2 [�1, 0); and G ⇥ ±1 = ±1 for all

G 2 (0,1].

Implicit in our statistical analysis throughout is a discrete measurable space (⌫, 2⌫).

SupposeZ is a state space that is finite—we will only consider finite spaces. When we say

that / is a Z-valued random variable, we mean that it is a function / : ⌫ ! Z. That

is, all random variables implicitly have a common domain. A probability mass function

(���)  : Z ! [0, 1] uniquely determines a probability measure, which we denote P, on ⌫

(Jacod & Protter, ����, p. ��). Likewise, we denote the expectation and variance operators

corresponding to P as E and Var, respectively. (We have no further cause to discuss ⌫.)

�.�.� State Space. For the remainder of this chapter, fix positive : , = 2 N such that

1  :  = and = � 2. = is the number of nodes and : is the number of blocks, objects we

define presently.

We now turn to notation and terminology for describing networks, which we also

call graphs. Name the nodes of a network by numbers 8 2 [=]. For networks on the node set
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[=], choose some D= ✓ [=]2 to be the set of allowed edges. We write (8 , 9) 2 [=]2 as 8 9 as

long as context clarifies that that we mean an allowed edge or an index of a matrix rather

than 8 ⇥ 9. An allowed edge 88 from a node 8 to itself is a self-loop. If we want to consider

only simple graphs, then we stipulate that D= contains no self-loops. For directed graphs

allowing self-loops, D= = [=]2. From the perspective of a given node 8, 8 sends 8 9 2 D= ,

which goes out, and 8 receives 98 2 D= , which comes in. For undirected graphs, nodes

both send and receive allowed edges, which go both out and in. To avoid ambiguity we

use upper triangular indices: the set of undirected allowed edges including self-loops is

{8 9 2 [=]2 | 8  9}. The set of simple, undirected allowed edges is {8 9 2 [=]2 | 8 < 9}, which

corresponds one-to-one with the set of dyads, or node pairs {8 , 9} ✓ [=] such that 8 < 9.20

We can in like manner form any other such restrictions, the collection of which that apply

to D= in a given context we call the sense of D= . Table �.� summarizes the common cases.

We describeD=’s sense by saying thatD= is itself (non-)simple or (un)directed, as applicable.

Table �.�. The setD= of allowed edges

D= Non-Simple Simple
Directed [=]2 {8 9 2 [=]2 | 8 < 9}

Undirected {8 9 2 [=]2 | 8  9} {8 9 2 [=]2 | 8 < 9}
The setD= of allowed edges on the node set [=] depends on the sense in which we mean networks.

The set of adjacency matrices of networks on the sets [=] of nodes and D= of

allowed edges is G= ✓ {0, 1}=⇥= , the set of = ⇥ = zero-one matrices. We generically denote

adjacency matrices a throughout this chapter. If 8 9 2 D= , then 089 = 1 means that 8 9 is an

edge in the graph corresponding to a, and 089 = 0 means that 8 9 is not an edge. We describe

G=’s sense by saying that G= is itself (non-)simple or (un)directed whenever D= is. When G=

is simple, we stipulate that all matrices in G= have zeros along the main diagonal. When G=

is undirected, we stipulate that all matrices in G= are symmetric. Table �.� on the following

page summarizes these restrictions.

20"“Dyads are pairs of vertices and, in directed graphs, may take on three possible states: null (no directed
edges), asymmetric (one directed edge), or mutual (two directed edges).” (Kolaczyk & Csárdi, ����/����a,
pp. ��–��). “Holland and Leinhardt’s ?1 model focuses on dyadic pairings and keeps track of whether node 8
links to 9, 9 to 8, neither, or both.” (Goldenberg et al., ����, p. ���; refering to Holland and Leinhardt, ����).
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Table �.�. The set G= of adjacency matrices

D= Non-Simple Simple
Directed {0, 1}=⇥= {a 2 {0, 1}=⇥= | 088 = 0 for 8 2 [=]}

Undirected {a 2 {0, 1}=⇥= | a = a«} {a 2 {0, 1}=⇥= | 088 = 0 for 8 2 [=], a = a«}
The set G= of adjacency matrices of networks on the sets [=] of nodes andD= of allowed edges. The sense of G=
determines the symmetry and sparsity patterns of its member matrices.

We assume that each node 8 belongs to one of : communities called blocks per

allowed edge 8 9 that it sends and per allowed edge 98 that it receives. Equivalently each

allowed edge 8 9 belongs to two blocks, one named � 2 [:] from 8’s perspective as a sender

and one named ⌧ 2 [:] from 9’s perspective as a receiver. A sender-block matrix z�! and a

receiver-block matrix z � record these associations. When considering the allowed edge 8 9

that node 8 sends to a receiver node 9, node 8 identifies as a member of block I�!
y z

and node 9

identifies as a member of block I �
y z

.21 Thus z�! and z � are [:]0-valued = ⇥ = matrices with

the following sparsity and symmetry requirements depending on the sense of G= . If G=

permits self-loops, then no entry of z�! or z �may be zero; if G= is simple, then off-diagonal

entries are non-zero and the diagonal is zero. If G= is undirected, then we require z�! and

z � to be symmetric (after all, every allowed edge in an undirected graph goes both out and

in).22 For other constraints 8 9 8 D= , zeros pad the remaining entries I�!
y z

and I �
y z

. Denote the

set of these matrices �= ,: . Table �.� on the next page summarizes these definitions.

A block-assignments array, which we generically denote z throughout this chapter,

comprises a sender-block matrix z�! and a receiver-block matrix z �. WhenG= is undirected,

those nodes cannot tell whether they are sending or receiving along 8 9, so I�!
y z
= I�!

zy
= I �

y z
=

I �
zy

. Thus z 2 {!, } ⇥�= ,: , but when G= is undirected we require z�! = z«�! = z � = z« �.

21"For readers already accustomed to the notation of Airoldi et al. (����, p. ����), our sender- and
receiver-block matrix notation perhaps looks confusingly similar to Airoldi et al.’s subtly different “latent group
indicator” notation. They considered only directed graphs that permitted self-loops (but see footnote ��). Our
I�!
y z

and I �
y z

denote the names in [:] of the respective sender and receiver blocks. Airoldi et al.’s ÆI
8!9

and ÆI
8 9

denoted indicator vectors in {0, 1}: , each containing a one at the index corresponding to the name in [:] of the
respective block and zeros elsewhere. If e1 , . . . , e: is the standard basis of R: , then the two notations relate to
each other as ÆI

8!9
= eI�!

y z

and ÆI
8 9

= eI �
y z

. See also footnote ��.

22"“Also note that the pairs of group memberships that underlie interactions need not be equal; this
fact is useful for characterizing asymmetric interaction networks. Equality may be enforced when modeling
symmetric interactions.” (Airoldi et al., ����, p. ����).
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Table �.�. The set �= ,: of sender- or receiver-block matrices

D= Non-Simple Simple
Directed [:]=⇥=

�
b 2 [:]=⇥=0

��
189 = 0 () 8 = 9

 
Undirected {b 2 [:]=⇥= | b = b«}

�
b 2 [:]=⇥=0

�� (189 = 0 () 8 = 9), b = b«
 

The sense of G= determines the symmetry and sparsity patterns of �
= ,:

’s members. The table builds sets with a
dummy variable b, but we generally denote sender- and receiver-block matrices with z�! and z � respectively.

Denote the set of block-assignments arrays as B= ,: . Table �.� summarizes this definition.

Table �.�. The set B= ,: of block-assignments arrays

D= Non-Simple Simple
Directed {!, } ⇥�= ,: {!, } ⇥�= ,:

Undirected
�
z 2 {!, } ⇥�= ,:

�� z�! = z �
 �

z 2 {!, } ⇥�= ,:

�� z�! = z �
 

A block-assignments array z comprises a sender-block matrix z�! and a receiver-block matrix z �. What matrices
B
= ,:

allows depends only on whether G= is directed, not on whether it permits self-loops.

The random block-assignments array Z is a B= ,:-valued random variable whose

sender- and receiver-block matrices we write as Z�! and Z � respectively.23 The random

network is the G=-valued random variable that we denote as A. As we will often consider

the random pair (A,Z), we define the state space ⇠= ,: B G= ⇥ B= ,: .

�.�.� Probability Distributions. In this subsection, we establish notation for the distribu-

tion of (A,Z). Let ⇥ be the set of all ���s on ⇠= ,: :

⇥ B
8>><
>>:
 : ⇠= ,: ! [0, 1]

������
’

(a,z)2⇠= ,:

(a, z) = 1
9>>=
>>;
.

(A,Z) has an unknown, true ��� ⇤ 2 ⇥. We also think of ⇤ as the unknown parameter

of the parameterized probability measure P⇤ of (A,Z) from among the parameterized set

of probability measures {P}2⇥.

We are primarily interested in situations when ⇤ lies in a particular, parameterized

subset of ⇥, which we now describe starting with its parameter space. It depends on the

23"Another (see footnote ��) subtle distinction between the notation here versus in Airoldi et al. (����,
pp. ����–����) is that here we name random variables with capital letters. We write arbitrary sender- and
receiver-block matrices as z�! and z � with entries I�!

y z
and I �

y z
. We write the two sender- and receiver-block-

matrix-valued random variables under consideration here as Z�! and Z � with entries /�!
y z

and / �
y z

. In contrast
Airoldi et al. wrote the “latent group indicator”-valued random variables they considered as ÆI

8!9
and ÆI

8 9
.

They wrote the collections of those random indicator vectors as /! and / .
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sense of G= . If G= is directed, let : be the set [0, 1):⇥: of : ⇥ : matrices with nonnegative

entries less than one; if G= is undirected, let  : be the subset of [0, 1):⇥: whose matrices

are symmetric. We generically denote  : ’s matrices  and call them edge probabilities.24

An = ⇥ : stochastic matrix is a matrix in [0, 1]=⇥: whose rows each sum to one. If G= is

directed, let ⇧= ,: be the set of = ⇥ : stochastic matrices; if G= is undirected, let ⇧= ,: be the

subset of = ⇥ : stochastic matrices ⇡ such that every row ⇡8 B (�81 , . . . ,�8:) of ⇡ is the

same. We generically denote ⇧= ,: ’s matrices ⇡ and call them block probabilities.

Definition �.�.�. The latent mixed-membership stochastic block model (�����) is ⇥’s

subset M of ���s ⇠ ⇡ on ⇠= ,: parameterized by edge probabilities  2  : and block

probabilities⇡ 2 ⇧= ,: such that the following conditions hold for all ���s ⇠ 2 M, all allowed

edges 8 9 2 D= , and all states (a, z) 2⇠= ,: .

(a) Z’s entries are mutually independent:

P⇠(Z = z) =
÷
8 92D=

P⇠(/ �
y z
= I �

y z
)P⇠(/�!

y z
= I�!

y z
).

(b) ⇡8 is the ��� for /�!
y z

in row 8 of Z�!:

P⇠(/�!
y z
= I�!

y z
) = �8I�!

y z

.

(c) ⇡9 is the ��� for / �
y z

in column 9 of Z �:

P⇠(/ �
y z
= I �

y z
) = � 9I �

y z

.

(d) A’s entries are mutually independent

conditional on Z:

P⇠(A = a |Z = z)=
÷
8 92D=

P⇠(�89 = 089 | Z = z).

(e) Conditional on Z, �89 is Bernoulli dis-

tributed with parameter #/�!
y z
/ �
y z

:

P⇠(�89 = 089 | Z = z)=

8>>>><
>>>>:
#I�!

y z
I �
y z

if 089 = 1

1 � #I�!
y z
I �
y z

if 089 = 0.

Saying “for all 8 9 2 D=” takes care of the simple-G= case in which �88 , / �
yy

, and /�!
yy

are deterministically zero for all 8 2 [=] as well as the undirected case in which their lower

triangles of A and of Z � = Z�! are equal to the respective upper triangles. Saying “for all

(a, z) 2⇠= ,:” takes care of the undirected case in which z � = z�! is symmetric.

Conditions (b) and (c) say that �8� is the propensity of node 8 to send or receiver

24"Airoldi et al. (����, p. ����) called the edge probabilities the “matrix of Bernoulli rates” and denoted
it as ⌫ rather than  .
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in block �, so the probability that an allowed edge 8 9 sends in � and receives in block

⌧ is �8�� 9⌧ by condition (a). In Airoldi et al. (����, p. ����), the rows ⇡8 are themselves

random variables with a Dirichlet distribution. We eschew this Bayesian view in favor of

the frequentist’s fixed-but-unknown-parameter approach. Other than that and the precise

notation (see footnotes ��, �� and ��), our latent ����� matches Airoldi et al.’s “mixed

membership stochastic blockmodel (MMB)” (Airoldi et al., ����, p. ����).

Definition �.�.� motivates the restrictions on : and⇧= ,: whenG= is undirected. We

require  to be symmetric because Z�! = Z �, so #/�!
y z
/ �
y z

= #/ �
y z
/�!
y z

perforce. Additionally,

Z � = Z« � implies that P⇠(/ �
y z

= ⌧) = P⇠(/ �
zy

= ⌧) for all 8 9 2 D= and ⌧ 2 [:]. By

definition �.�.�’s conditions (b) and (c), �8⌧ = P⇠(/ �
y z

= ⌧) and � 9⌧ = P⇠(/ �
zy

= ⌧), so

�8⌧ = � 9⌧. Hence every row of ⇡ is the same.

Example �.�.�. The Erdős-Rényi graph model is the family of ���s⇠? over simple, undirected

networks and parameterized by an edge probability ? 2 [0, 1) such that ⇠? chooses edges

of the random network A independently each with probability ?. It is a sub-model of the

latent �����M in the sense that ⇠?(a) = P⇠ ⇡ (A = a) for any block probabilities ⇡ and

any network a if the edge probabilities  is the matrix of all ?s.

To facilitate situations in which we observe block assignmentsZ = z, definition �.�.�

on the next page sets up notation for conditional models and their ���s. Assuming that

(A,Z)’s true ��� ⇤ is in a latent �����, we can observe Z = z only if its probability

is positive under a latent ����� ��� ⇠ ⇡ for some block probabilities ⇡ and some edge

probabilities  :

P⇠ ⇡ (Z = z) < 0. (�.�)

Definition �.�.�’s conditions (a) to (c) guarantee that whether eq. (�.�) holds doesn’t depend

on  . By choosing each row of ⇡ to be, say, the uniform distribution on [:], we may always

find a ⇡ that achieves eq. (�.�) for any z. This allows us to write down latent �����

probabilities conditional on block assignments without dependence of the the conditional

probability’s existence on the latent ����� parameters. Moreover, conditioning on Z = z

completely removes the dependence of P⇠ ⇡ on ⇡ as long as eq. (�.�) holds because of



��

definition �.�.�’s conditions (d) and (e). This ensures that eq. (�.�) below makes sense.

Definition �.�.�. Fix block assignments z for which there is some network a such that

(a, z) 2 ⇠= ,: . For each ���  2 ⇥ such that P(Z = z) < 0, define the conditional ���

z : G= ! [0, 1] by z(a) B P(A = a | Z = z) for each a such that (a, z) 2 ⇠= ,: . Denote

the set of all such conditional ���s as ⇥z. For all edge probabilities  2  : and any block

probabilities ⇡ 2 ⇧= ,: for which eq. (�.�) holds, we define the conditional ��� corresponding

to the latent ����� ��� ⇠ ⇡ 2 M as ✏z
 : G= ! [0, 1] such that

✏z
 (a) B P⇠ ⇡ (A = a | Z = z) (�.�)

for each a such that (a, z) 2 ⇠= ,: . We define the z-conditional ����� as the setMz of

conditional ���s ✏z
 parameterized by  . When clear from context that Z = z, we write P ,

E , and Var in place of P✏z
 

, E✏z
 

, and Var✏z
 

.

In the notation of definition �.�.�, the random network A’s true conditional ���,

conditional on Z = z, is ⇤z 2 ⇥z .

Remark �.�.�. We can rewrite the z-conditional ����� as a multinomial model as follows.

For each 8 , 9 2 [=] such that 8 9 or 98 are allowed edges, let <{8 , 9} 2 {2, 3, 4} be the number of

possible states, called cells (Fienberg & Rinaldo, ����b, p. ����), that that the vector (089 , 098)

may take across all networks a for which (a, z) 2⇠= ,: . In the directed case with 8 < 9, then

<{8 , 9} = 4: the possible states are (0, 0), (1, 0), (0, 1), and (1, 1). In the non-simple case with

8 = 9 or the undirected case with 8 < 9, <{8 , 9} = 2: the possible states are (0, 0) and (1, 1).

Define X{8 , 9} to be an <{8 , 9}-length indicator vector, called a contingency table (Fienberg &

Rinaldo, ����b, p. ����), for the states in lexicographic order containing exactly a single

one in the entry corresponding to the state of (�89 ,�98). For example in the directed case

with 8 < 9, if (�89 ,�98) = (1, 0), then X{8 , 9} = (0, 1, 0, 0). Under the z-conditional ����� with

edge probabilities  , X{8 , 9} has a multinomial distribution with one trial (Casella & Berger,

����, Def. �.�.� on p. ���). The cell probabilities p{8 , 9}, vectors indexed by cell, depend on

the sense of the networks and the cell. For example in the directed case with 8 < 9, the (1, 1)

cell, i.e., X{8 , 9} = (0, 0, 0, 1), has probability ?{8 , 9}(1, 1) : #I�!
y z
I �
y z

#I�!
zy
I �
zy

. In the directed case



��

with 8 < 9, the (1, 1) cell, i.e., X{8 , 9} = (0, 1), has probability ?{8 , 9}(1, 1) : #I�!
y z
I �
y z

. The sum of

p{8 , 9}’s entries is one, so p{8 , 9} lies in the standard simplex �<{8 , 9}�1 ✓ R<{8 , 9} (Petrović et al.,

����, p. ���).

�.�.� Sufficient Statistics. We now find sufficient statistics (the definition of which we

review below) forM (proposition �.�.��) andMz (lemma �.�.�). To this end, definition �.�.�

lays out statistics that will be our mainstays throughout the remainder of this report.

Definition �.�.�. Define matrix-valued functions N : B= ,: ! N:⇥: and M : ⇠= ,: ! N:⇥: to

give the number of allowed edges or edges, respectively, that are sending and receiving in

each sending/receiving block pair �, ⌧ 2 [:]:

#�⌧(z) B
’
8 92D=

1(I�!
y z
= �)1(I �

y z
= ⌧),

"�⌧(a, z) B
’
8 92D=

1(I�!
y z
= �)1(I �

y z
= ⌧)089 .

In the conditional model,M andN count the elements of block-membership equiv-

alence classes. We will need this fact (and some notation) frequently enough that we present

it as lemma �.�.�.

Lemma �.�.�. Fix block assignments z for which there is some a such that (a, z) 2 ⇠= ,: . The

set D= of allowed edges is the disjoint union over sending/receiving block pairs �, ⌧ 2 [:] of the

block-assignment equivalence classes ⌅z
�⌧ B {8 9 2 D= | I�!

y z
= �, I �

y z
= ⌧}. #�⌧(z) counts

the number |⌅z
�⌧ | of allowed edges 8 9 2 ⌅z

�⌧. "�⌧(a, z) counts the number of them that are edges in

a� "�⌧(a, z) = |{8 9 2 ⌅z
�⌧ | 089 = 1}|.

Proof. ThatD= equals the disjoint union t:�=1 t:⌧=1 ⌅
z
�⌧ follows from the fact that 8 9 7! I�!

y z

and 8 9 7! I �
y z

are functions, so each allowed edge 8 9 is in exactly one sending/receiving

block pair I�!
y z
, I �

y z
2 [:]. The counting formulas follow directly from definition �.�.� and the

fact that 1(/�!
y z
= �)1(/ �

y z
= ⌧) = 1 if and only if 8 9 2 ⌅z

�⌧. ⇤

Remark �.�.�. One takeaway from lemma �.�.� is that, for cells of the form (�, ⌧) 2 [:]2, N

is a contingency table. For the moment, focus on undirected networks, and suppose that

Z is distributed according to a latent ����� distribution. The probability that an allowed
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edge 8 9 sends in block � and receives in block ⌧ is �8�� 9⌧ per definition �.�.�’s conditions (a)

to (c). Every row of the block probabilities matrix ⇡ is the same becauseD= is undirected,

so �8�� 9⌧ = �1��1⌧. Since lemma �.�.� says that block pairs, which index N , name parts of a

partition ofD= , N (Z) has a multinomial distribution with |D= | trials and cell probabilities

�1��1⌧. In particular, N is the contingency table under a multinomial sampling scheme

with the constraint that
Õ

�⌧ #�⌧(z) = |D= | (Fienberg & Rinaldo, ����b, p. ����).

For the next lemma, which is the main result of this subsection, we will need the

following terminology. Just to set up the definitions, suppose ; <↵ ✓ R3 for some positive

integer 3. A parameterized set ✏ B {?�}�2↵ of ���s (or probability densities) on a set ⌫

is an exponential family if there exist a positive integer ✓ � 3 and functions ⌘ : ↵ ! R✓ ,

⌧ : ⌫ ! R✓ , ✓ : ↵ ! R, and � : ⌫ ! [0,1), such that the probability density of any state

G 2 ⌫ under ?� for any � 2 ↵ is

?�(G) = �(G) exp
�
⌘(�) · ⌧ (G) � ✓(�)

�
. (�.�)

Equation (�.�) is the exponential-family representation of ✏ (a quick introduction to expo-

nential families is available from standard textbooks such as Casella & Berger, ����, § �.�;

see Barndorff-Nielsen, ����, Ch. �, for a detailed investigation). ⌧ satisfies (Casella & Berger,

����, Thm. �.�.��) the definition of being a sufficient statistic for � in ✏: ?�(G) does not

depend on � as long as ⌧ (G) is held constant (Casella & Berger, ����, Def. �.�.�). Finally,

the logit function logit : [0, 1)! R is defined by logit ? B log ?

1�? for ? 2 (0, 1) (Casella &

Berger, ����, p. ���), and we take the convention that logit 0 B �1 to match our convention

that log 0 = �1.

Lemma �.�.�. Fix block assignments z for which there is some a such that (a, z) 2⇠= ,: . Then the

z-conditional �����Mz is an exponential family with the representation

✏z
 (a) = exp

�
logit( ) ·M (a, z) + log(11« � ) ·N (z)

�
(�.�)

for all edge probabilities 2  : and all networks a such that (a, z) 2⇠= ,: . In particular, M (A, z)

is a sufficient statistic for  inMz .
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Proof. Fix  2  : and a such that (a, z) 2 ⇠= ,: . For some ⇡ 2 ⇧= ,: , eq. (�.�) holds, to the

right side of which we may then apply definition �.�.�’s condition (d):

✏z
 (a) = P⇠ ⇡ (A = a | Z = z) (�.�)

=
÷
8 92D=

P⇠ ⇡ (�89 = 089 | Z = z). (�.�)

The multiplicand in eq. (�.�) is the subject of definition �.�.�’s condition (e), which

we rearrange as follows:

P⇠ ⇡ (�89 = 089 | Z = z) = #
089

I�!
y z
I �
y z

⇣
1 � #I�!

y z
I �
y z

⌘1�089
(�.�)

=

 
#I�!

y z
I �
y z

1 � #I�!
y z
I �
y z

!
089 ⇣

1 � #I�!
y z
I �
y z

⌘
(�.�)

= exp
�
logit(#I�!

y z
I �
y z

)089 + log(1 � #I�!
y z
I �
y z

)
�
. (�.�)

The above equations avoid undefined terms by relying in eq. (�.�) on our convention that

00 = 1; in eq. (�.�) on #I�!
y z
I �
y z

< 1, per the definition of the set : of edge probabilities; and in

eq. (�.�) on our conventions that logit 0 = �1 and 4�1 = 0. We plug the latter equation back

into eq. (�.�):

✏z
 (a) =

÷
8 92D=

exp
�
logit(#I�!

y z
I �
y z

)089 + log(1 � #I�!
y z
I �
y z

)
�

= exp
’
8 92D=

�
logit(#I�!

y z
I �
y z

)089 + log(1 � #I�!
y z
I �
y z

)
�
. (�.�)

Lemma �.�.� permits us to break up the sum in eq. (�.�) as follows, so eq. (�.�) equals

exp
:’

�,⌧=1

’
8 92⌅z

�⌧

�
logit (#

I�!
y z
I �
y z

)089 + log(1 � #I�!
y z
I �
y z

)
�

= exp
:’

�,⌧=1

⇣
logit(#�⌧)

’
8 92⌅z

�⌧

089 + log(1 � #�⌧)
’
8 92⌅z

�⌧

1
⌘

= exp
:’

�,⌧=1

⇣
logit(#�⌧)"�⌧(a, z) + log(1 � #�⌧)#�⌧(z)

⌘
. (�.��)

Equation (�.�) is nothing but eq. (�.��) with dot products denoting sum products and 11«

denoting a matrix of all ones.
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Equation (�.�) is an exponential-family representation ofMz because M depends

on a but N does not. In particular, M (A, z) is a sufficient statistic for  by Casella and

Berger (����, Thm. �.�.��). ⇤

The definition we gave above for sufficient statistic is that the ��� doesn’t depend on

the parameter when we hold the statistic constant. Lemma �.�.� says that M is a sufficient

statistic in the conditional model. In section �.�, we will use this ability of M to sideline the

edge probabilities parameter . Thus we will often need to hold M constant. This leads us

to the following definition.

Definition �.�.� (Fiber). Fix a state (a, z) 2⇠= ,: . Network a’s fiber conditional on the block

assignments z is a’s pre-image under M (cf. Petrović et al., ����, Def. of TC on p. ���):

F (a, z) B {b 2 G= | M (b, z) = M (a, z)}.

If the distribution of the random network A does not depend on the edge probabil-

ities  when we hold M constant, then what is the distribution? It is uniform according to

the following lemma, which algorithm �.�.� uses to sample from F .

Lemma �.�.��. Fix a state (a, z) 2 ⇠= ,: . For any z-conditional ����� ��� ✏ 2 Mz , the

distribution of the random networkA conditional on a’s fiber, i.e.,M (A, z) = M (a, z), is uniform�

P✏
�
A = b | A 2 F (a, z)

�
=

1
|F (a, z)| (�.��)

for all b 2 F (a, z), where

|F (a, z)| =
:÷

�=1

:÷
⌧=1

✓
#�⌧(z)
"�⌧(a, z)

◆
. (�.��)

Proof. That the conditional modelMz has a uniform distribution over the fiber follows

from the exponential-family representation eq. (�.�) and the discussion in Diaconis and

Sturmfels (����, p. ���). In particular, ✏(b) depends on the network b only through M (b, z),

per eq. (�.�), so ✏ is constant on the fiber, which directly implies eq. (�.��).

It remains to prove eq. (�.��). By lemma �.�.� we may consider the block-assignment

equivalence class⌅z
�⌧ of one sending/receiving block pair �, ⌧ 2 [:] at a time. The number

of networks b 2 G= for which "�⌧(b, z) = "�⌧(a, z) is the number of ways we can choose
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"�⌧(a, z) edges from⌅z
�⌧. That number is the multiplicand in eq. (�.��). These choices are

independent across equivalence classes, hence eq. (�.��). ⇤

Proposition �.�.�� offers a result analogous to lemma �.�.� but for the latent �����.

Proposition �.�.��. Define the function J : �= ,: ! N=⇥: to give the number of allowed edges

that a node 8 2 [=] sends in each block � 2 [:]�

�8�(z�!) B
’
92[=]
8 92D=

1(I�!
y z
= �).

Then the latent �����M is an exponential family with the representation

⇠ ⇡(a, z) = exp
⇥
logit( ) ·M (a, z) + log(11« � ) ·N (z) + log(⇡) ·

�
J(z�!) + J(z« �)

� ⇤

for all edge probabilities  2  : , all block probabilities ⇡ 2 ⇧= ,: , and all states (a, z) 2⇠= ,: .

Proof. Fix  2  : , ⇡ 2 ⇧= ,: , and (a, z) 2 ⇠= ,: . Denote ⇠ B ⇠ ⇡. We start by showing

that the marginal distribution of Z under P⇠ has an exponential family representation. By

definition �.�.�’s conditions (a) and (b), we have

P⇠(Z�! = z�!) =
÷
8 92D=

P⇠(/�!
y z
= I�!

y z
) =

÷
8 92D=

�8I�!
y z

.

Rearranging this yields

P⇠(Z�! = z�!) =
÷
82[=]

:÷
�=1

��8�(z�!)
8� = exp

�
log(⇡) · J(z�!)

�
).

Likewise,P⇠(Z � = z �) = exp
�
log(⇡) · J(z« �)

�
(via definition �.�.�’s condition (c)). The result

follows from combining these distributions with eq. (�.�) via the law of total probability,

⇠(a, z) = P⇠(A = a | Z = z)P⇠(Z�! = z�!)P⇠(Z � = z �). ⇤

�.� Goodness of Fit

We now extend to conditional �����s the work of Karwa et al. (����) in hypothesis

testing for the classical, non-mixed-membership stochastic block models (���s), in which

Z�! = Z« � and every row of Z�! is the same. Throughout this section, we assume the
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following statistical scenario. Recall that ⇤ is the unknown, unknowable, true ��� of

the random network and block assignments (A,Z). ⇤ is the distribution from which all

observations of those random variables are drawn.

Definition �.�.�. Assume that we have observed the event

A = a⇤ , Z = z⇤ (�.��)

for some observed network a⇤ and block assignments z⇤ such that (a⇤ , z⇤) is a state in ⇠= ,: .

We seek to test the general null hypothesis �0 that the random network’s true distribution

conditional on the observed block assignments is from the z⇤-conditional �����M, which

is the general null model, against the alternative hypothesis �1 that it isn’t:

�0 : ⇤z⇤ 2 Mz⇤ against �1 : ⇤z⇤ 2 ⇥z⇤ \Mz⇤
. (�.��)

Put differently, the general null hypothesis is

�0 : there are true edge probabilities  ⇤ 2  : such that ⇤z⇤ = ✏z⇤
 ⇤ (�.��)

against the alternative hypothesis that no such ⇤ exists (see Bishop et al., ����, § ��.�.� esp.

pp. ���–���). In particular, by conditioning on Z = z⇤, we obviate the need to consider the

existence of block probabilities ⇡ 2 ⇧= ,: .

To break up the problem in definition �.�.� into smaller pieces, we also define the

following simple hypothesis asserting the truth of a single ��� (Casella & Berger, ����,

p. ��� in § �.�.�).

Definition �.�.�. Fix some edge probabilities  2  : . The simple null hypothesis �0 

asserts that the random network’s true distribution conditional on the observed block

assignments z⇤ is the z⇤-conditional ����� ��� ✏z⇤
 . The alternative hypothesis �1 is that

the true conditional distribution could be any other ���. In other words, the test is of

�0 : ⇤z⇤ = ✏z⇤
 against �1 : ⇤z⇤ 2 ⇥z⇤ \ {✏z⇤

 }. (�.��)

Because we have only one observed network, our test cannot use asymptotic meth-

ods: the numbers of observed networks (one), nodes (=), and blocks (:) are all fixed.
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Rather we will employ an exact test, which approximates the p-value without relying on

asymptotic arguments. This is in contrast to, for example, Lei (����), which presented a

goodness-of-fit test valid as = ! 1. Lei tested the null hypothesis that the number : of

blocks equals some given number under an ��� for simple, undirected networks. Proving

the validity of the test relied on the convergence in distribution of a test statistic as = !1.

Having observed only A = a⇤, we cannot profit from allowing = !1.

Another asymptotic analysis of ���s in goodness-of-fit testing came from Latouche

et al. (����). The null hypothesis was that each edge indicator �89 is distributed according

to a logistic regression model with a residual term that in the absence of any covariates

would make the model an ��� with : = 1 block. The alternative hypothesis was that the

residual term has : > 1 blocks. The Bayesian goodness-of-fit test relied on : ! 1. Our

observational scenario assumes a fixed number of blocks. See Haberman (����) for more

on the challenges of asymptotics in statistical models of networks.

In addition to choosing an exact test, the other facet of our strategy is to use a condi-

tional test: In subsection �.�.� we will construct a p-value as a test statistic’s tail probability

conditional on the observed sufficient statistic M (a⇤ , z⇤)’s fiber F (a⇤ , z⇤). Subsection �.�.�

will define the particular test statistic. Conditioning on a sufficient statistic is a standard

technique when the statistic is discrete (see, e.g., Casella & Berger, ����, p. ���). The chief

advantage of conditioning is that it reduces the p-value’s dependence on parameters of

the null model by removing the probability’s dependence on the parameters (cf. Casella &

Berger, ����, Thm. �.�.�� on p. ���). The edge probabilities still appear in the test statistic

even after conditioning. In the case of our simple null hypothesis, that’s no impediment:

computing the p-value comes down to approximating the number of networks in a subset

of the fiber, which subsection �.�.� does with a Monte Carlo (��) algorithm.

However we have no algorithm for the p-value that subsection �.�.� develops for the

general null hypothesis. The edge probabilities appearance in the test statistic is the imped-

iment because the general-hypothesis p-value is the maximum over the simple-hypothesis

p-values, and we don’t know how to solve the optimization problem. Oddly the statistics

literature appears to be split on the necessity of the optimization. On balance it seems
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to us to be necessary, so we view the optimization as an open problem. Subsection �.�.�

discusses the two schools of thought in the literature and details the options for avoiding

the optimization problem.

�.�.� Test Statistic. In this subsection definition �.�.� on page ��� introduces a new test

statistic, which we call discrepancy, and we present some results to demonstrate its suitability

for conditional goodness-of-fit testing of the general null hypothesis in definition �.�.�.

In view of remark �.�.�, we draw inspiration for our test statistic from goodness-of-

fit testing for multinomial models. In that context, “[a] goodness-of-fit statistic is a measure

of the ‘distance’ from” (Bishop et al., ����, p. ���) the null model to the unconstrained

��� for the multinomial cell probabilities, which is the observed cell proportions (Bishop

et al., ����, p. ���). A distance function, which defines the goodness-of-fit statistic, is

a nonnegative function on pairs of cell-probability vectors that maps pairs to zero if and

only if they’re equal, and is at least vaguely, eventually monotonic in the Euclidean distance

(Bishop et al., ����, p. ���). Two of the most popular test statistics for discrete data in general

and multinomial data in particular are twice the log-likelihood ratio, called the likelihood

statistic ⌧2, and its second-order Taylor-series approximation, Pearson’s "̂2(Bishop et al.,

����, pp. ���–���, and pp. ���–��� regarding the relationship between ⌧
2 and "̂2; for

further evidence of their popularity, see Petrović et al., ����, pp. ���–���; see also Diaconis

& Sturmfels, ����). Both are based on distance functions (Bishop et al., ����, pp. ���–���),

and they have the same asymptotic distribution (Bishop et al., ����, pp. ���–���). Either

provides a reasonable starting point for testing a graphical model such as a conditional

�����. Our discrepancy statistic is similar to Pearson’s "̂2 statistic, which, in our context,

is

"̂2(a, z) B
’
8 92D=

�
089 � #̂I�!

y z
I �
y z

(a, z)
�2

#̂I�!
y z
I �
y z

(a, z)
, (�.��)

for any state (a, z) 2 ⇠= ,: , where  ̂(a, z) 2  : is the maximum likelihood estimator (���)

of the edge probabilities  under the general null hypothesis in definition �.�.� (Bishop

et al., ����, pp. ��–��).

Actually  ̂ could be another estimator of the edge probabilities, but the ��� is the
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most popular (Petrović et al., ����, p. ���), and it also minimizes goodness-of-fit statistics

that are based on a distance function—at least in multinomial models that replace 089 in

eq. (�.��) with observed cell proportions (Bishop et al., ����, p. ���). We return to this issue in

subsection �.�.�. For now the next lemma shows that computing the ��� is straightforward

under definition �.�.�’s assumption that we have observed the block assignments.

Lemma �.�.�. Fix block assignments z for which there is a network a such that (a, z) 2⇠= ,: and

for which N (z) is non-zero in every entry. The ��� of the edge probabilities  in the z-conditional

����� is the function  ̂ : ⇠= ,: ! [0, 1]:⇥: such that, for each block pair �, ⌧ 2 [:] and each

network a such that (a, z) 2⇠= ,: ,

#̂�⌧(a, z) B
"�⌧(a, z)
#�⌧(z)

. (�.��)

Proof. Fix a network a such that (a, z) 2⇠= ,: and a block pair �, ⌧ 2 [:]. Lemma �.�.� says

thatMz is an exponential family with sufficient statistic M . Thus, by E. L. Lehmann and

Casella (����, p. ���), the ��� of edge probabilities given the observation A = a from a ���

inMz is the unique  ̂ 2 [0, 1]:⇥: that satisfies "�⌧(a, z) = E ̂["�⌧(A, z)]. Expanding the

right side using the cardinality formulas in lemma �.�.� shows that "�⌧(a, z) equals

E ̂["�⌧(A, z)] = E ̂[
’
8 92⌅z

�⌧

�89] =
’
8 92⌅z

�⌧

E ̂[�89] =
’
8 92⌅z

�⌧

#̂�⌧ = #̂�⌧

’
8 92⌅z

�⌧

1 = #̂�⌧#�⌧(z).

As long as #�⌧(z) < 0, we may divide through to obtain eq. (�.��). ⇤

Lemma �.�.� requires that N (z) contain no zeros for the ��� to exist. If the true

��� ⇤ lies in the latent ����� M, the no-zeros condition necessitates that the block

probabilities ⇡ contain no zeros, too. We could have stipulated such a constraint in the

definition of ⇧= ,: (just as we stipulated that edge probabilities  2  : contain no ones)

(cf. the assumption for ��� that the parameter space contain an open set of which the true

parameter is an interior point: E. L. Lehmann & Casella, ����, Assumption (A�) on p. ���).

Instead we chose to emphasize the role of observing no zeros in N . At the same time, it

is entirely possible for eq. (�.��) to yield an estimate of zero or one even if the truth it

is estimating is strictly between zero and one. For more on what happens to exponential
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families’ ���s when zeros appear in their contingency tables, see Fienberg and Rinaldo

(����b) in conjunction with remarks �.�.� and �.�.�.

Estimators other than maximum likelihood have been used in the literature outside

the context of goodness of fit. Under the assumption that only the network but not the block

assignments have been observed, Airoldi et al. (����, pp. ����–����) gave an expectation-

maximization algorithm for ��� and a Bayesian, posterior-inference algorithm under a

Dirichlet prior for the rows of ⇡.

The ease of ��� aside, "̂2 is not a suitable statistic for a conditional test using the

sufficient statistic M because we cannot use "̂2 to distinguish distributions of observed

graphs that are in the same fiber of the sufficient statistic. Proposition �.�.� makes this

assertion more precise.

Proposition �.�.�. Fix some state (a, z) 2 ⇠= ,: . Pearson’s "̂2 is constant on M ’s fiber, i.e.,

"̂2(b) = "̂2(a) for all b 2 F (a, z), whenever  ̂ is. When  ̂ is the ��� in eq. ��.���, "̂2(a) = =.

Proof. Using lemma �.�.�, we break up the sum in eq. (�.��) by equivalence class ⌅z
�⌧ for

each block pair �, ⌧ 2 [:]. We also expand the square in the numerator. (Let’s assume that

 ̂(a, z) is non-zero in every entry to avoid trivialities.)

"̂2(a, z) =
’
�,⌧

266664
’
8 92⌅z

�⌧

0
2
8 9
� 089#̂I�!

y z
I �
y z

(a, z) + #̂2
I�!
y z
I �
y z

(a, z)

#̂I�!
y z
I �
y z

(a, z)

377775
=

’
�,⌧

1
#̂�⌧(a, z)

266664
’
8 92⌅z

�⌧

⇣
0

2
8 9
� 089#̂�⌧(a, z)

⌘
+
’
8 92⌅z

�⌧

#̂2
�⌧(a, z)

377775
089 2 {0, 1}, so 089 = 0

2
8 9
:

=
’
�,⌧

1
#̂�⌧(a, z)

266664
⇣
1 � #̂�⌧(a, z)

⌘ ’
8 92⌅z

�⌧

089 + #̂2
�⌧(a, z)

’
8 92⌅z

�⌧

1
377775

Using the cardinality formulas in lemma �.�.�:

=
’
�,⌧

1
#̂�⌧(a, z)

h⇣
1 � #̂�⌧(a, z)

⌘
"�⌧(a, z) + #̂2

�⌧(a, z)#�⌧(z)
i
.

Plugging eq. (�.��) into that last expression simplifies it to
Õ

�,⌧ #�⌧(z) = =. ⇤

Instead of "2, we use the following definition.
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Definition �.�.�. Define L : ⇠= ,: ! N=⇥:⇥: to give the number of edges along which a node

8 sends or receives in a block � and 8’s neighbor receives or sends in a block ⌧:

!8�⌧(a, z) B
=’
9=1
8 92D=

h
1(I�!

y z
= �)1(I �

y z
= ⌧)089

i
+

=’
9=1

982D= , 9<8

h
1(I�!

zy
= ⌧)1(I �

zy
= �)098

i
. (�.��)

Fix a state (a, z) 2⇠= ,: . Let  be a ��� either on ⇠= ,: ( 2 ⇥) or on the set G= of networks

and conditional on Z = z ( 2 ⇥z). Define the discrepancy, : ⇠= ,: ! R as

,(a, z) B
=’
8=1

:’
�=1

:’
⌧=1

Var[!8�⌧(A,Z)]<0

�
!8�⌧(a, z) � E[!8�⌧(A,Z)]

�2

Var[!8�⌧(A,Z)] . (�.��)

Where context implies  is a matrix of edge probabilities, we write, in place of,✏z
 

.

The discrepancy gives the a measure of the relative difference between L(a, z) and

the expected value of L(A,Z) under the distribution . Larger values of,(a, z) indicate

that the state (a, z) is less typical of samples from  and thus testify against the state’s being

a sample from .

Under a conditional �����, L’s distribution, expected value, and variance are

straightforward to compute. Proposition �.�.� on the next page relies on how eq. (�.��)

breaks up the sum to ensure all the summands are mutually independent. To help the

proposition describe that, let✓z
8�⌧ be the set of allowed edges that node 8 sends in block � to

a receiver in block ⌧, and let ⌘z
8⌧� be the set of allowed edges that node 8 receives in block

� from a sender in block ⌧ (excluding self-loops even if G= is non-simple). Equation (�.��)

formalizes these definitions using lemma �.�.�:

✓z
8�⌧ B

n
DE 2 ⌅z

�⌧

��� D = 8

o
, ⌘z

8⌧� B
n
DE 2 ⌅z

⌧�

��� D < E = 8

o
, (�.��)

which implies���✓z
8�⌧

��� = =’
9=1
8 92D=

1(I�!
y z
= �)1(I �

y z
= ⌧),

���⌘z
8⌧�

��� = =’
9=1

982D= , 9<8

1(I�!
zy
= ⌧)1(I �

zy
= �), (�.��)

for all nodes 8 2 [=], block pairs �, ⌧ 2 [:], and block assignments z for which there is

some network a such that (a, z) 2⇠= ,: . As is perhaps easier to see from eq. (�.��), eq. (�.��)
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defines sets that correspond to summands in eq. (�.��):

!8�⌧(a, z) =
’
8 92✓z

8�⌧

089 +
’

982⌘z
8⌧�

098 .

Proposition �.�.�. Fix block assignments z for which there is some a such that (a, z) 2 ⇠= ,: .

Fix a node 8 2 [=] and a block pair �, ⌧ 2 [:]. Under a z-conditional ����� ��� with some

edge probabilities  2  : , !8�⌧(A,Z) has Poisson’s binomial distribution �Poisson’s binomial

distribution is that of the sum of a finite number of independent Bernoulli trials not necessarily with

the same success probabilities. For a thorough survey, see Wang, �����, the sum of two, independent,

binomial, random variables� one with success probability #�⌧ and |✓z
8�⌧ | trials� and the other with

success probability #⌧� and |⌘z
8⌧� | trials. The expected value and variance are

E 
�
!8�⌧(A,Z)

�
= #�⌧

���✓z
8�⌧

��� + #⌧�

���⌘z
8⌧�

���, (�.��)

Var 
�
!8�⌧(A,Z)

�
= #�⌧(1 � #�⌧)

���✓z
8�⌧

��� + #⌧�(1 � #⌧�)
���⌘z

8⌧�

���. (�.��)

Proof. By eq. (�.�), the only events with positive probability are those with Z = z. That

event conditions everything that follows. For brevity, let ✓ B ✓z
8�⌧ and ⌘ B ⌘z

8⌧�.

First we prove the independence of the summands in eq. (�.��) when a = A. In

particular, the summands are the �DEs for DE 2 ✓ [⌘. Therefore our task is to show that

there’s no double counting, i.e., that ✓ \⌘ = ;. For 9 2 [=], ✓ contains allowed edges of the

form 8 9 and ⌘ of the form 98. Recall from subsection �.�.� that 8 9 is an abbreviation for the

ordered pair (8 , 9). If 8 9 2 ✓ \⌘, then 8 9 = 98, so 9 = 8, i.e., 8 9 is the self-loop 88. (This holds

even if G= is undirected; see table �.�.) But eq. (�.��) defines ⌘ to exclude self-loops in case

G= is non-simple. Therefore ✓ \⌘ = ;.

By definition �.�.� and definition �.�.�’s conditions (d) and (e), each summand �DE in

eq. (�.��) when a = A is an independent Bernoulli random variable with success probability

#I�!
DE
I �
DE

. If DE 2 ✓, then #I�!
DE
I �
DE

= #�⌧; if DE 2 ⌘, then #I�!
DE
I �
DE

= #⌧�. Hence !8�⌧(A,Z) is

the sum of |✓| independently and identically distributed (���) Bernoulli trials with success

probability #�⌧, plus |⌘| ��� Bernoulli trials with success probability #⌧�, and the two sets

of trials are mutually independent. Therefore !8�⌧(A,Z) has Poisson’s binomial distribution
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with ��� (cf. Wang, ����, Eq. (�) on p. ���) 5 z : N! [0, 1] such that

5
z
 (G) =

G’
✓=0

✓
|✓|
✓

◆
#✓�⌧(1 � #�⌧)|✓|�✓

✓
|⌘|
G � ✓

◆
#G�✓
⌧� (1 � #⌧�)|⌘|�(G�✓ )

. (�.��)

(For a proof of this formula, think of ✓ as choosing the number of the G Bernoulli-trial

successes coming from ✓, so that the other G � ✓ successes come from ⌘.)

The expected-value and variance formulas in eqs. (�.��) and (�.��) follow from the

linearity ofE and Var over independent random variables (Jacod & Protter, ����, Thms. �.�(a)

and ��.� on pp. ��, ���; cf. the expected-value and variance formulas for a general Poisson’s

binomial distribution in Wang, ����, Eq. (��) on p. ���). ⇤

It would be nice to sample !8�⌧(A,Z)directly from eq. (�.��) independently for each

8�⌧ index, rather than sampling A. Under the proposition’s hypotheses, {!8�⌧(A,Z)}:�,⌧=1

is a mutually independent set for each node 8 because of lemma �.�.�. However, !8�⌧(A,Z)

and !9�⌧(A,Z) are mutually dependent because

8 9 2 ✓z
8�⌧ and 8 < 9 if and only if 8 9 2 ⌘z

9�⌧.

We conclude this subsection by returning to our discussion of Pearson’s "2 above.

There we mentioned that ��� and distance-minimization coincide in multinomial models;

remark �.�.� showed how to transform a z-conditional ����� into a multinomial model.

With the invariance property of ���s in mind (Casella & Berger, ����, Thm. �.�.�� on p. ���),

we offer the following conjecture.

Conjecture �.�.�. Fix a state (a, z) 2⇠= ,: . The ���  ̂(a, z) C  from lemma �.�.� minimizes

the discrepancy, i.e.,, (a, z) = inf�2 :
,�(a, z).

�.�.� p-Value Definitions. In this subsection definition �.�.� uses the discrepancy ,

from definition �.�.� to construct a p-value for an exact, conditional test of the general

null hypothesis in definition �.�.�. Karwa et al. (����, § �.�) was our starting point for

the definitions, which we build up from a p-value for a the simple null hypothesis in

definition �.�.�.

A statistic ? : ⇠= ,: ! [0, 1] is a p-value for testing a null hypothesis �00 against an

alternative hypothesis�01 if ?’s being small is evidence against�00 in favor of�01. ? is a valid



���

p-value if additionally

P
�
?(A,Z)  �

�
 � under any ���  in the null model (�.��)

and for any given significance level � 2 [0, 1] (Casella & Berger, ����, Def. �.�.�� on p. ���).

The resulting test that rejects�00 if ?(A,Z)  � is a level-� test because eq. (�.��) means that

the probability when�00 is true of rejecting�00, a type � error, is at most � (Casella & Berger,

����, pp. ���–���, ���, ���). The situation is worse for invalid p-values. If we compare one

to � to test�00, we risk a type � error with some probability that we know nothing about, but

it might exceed �. This is especially problematic because many statisticians treat rejecting a

null hypothesis as a hypothesis test’s only epistemically valid inference (Wooldridge, ����,

August/����, p. ���; Casella & Berger, ����, pp. ���–���).

A tool we will use to derive results about our p-value for the general null hypothesis

is a function that gives the p-value except for choosing how to compute the expected-value

and variance terms in eq. (�.��). Since we are focusing on the hypotheses in definitions �.�.�

and �.�.�, in which we assume we have observed the block assignments, we will restrict our

attention here to computing those expected-value and variance terms under a conditional

����� ��� as in proposition �.�.�. Fix block assignments z for which there is some network

a such that (a, z) 2⇠= ,: . In particular we will focus on the general null modelMz . For each

matrix of edge probabilities 2  : , define the simple-hypothesis p-value ?
z
 : G= ! [0, 1],

for each network a such that (a, z) 2⇠= ,: , by

?
z
 (a) B P 

�
, (A, z) � , (a, z) | A 2 F (a, z)

�
. (�.��)

To be explicit, the events upon which the probability distribution in eq. (�.��) is conditioned

are the block assignments and the fiber F :

Z = z, M (A,Z) = M (a, z). (�.��)

M ’s sufficiency in the general null model means that P 
�
· | A 2 F (a, z)

�
does not

depend on  . From lemma �.�.��, we have (cf. Petrović et al., ����, Eq. (�.�) on p. ���)

?
z
 (a) =

|{b 2 F (a, z) | , (b, z) � , (a, z)}|
|F (a, z)| . (�.��)
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 still appears in eq. (�.��) because it determines how to compute the expected-value and

variance terms in eq. (�.��) via eqs. (�.��) and (�.��).

Lemma �.�.�. For edge probabilities  , the simple-hypothesis p-value ?z⇤ is a valid p-value for the

simple null hypothesis �0 from definition �.�.�.

Proof. As discussed after definition �.�.�, a large value of, (a⇤ , z⇤) is evidence against the

observed network’s being a sample from ✏z⇤
 . Since eq. (�.��) conditions on the fiber of a

sufficient statistic, the result then follows from Casella and Berger (����, p. ���). ⇤

Next our main definition constructs the test of the hypotheses in definition �.�.�

using the intersection-union method based on the simple null hypothesis �0 of eq. (�.��)

(Casella & Berger, ����, § �.�.� on pp. ���–���).

Definition �.�.�. Fix block assignments z for which there is some network a such that

(a, z) 2⇠= ,: . We define the general-hypothesis p-value ?
z : G= ! [0, 1] as

?
z(a) B sup

 2 :

?
z
 (a) (�.��)

for each network a such that (a, z) 2⇠= ,: . The conditional test rejects definition �.�.�’s �0

in favor of its �1 at a given significance level � 2 [0, 1] when

?
z⇤(a⇤)  �. (�.��)

Equation (�.��) shows that eq. (�.��) is a supremum over a finite set, so the “sup” is

a “max”. Moreover, the denominator of eq. (�.��) doesn’t depend on  . Hence

?
z(a) = 1

|F (a, z)| max
 2 :

|{b 2 F (a, z) | , (b, z) � , (a, z)}|. (�.��)

Proposition �.�.��. For the hypotheses in definition �.�.�, ?z⇤ is a valid p-value.

Proof. First we show that ?z⇤ is a p-value for the hypotheses in definition �.�.�. For any edge

probabilities  2  : , ?z
⇤
 (a)  ?z⇤(a). Suppose the latter value is small, so that the former is

as well. That is evidence, according to lemma �.�.�, against the simple null hypothesis �0 

of eq. (�.��). The general null model isMz⇤ =
–
 2 :

{✏z⇤
 }, and each of the singleton sets in



���

that union is the null model of the corresponding simple null hypothesis �0 . Therefore the

small value of ?z⇤(a) is evidence against the general null hypothesis �0.

Second, to prove validity, let � 2 [0, 1] and observe that the rejection region that

eq. (�.��) defines is the intersection of the rejection regions for the corresponding test of

each �0✏. In detail, if  2  : , then

P 
�
?
z⇤(A)  �

�
= P 

⇣
sup
�2 :

?
z⇤
� (A)  �

⌘
= P 

⇣ Ÿ
�2 :

�
?
z⇤
� (A)  �

 ⌘
 P 

�
?
z⇤
 (A)  �

�
.

Since ?z⇤ is valid by lemma �.�.�, P 
�
?
z⇤
 (A)  �

�
 �. Therefore P 

�
?
z⇤(A)  �

�
 �. ⇤

�.�.� Estimation. This subsection develops an algorithm for computing the simple-

hypothesis p-value ?z (a). Without a closed-form expression for it, we must approximate

it by ��. We construct the algorithm in two steps. Sub-subsection �.�.�.� presents algo-

rithm �.�.� for sampling from the fiber of the observed network. Sub-subsection �.�.�.�

presents algorithm �.�.� for estimating the distribution of the discrepancy among networks

in the fiber, calling algorithm �.�.� as a subroutine. Finally sub-subsection �.�.�.� goes

into detail analyzing the running time of algorithm �.�.�. As we have no algorithm to per-

form the optimization in eq. (�.��), this subsection does not discuss the general-hypothesis

p-value.

�.�.�.� Fiber Sampling. A uniformly random sample from definition �.�.�’s fiber F of

definition �.�.�’s statisticM is a necessary input to any �� algorithm that estimates p-values

conditioned on eq. (�.��). The samples’ target distribution is uniform because of eq. (�.��).

For this purpose we introduce the direct fiber sampler in algorithm �.�.� on the fol-

lowing page. The proof of the algorithm’s correctness is precisely the same as lemma �.�.��’s

proof of eq. (�.��). Direct contrasts with the Markov chain �� (����) algorithms (for an

introduction to ����, see Givens & Hoeting, ����, Ch. � on pp. ���–���), such as the one

Diaconis and Sturmfels (����, Lem. �.�) laid out, customary in the literature on goodness-

of-fit for network models—e.g., Karwa et al. (����, Thm. �.�), Li et al. (����), and Ogawa

et al. (����). Algorithm �.�.� is an exact simulation: the distribution of the sample exactly

equals the target distribution (Givens & Hoeting, ����, p. ���). Direct samplers beat ����

in terms of speed: no waiting for the Markov chain to converge; accuracy: exact rather than



���

approximate simulation; and ease of implementation: no parameters to tune and many

fewer steps per sample.

The key step is line �.�.�.�’s choosing "�⌧(a, z) edges without replacement from

the block-assignment equivalence class ⌅z
�⌧ that lemma �.�.� defined. An implementation

could use Python’s random.sample or NumPy’s numpy.random.Generator.choice

functions, whose running times would be proportional to "�⌧(a, z). Line �.�.�.� runs once

for each block pair �, ⌧ and thus the algorithm spends time on the line proportional to

the number
Õ

�⌧ "�⌧(a, z) of edges in the network a. However, computing M (a, z) and

{⌅z
�⌧}�⌧ themselves requires inspecting each of the |D= | = O(=2) entries of all three matrices.

Hence algorithm �.�.�’s running time is quadratic in the number of nodes.

Algorithm �.�.�: Direct fiber sampler
3.2.1.1 Function SampleFiber(=, :, sense, (a, z)) where

Input: = , : 2 N, 1  :  =, 2  =: number of nodes, blocks
Input: sense: implicit constraints on the allowed-edges setD=

Input: (a, z) 2⇠= ,: : the observed state
Output:B 2 F (a, z) sampled uniformly at random

3.2.1.2 B  0 2 G= // Start B as the = ⇥ = zero matrix.
3.2.1.3 for � 1 to : do // Lemma �.�.�: {⌅z

�⌧}�⌧ partitionsD= .
3.2.1.4 for ⌧ 1 to : do // Definition �.�.� gives "�⌧(a, z).
3.2.1.5 E  choose "�⌧(a, z) edges uniformly at random from⌅z

�⌧

3.2.1.6 for each 8 9 2 E do
3.2.1.7 ⌫89  1
3.2.1.8 if sense is undirected then ⌫98  1

3.2.1.9 returnB

�.�.�.� Simple-Hypothesis p-Value. We now develop �� algorithm �.�.� on page ��� to

compute ?z for the simple null hypothesis �0 in eq. (�.��) for some edge probabilities  

that we pick. Fix some observed state (a, z) 2 ⇠= ,: . Sub-subsection �.�.�.� discusses how

to choose the number of �� iterations <, but for now just let < be an arbitrary positive

integer. Let & be the fiber-conditional probability measure such that, for all networks b,

&(A = b) B P 
�
A = b | A 2 F (a, z)

�
, so that & is conditional on eq. (�.��).

Our goal is to approximate eq. (�.��). Sample the F (a, z)-valued random variables

X1 , . . . ,X< such that they are ��� uniformly under&—just what algorithm �.�.� is for. The

https://docs.python.org/3.9/library/random.html#random.sample
https://numpy.org/doc/1.21/reference/random/generated/numpy.random.Generator.choice.html
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real-valued random variables �, (X1 , z), . . . ,�, (X< , z) are ��� under &. Denote their

common cumulative distribution function (���) under & (i.e., conditional on the fiber) as

%
 . This is also the ��� of �, (A, z) when A 2 F (a, z). Hence estimating % is helpful

here because % 
�
�, (a, z)

�
= ?

z
 (a) by eq. (�.��).

We do so by adapting Shiryaev (����, p. ���) and Jacod and Protter (����, pp. ���–

���). For each C 2 [<], define the random function % 
C

: R! [0, 1] as the running average

count of XCs whose discrepancy is smaller than some given F 2 R:

%
 
C
(F) B 1

C

C’
✓=1

1
�
, (X✓ , z)  F

�
.

%
 
C

is the empirical distribution function. By the strong law of large numbers, % 
<
(F)

converges &-almost surely and in L2(&) to % (F) as < ! 1.25 By the Glivenko-Cantelli

theorem, % 
<

converges uniformly &-almost surely to % as < ! 1. Algorithm �.�.� on

the following page translates the computation of % 
<

into pseudo-code.

An implication of eq. (�.��) for valid p-values is that under the null hypothesis they

“tend to be bigger than” (Casella & Berger, ����, Prob. �.�� on p. ��) a uniform(0, 1) random

variable (Casella & Berger, ����, Proof of Thm. �.�.�� on pp. ���–���). Estimates of those

p-values should approximate the same tendency. To check that algorithm �.�.�’s estimates

behave accordingly, we selected block assignments z and edge probabilities  , sampled

A ⇠ ✏z
 , and plotted the estimated values of ?z (A) in fig. �.� on page ���.

�.�.�.� Convergence Rate. We now analyze the convergence rate of algorithm �.�.�. Adopt-

ing the notation from sub-subsection �.�.�.�, abbreviate ? B ?
z
 (a), which is a number in

[0, 1], and %< B %
 
<

�
�, (a, z)

�
, which is a [0, 1]-valued random variable. By the central

limit theorem, the convergence rate of %< to ? as< !1 is
p
< in the sense that the random

variable
p
<(%< � ?) converges in distribution to a normal random variable with mean zero

and variance ?(1 � ?) (Jacod & Protter, ����, pp. ���–���; Shiryaev, ����, pp. ���–���).

Convergence occurs under the probability measure &, which accounts for the simple null

25"The fiber is finite, so we will have sampled its entirety with high probability as < !1. (If we sample
the entire fiber with no repeats, then then our approximation becomes exact. The coupon collector’s problem asks
what the minimum number of samples needed to cover the entire fiber is (O’Neill, ����).) Equation (�.��) says
that the fiber is very large, bounded above only by |G= | = O(2=2 ). We need not worry about the end of <’s
asymptotic runway even for small = and small :.
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Algorithm �.�.�: Monte Carlo estimator of the simple-hypothesis p-value
?
z
 

3.2.2.1 Function ConditionalPValueForPMF(=, :, sense, (a, z), <,  ) where
Input: = , : 2 N, 1  :  =, 2  =: number of nodes, blocks
Input: sense: implicit constraints on the allowed-edges setD=

Input: (a, z) 2⇠= ,: : the observed state
Input: < 2 N, < > 0: number of samples to take
Input:  2  : : edge probabilities
Output: % 

<

�
�, (a, z)

�
3.2.2.2 e, v E 

�
L(A, z)

�
, Var 

�
L(A, z)

�
// Use eqs. (�.��) and (�.��).

3.2.2.3 F  , (a, z) // Plug e, v into definition �.�.�.
3.2.2.4 %  0 // Start recursive sum in line �.�.�.�.
3.2.2.5 for 1 to < do
3.2.2.6 X  SampleFiber(=, :, sense, (a, z)) // Call algorithm �.�.�.
3.2.2.7 F

0  , (X , z) // Plug e, v into definition �.�.�.
3.2.2.8 if F0 � F then %  % + 1
3.2.2.9 return %/<

hypothesis�0 of eq. (�.��) and the conditions of eq. (�.��). That Var[
p
<(%<�?)]! ?(1�?)

means that %< converges fastest when ? is near zero or one and slowest when near 1
2 . (If ? is

too close to zero, we may no longer believe the null hypothesis.) Moreover, we can estimate

the variance Var[%<] of %< itself using

+< B
1
<

2

<’
C=1

⇥
1
�
, (XC , z)  �, (a, z)

�
� %<

⇤2;

in particular, (%<�?)/
p
+< converges in distribution to standard normal as< !1 (Robert

& Casella, ����, § �.� on pp. ��–��). See fig. �.� on page ��� for an example.

Moreover, for any &, ⇣ 2 (0, 1), we may ensure the probability is at least & of getting

at least log10 ⇣ digits of accuracy in %< by solving for < in

&  &
�
|%< � ? |  ⇣

�
⇡ �

✓
⇣
p
<

?(1 � ?)

◆
��

✓
�⇣
p
<

?(1 � ?)

◆
= 2�

✓
⇣
p
<

?(1 � ?)

◆
� 1,

where � is the ��� of the standard normal distribution. We then get

< '

?(1 � ?)

⇣
��1

✓
& + 1

2

◆�2
.

When we do not have a reliable prior for the value of ?, we may plug in ? = 1
2 to maximize

this lower bound. For the purpose of hypothesis testing, we really care about the number
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Figure �.�. Histogram of a simple-hypothesis p-values from a single, conditional ���.
Histogram of �,��� samples under the null hypothesis �0 of % 150

�
�, (A, z)

�
estimating

the simple-hypothesis p-value ?z (A). All samples share a single, randomly chosen block
assignments array z and a single matrix of edge probabilities for = = 100 nodes in : = 11
blocks. Generated with version 0.3.0a0 of our mmsbm Python package with a pseudoran-
dom-number-generator seed value of 0x73c84cc10c5a41a306f69107ee35c7b4.

of digits 3 2 N of accuracy, so plugging in ⇣ = 10�3 is convenient. (Three digits of accuracy

is probably enough for the social sciences.) Thus the number of iterations < to use in

algorithm �.�.� should be

< '
1003
16


��1

✓
& + 1

2

◆�2

For 3 = 3 and & = .90, < should exceed approximately ��� thousand. For 3 = 3 and & = .99,

< should exceed approximately ��� thousand. Multiply by ��� for each additional digit.

See fig. �.� on page ���. Keep in mind that this entire analysis assumes both that the null

hypothesis is true (and that the number of graphs in the fiber is much larger than <, but

see footnote �� on page ���).
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�.�.� Optimization. The optimization problem in eq. (�.��) (or �.��) is tricky. It defines the

general-hypothesis p-value ?z⇤(a⇤) and poses a serious impediment to estimating ?z⇤(a⇤)

for testing definition �.�.�’s general null hypothesis �0. If we had at hand a maximizer  ̌,

then its simple-hypothesis p-value would equal the general-hypothesis p-value:

?
z⇤

 ̌(a⇤ ,z⇤)(a
⇤) = ?

z⇤(a⇤). (�.��)

We could pass  =  ̌(a⇤ , z⇤) to algorithm �.�.� to obtain an estimate of ?z⇤(a⇤). We could

then plug that estimate into eq. (�.��) for a valid test of�0 (assuming algorithm �.�.� iterated

long enough). The bad news is that we cannot offer even a suggestive reformulation of the

optimization problem much less an algorithm to solve it.

The other news is that statisticians seem to disagree about whether we need to. If

that’s not good news, at least the statisticians who don’t think we need to solve the opti-

mization are not bothered by the “bad” news. Our development of the general-hypothesis

p-value using the intersection-union method that led us to the optimization problem fol-

lowed a school of thought that the textbook Casella and Berger (����) exemplifies. Another

school, which the textbook Bishop et al. (����) exemplifies, might say that careful selection

of a simple null hypothesis satisfies all the inferential needs of the general null hypothesis.

That is, there may be edge probabilities 0 for which rejection of the simple null hypothesis

�0 0 convinces us to reject �0 as well even though we haven’t tested any of the other ���s

inMz⇤ . In eq. (�.��)’s telling, �0 merely asserts the existence of some true edge probabilities

 ⇤. We don’t actually care which ones. In this sense the matrix of edge probabilities  

is a nuisance parameter, one that complicates our computations but that is “not of direct

inferential interest.” (Casella & Berger, ����, § �.�.� on p. ���)

Traditionally there have been five ways out of actually performing the optimization.

Berger and Boos (����, pp. ����–����) summarized the first three and introduced the fourth.

The first way is to prove that some parameter value  ̄ is the least favorable configuration.

Here this means that  =  ̄ maximizes ?z⇤ (a) over  2  : for all a 2 G= . In some

popular one-sided tests for continuous distributions, the entire boundary of the null model’s

parameter space is least favorable. We expect that neither latent �����s nor conditional
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�����s have least favorable configurations. The second way is to choose a test statistic

whose distribution does not depend on the parameter, which we already opted not to

do. The third way is to condition on a sufficient statistic to remove the dependence of the

probability distribution on the parameter, which we already did. Our optimization problem

depends on  not because it appears in the probability distribution but because we are

effectively using one test statistic, (A,Z) per . The fourth way, confidence-set p-values,

was Berger and Boos’s invention (Casella & Berger, ����, § �.�.� on p. ���; Silvapulle, ����,

however, developed the same idea independently, having submitted his manuscript in

June, ����, three months before the publication of Berger and Boos’s), wherein we would

determine a parameter confidence set C(A) ✓  : such that P 
�
 2 C(A)

�
� 1 � � for all

 2  : and some � 2 [0, 1]. Then a 7! sup 2C(a)P 
�
, (A,Z) � , (a,Z)

�
+ � is a valid

p-value. Unless we can offer a confidence set that is finite—and small at that—which we

cannot, confidence-set p-values don’t buy us out of our computational difficulties.

The fifth way around the optimization problem is to pick a  0 that is convincingly

represents the general null model—the most representative configuration, as it were. This

has usually meant picking  0 =  ̂(a⇤ , z⇤), the ���. Actually Bishop et al. (����, § ��.�

esp. pp. ���–���) defined multinomial-model hypothesis testing without appeal to a supre-

mum in the first place.26 As subsection �.�.� mentioned, goodness-of-fit statistics based on

distance functions measure the distance between the unconstrained ��� and an estimate

constrained to be in the null model. Bishop et al. distinguished goodness-of-fit statistics’

constrained estimators between those that minimize the distance function and those that do

not (Bishop et al., ����, pp. ���–���). In any event, they pointed out, ��� “for a multinomial

model also corresponds to a minimum distance method of estimation” (Bishop et al., ����,

p. ���). Petrović et al. (����, § �.� esp. pp. ���–���) went further in emphasizing the central-

ity of ��� to the three steps of “typical goodness-of-fit testing” they identified,27 writing

26"Bishop et al. (����, pp. ���–���) defined a null hypothesis analogous to our general null hypothesis
in definition �.�.�. Pick a null model A ✓ �C�1, the standard simplex in RC . Let X be an NC -valued random
vector whose distribution is multinomial with

Õ
8
-
8

trials and unknown cell probabilities � 2 �C�1. Their null
hypothesis was �00 : � 2 A against the alternative hypothesis �01 : � 2 �C�1 \A.

27"The hypotheses that Petrović et al. (����) tested were essentially the same as those of Bishop et al.
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that the first step is computing the ��� and that, in the second step, “the goodness-of-fit

statistic [. . .] measures how close the MLE is to the observed network[. . .]”. Petrović et al.’s

final step mirrored Bishop et al.’s. The latter authors wrote, “Having computed the distance

[. . .], the fit of the model is assessed as good or bad depending on the size of” (Bishop et al.,

����, p. ���) that value. This school of thought holds that the test statistic evaluated at one,

well chosen parameter estimate  0 tells us everything we need to know about the entire

null model.

Put differently, we choose  0 to be our best guess about how a⇤ might have been

sampled from a conditional ����� distribution. On the one hand, we know that ?z⇤ 0
(a⇤) 

?
z⇤(a⇤), so the former’s being large means we must not reject �0. On the other hand, if

?
z⇤
 0
(a⇤) is small so that we don’t believe �0 0 , are we really going to believe �0 for

any worse guesses  about how a⇤ might have been sampled from a conditional �����

distribution?28 Maybe we should! According to Berger and Boos (����, p. ����), who cited

Storer and Kim (����), ?z⇤ 0
might not be valid for �0, thereby rendering it prone to type �

errors. Suppose for a moment that �0 is true and we chose  0 to be the ���  ̂(a⇤ , z⇤). In

terms of eq. (�.��) the true conditional ��� ⇤z
⇤ equals the z⇤-conditional ����� ��� ✏z⇤

 ⇤ .

It is possible that, for example,  ⇤ <  0 so that P ⇤(A = a⇤) < P 0(A = a⇤). If the likelihood

function is relatively flat in a large enough neighborhood of 0 (see E. L. Lehmann & Casella,

����, p. ���, for formulas for the derivatives of the log likelihood function of exponential

families), it is possible that the likelihoods under ⇤ and 0 aren’t even that different. Using

a simple-hypothesis p-value ?z⇤ 0
to test the general null hypothesis ignores that possibility.

Unless that simple-hypothesis p-value equals the general-hypothesis p-value as in

eq. (�.��). An estimator  ̌ of  that is easy to compute and also happens to maximize

eq. (�.��) would make for the perfect most representative configuration  0. Ideally the ���

(����) that we describe in footnote ��.

28"Another advantage of plugging the ��� into the discrepancy is that every network in a fiber has
the same ��� by lemma �.�.�. Equation (�.��) says that the general-hypothesis p-value is just the proportion
of networks in the observed fiber with a larger discrepancy. In some sense, using the ��� makes this an
apples-to-apples comparison. “[A]ll the networks [] belonging to the same fiber will produce the same MLE
and are, therefore, equivalent from the inferential standpoint.” (Petrović et al., ����, p. ���).
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 ̂would fit the bill (but that’s a taller order than conjecture �.�.�). Finding such an estimator

is the direction we suggest for future research and would open up a sixth way around the

optimization problem.  ̌ differs from a least favorable configuration  ̄ because  ̌would be

a statistic and thus depend on the random network A whereas  ̄ is a constant inherent to

the null model.  ̌ differs from the most representative configuration  0 because  ̌ would

provably solve the optimization problem. If such a  ̌ exists, it would solve the Casella et al.

version of the problem by solving the optimization problem, and it would solve the Bishop

et al. version of the problem by giving us a very convincingly representative  0 of the null

model. If such a  ̌ exists, both schools of thought could be right.
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Figure �.�. Convergence of p-value estimates. The simple-hypothesis p-value estimate
%
 
<

�
�, (a, z)

�
at < iterations converges to ?z (a) after a few hundred iterations. It takes

much longer for the standard deviations
�
Var % <

⇥
�, (a, z)

⇤ �1/2 around the estimates
(shown here in gray) to begin converging. All estimates share a single, randomly chosen
block assignments array z on : = 11 blocks, a single, randomly chosen edge probabilities
matrix  , and a single network a on = = 100 nodes drawn from the corresponding
z-conditional ����� distribution, i.e., drawn from the null model �0 . Generated with
version 0.3.0a0 of our mmsbm Python package with a pseudorandom-number-generator
seed value of 0x174d3f66a8bd36300fbd1735b34ecfc3.
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Figure �.�. Approximate lower bound on the number of iterations needed in Monte Carlo
integration. Approximate lower bound on the number < of iterations needed for a given
probability of correctness of the first 3 digits of a p-value computed by Monte Carlo
integration. Generated with version 0.3.0a0 of our mmsbm Python package with a pseu-
dorandom-number-generator seed value of 0x8a6dde815ec68991cce6bdb1bb53620.
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Chapter �

LEXICOGRAPHIC WINNER DETERMINATION

�.� Model

Governments regularly auction publicly owned assets to private hands. More valu-

able assets have required increasingly sophisticated auction formats to facilitate bidders’

complex demand schedules, allow heterogeneous supply, ensure efficiency and fairness,

generate revenue, and deter collusion and fraud (Klemperer, ����a, pp. ���–���; see also

Day & Raghavan, ����, pp. ����–����). Since ���� when the United States switched from

so-called “beauty contests”, in which a government panel selected winners based on con-

testants’ submitted business plans, to auctions for allocating radio spectrum—licenses to

the usufruct of specified ranges of radio frequencies—other governments have followed

suit (Klemperer, ����a, pp. ���–���). Among the most sophisticated auction formats in use

today is the combinatorial auction (��), which allows bidders to express demand that is

non-linear across multiple units of multiple categories of goods or services in typically ar-

bitrary combinations. Table �.� shows some recent examples to demonstrate their ongoing

economic importance.

Whereas auction formats such as the “classic English auction of Sotheby’s and

Christie’s” (Ausubel & Milgrom, ����, p. ��) find a market-clearing combination of price

and asset allocations economically, ��s clear the market computationally, and other mecha-

nisms lie somewhere in between.29 At the end of an English auction, the bidders who are

still bidding are the winners, and they pay their last bid. At the end of a ��, the auctioneer

has to feed the bids into an algorithm to find out who won and, in typical usage, how much

they ought to pay. Bidders in a �� express demand for multiple combinations of discrete,

29"“Thus, in the many real-world applications of ��s, the computational techniques of [operations
research] facilitate more efficient economic outcomes in environments too complex for classical (i.e., noncompu-
tational) economic theory.” (Day & Cramton, ����, p. ���). “Some formal models show the equivalence between
iterative ��s and decentralized optimization algorithms [. . .]” (Parkes, ����, p. ��). Certain types of ��s are
equivalent to certain ��s (Bikhchandani & Ostroy, ����). Combinatorial auctions can vary in computational
burden on the auctioneer, offloading some of it to bidders or to the economic mechanism itself (Pekeč &
Rothkopf, ����). See also Ausubel and Milgrom (����, pp. ��–��) for a comparison of a type of �� and a type of
multiunit, single-product ascending clock auction.
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Table �.�. Some recent combinatorial auctions for spectrum

Auctioneer Year Band Revenue
United Kingdoma 2013 800 MHz & 2.6 GHz £2.4 billion

Canadab 2014 700 MHz £2.4 billion
United Statesc 2016–2017 600 MHz $19 billion

Irelandd 2017 3.6 GHz Ä78 million
Canadae 2019 600 MHz $3.5 billion

Denmarkf 2021 1.5 GHz, 2.1 GHz, 3.5 GHz, & 25 GHz DKK2.1 billion
United Statesg 2021– 3.45–3.55 GHz �$21 billion

Irelandh upcoming 700 MHz; 2.1, 2.3, & 2.6 GHz
Revenues are in local currency and not adjusted for inflation. aOffice of Communications [Ofcom], ����a.
bIndustry Canada, ����. c“The Commission adopts the assignment round bidding procedures proposed in
the Auction ���� Comment PN[. . .]” Federal Communications Commission [���], ����, para. �(j); this refers
to ���, ����, app. H; only the assignment phase of Auction ���� (the Incentive Auction’s forward auction)
was combinatorial; the revenue includes the entire forward auction (���, ����b, para. �). dCommission for
Communications Regulation [ComReg], ����. eBono et al., ����; Innovation, Science and Economic Development
Canada [���� Canada], ����b. fDanish Energy Agency [���], ����a, ����b. g���, ����a, para. ���; only the
assignment phase is combinatorial; the revenue is the “gross proceeds” as of round ��� on ����, November �
(���, ����b). hComReg, ����.

indivisible goods—say, a barrel of water rather than water. Because the auctioneer can fit

together multiple bidders’ bids, and the bids may be for product combinations that are not

directly comparable, we cannot simply say, “highest bidder wins”. Table �.� on page ���

will show an example of a �� in which the highest bid loses. Instead, an algorithm solves the

winner determination problem (���) to maximize the auctioneer’s revenue while awarding

bidders only those packages they bid for and constrained by the auctioneer’s actual supply

of those products.

We develop mathematical results to facilitate algorithm design for a problem formu-

lation of ��� that we believe improves on the formulations available in the literature when

it comes to modelling how governments use ��s today to sell radio spectrum. Spectrum is

far from the only market using ��s (for a wide variety of applications of ��s specifically,

see Cramton et al., ����b, pt. �; and for other types of auction markets, see also Klemperer,

����a, pp. ��–��), but it serves an outsize role in the multiunit-auction literature(“Much cur-

rent work [on multiunit auctions] has been stimulated by the recent government auctions of

radio spectrum licenses [for mobile telephony, etc.], and emphasises the problem of selling

heterogenous goods with complementarities between them, with common-value compo-
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nents to bidders’ valuations, and perhaps also externalities between bidders.” Klemperer,

����, endnote �� on p. ���). We won’t directly concern ourselves with bidders’ valuations,

economic efficiency, incentive compatibility, the desirability of auction features from an

policy perspective, or other topics of the economics and policy literature, even as we use

that literature to develop some mathematics.

The modern, game theoretic treatment of auctions first appeared in the economics

literature with Vickrey (����) (the paper “is still essential reading.” Klemperer, ����, p. ���).

Economists have combined Vickrey’s auction mechanism with Clarke (����) and Groves

(����) to create the so-called Vickrey-Clarke-Groves (���) mechanism for multiunit auctions

of heterogeneous items (Ausubel & Milgrom, ����, p. ��), still the “lovely and elegant

reference point” (Ausubel & Milgrom, ����, p. ��) for judging other mechanisms if “not

[. . .] a likely real-world auction design.” (Ausubel & Milgrom, ����, p. ��) Rassenti et

al. (����) first introduced the economics literature to specifically combinatorial auctions

(Cramton et al., ����c, endnote � on p. �� from p. ��). (Both Smith and Vickrey went on

to win Economics Nobel prizes (Cramton et al., ����b, p. ���; Klemperer, ����, p. ���).)

However, the real explosion of interest in ��s began at the very end of the ����s. Klemperer

(����), a lengthy survey of the auction literature as of ����, did not mention ��s and

included only a short section on multiunit auctions, but admitted that “this is probably the

section of this survey that will become obsolete most quickly.” (Klemperer, ����, p. ���)

Indeed by the time he republished the article as Klemperer (����b), he added an afterword

urging the reader to catch up on all that had happened in the fields of multiunit and

combinatorial auctions in the intervening years (Klemperer, ����b, pp. ��–��). Cramton

et al. (����b) collated that progress into a compendium of recent articles on the economics,

computer science, and public policy dimensions of ��s (and related multiunit auctions).

We lean heavily on several of its chapters throughout this report. Additionally auctioneer

and regulatory documents (Hoffman et al., ����; Power Auctions, ��� [Power Auctions],

����) as well as professional consultants’ white papers (Bono et al., ����; Maldoom, ����)

have offered highly technical analysis, sometimes from the same academicians who write

for the scholarly journals. Academic writing about ��s sometimes present a stylized ���,
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assuming away the complications that auctioneers add in the real world. Practitioners

writing about ��s typically present a ��� specific to the auction at hand with an ad hoc

formulation.

Subsections �.�.� and �.�.� aggregate the most popular of these complications into a

unified and concise formulation called the lexicographic winner determination problem, which

we abbreviate ����, and which subsumes classical ��� as a subset of instances. The for-

mulation should better match the way that governments use ��s to allocate spectrum.

Hopefully ���� presents a shorter on-ramp to practitioners trying to implement auction

solvers than traditional ��� literature.

The rest of the report proceeds as follows after subsection �.�.� establishes some

notational conventions. Subsection �.�.� and sections �.� to �.� present a novel set of tech-

niques for solving ����. Section �.� is a short aside on pre-solving techniques for simpli-

fying input data. It explores the economic notion of marginal value for arbitrary, discrete,

heterogeneous packages of products in a novel way with an application to finding dom-

inated bids. The larger solution structure combines the branch-and-bound method with

a top-down dynamic programming (��) algorithm with memoization. Subsection �.�.�

and section �.� define the branching and the bounding techniques, respectively. Subsec-

tion �.�.�’s main theorem, theorem �.�.�, offers a new, heuristic explanation of why linear

programming (��) relaxations have been successful in helping solve classical ���. Subsec-

tion �.�.�’s main theorem, theorem �.�.�, extends �� relaxation techniques to ����, taking

care of the complications that lexicographic optimization pose. We hope that other lexico-

graphic combinatorial optimization problems can make use of many of the techniques it

relies upon. Every branch-and-bound algorithm needs an actual optimization algorithm at

its core. Often that algorithm is for solving ��s. Instead section �.� presents a �� algorithm

combined with a novel memoization scheme adapted to lexicographic optimization. That

section reviews the reasons for choosing ��, but one major advantage is that it supplies

simple proofs for some results about ���� (theorem �.�.� and proposition �.�.�) that are not

even specific to ��. Finally, section �.� explores some of the ways in which the �� solution

speeds up computation of prices in certain �� mechanisms.
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�.�.� Notation. Denote the set of real numbers as R and the set of nonnegative integers as

N. For ? 2 N, abbreviate [?] B {1, . . . , ?}; in particular [0] = ;. Define the extended reals

as R B R [ {�1,1}, and denote the vector of all1s as 1. We use the usual conventions

about addition and multiplication by1 (see Jacod & Protter, ����, p. ��):

1 +1 = 1, ±1⇥ 0 = 0,

�1 �1 = �1, 1⇥ 0 = 1 for all 0 2 (0,1],

0 ±1 = ±1 for all 0 2 (�1,1), 1⇥ 0 = �1 for all 0 2 [�1, 0).

By convention, we define max ; B �1 and min ; B1 for the dimension appropriate for

the context.

We say that x 2 N?
lexicographically precedes y 2 N? , denoted x � y, whenever

there exists an 8 2 [?] such that G: = H: for 1  : < 8 and G8 < H8 (For a discussion of order

theory for integer vectors in terms of “monomial orders”, see Cox et al., ����, pp. �.�, �.�).

For example, (0, 2) � (1, 0) with 8 = 1. Lexicographic order is a total order on N? , meaning

that every x, y 2 N? , exactly one of x � y or x ⌫ y is true. Further, lexicographic order

is compatible with addition, so that if we also have some z 2 N? , then x � y implies that

x + z � y + z. Finally, lexicographic order is a well order, meaning that every non-empty

subset ⌫ of N? has a minimum or least element x 2 ⌫, so that for all y 2 ⌫, x � y. The

lexicographic order is also defined for real-valued vectors. In the real case, � ceases to be a

well order.

While we stick with the usual entry-wise relation  for (extended) real vectors

and matrices, we sometimes want to emphasize viewing vectors, especially packages (see

subsection �.�.�), as multisets. Suppose ⌫ and ⇠ are multisets in a universe with ? items,

and they have corresponding characteristic vectors x, y 2 N? . Then ⌫ ✓ ⇠ if and only

if x  y, and ⌫ ⇢ ⇠ if and only if x � y. The latter means that x  y and x < y, e.g.,

(0, 2) � (1, 2). The  relation on vectors is not a total order but rather a partial order: it may

be the case that none of x  y, x � y, or x = y hold. Such x and y are not comparable.

Lemma �.�.�. If x, y 2 R?

, then x  y implies x � y. The converse is always true if and only if

? = 1.
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Proof. Equality has the same meaning under both  and �, so suppose that x � y. Then

G:  H: for all : 2 [?], and there is some least 9 for which G9 < H9 . Therefore G: = H: for

: < 9 and G9 < H9 , i.e., x � y.

If ? = 1, then  and � are both just the usual order on R. A counterexample to prove

that the converse fails if ? > 1 is x B (0, 1, . . . ) and y B (1, 0, . . . ), where the ellipses stand

for any values in the remaining ? � 2 coordinates. In this case x � y, but x and y are not

comparable under . ⇤

�.�.� Formulation. We are concerned with multiunit auctions in which some of the

discrete, indivisible, and possibly heterogeneous items for sale are perfect substitutes,

meaning that they’re economically indistinguishable (D. Lehmann et al., ����, p. ���). A

product is an equivalence class of mutually substitutable items. For example, flights and

train rides are products whereas specific seats are items. In this context heterogeneity means

that there is more than one product. Let ? � 1 be the number of products for sale, each of

which we assign a unique positional number in [?]. A package is a (column) vector q 2 N? ,

which represents a multiset of items by designating the number of items of each product.

For some < � 1, we call (column) vectors v 2 R<
value vectors. A pair (v, q) of a value

and a package vector constitutes a package bid, or just bid: an expression that a bidder is

willing to pay E1, the bid price, in exchange for the entire package q but nothing at all for

anything less.

Implicitly we are using a variant of the exclusive-or (���) bidding language for

encoding bidders’ valuations (Nisan, ����, p. ���). The ��� bidding language has two

distinct advantages. First it is fully expressive, meaning that it can express all valuations

(Nisan, ����, Prop. �.� on p. ���). Second it is the bidding language in actual use in several

recent government auctions, including in the UK and Canada (Day & Cramton, ����, p. ���;

Ofcom, ����, reg. ��.(�)(b); Industry Canada, ����, para. ��; ���� Canada, ����, para. ��).

Our formulation differs from the standard ��� bidding language in two ways. First

we are using package vectors instead of bundles, or sets of items (Nisan, ����, p. ���). We

may think of packages as living in the quotient space of bundles modulo the product equiv-

alence relation. More simply, we can break packages out into their individual items. After
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this transformation, an ��� package bid becomes an ���-of-�� bundle bid. For example,

suppose there are two red marbles and two blue marbles for sale, so a package written

in red-blue order might be q = (1, 2). Once we break out the package q into an �� of

bundles, it becomes {red1 , blue1 , blue2} �� {red2 , blue1 , blue2}.30 The second difference is

the possibility that the value vector has length < > 1. The first coordinate is always the

monetary willingness to pay for the corresponding package. We call the subsequent entries

tie breakers. In most real auctions the auctioneer, not the bidder, determines the values of

the tie breakers. It makes no difference to our investigation of winner determination. One

way or another, the auctioneer has in hand the entire value vector v.

We assume for the remainder of this report that 1 � 1 bidders participated in

a combinatorial auction. Each bidder 9 2 [1] submitted to the auctioneer bids (V8 ,Q8)

indexed by positive integers 8 2 I 9 < ; such that the index sets I1
, . . . ,I1 partition [=],

where = =
Õ
9
|I 9 | is the total number of bids. The largest possible package, or supply, is

s 2 (N \ {0})? , so all other packages Q8 are such that Q8  s. We place all the values as

columns V8 , 8 2 [=], of a values matrix V 2 R<⇥= , and all the packages as corresponding

columns Q8 of a packages matrix Q 2 N?⇥= .

Table �.� on the following page illustrates a common representation of bids in

a spreadsheet, called a bid stack, whose rows encode bids (transposing [ V Q ]) labeled

and sorted by bidder. Bid indices 8 are just the row numbers, which the sorting renders

consecutive within each bidder’s index set.31 Bid stacks have been a popular data language

among government auctioneers of radio spectrum (see, e.g., Ofcom, ����b, Supplementary_

bids.csv; and ���� Canada, ����a).

The classical winner determination problem for the ��� bidding language is to

30"In this example the package is more succinct than ��s of bundles. The former requires four bits
whereas the latter requires four bits per bundle times the number of bundles ��ed together. However for any
two bidding languages, there exists two valuations, one that is more succinct in the first bidding language and
the other more succinct in the second (Nisan, ����, p. ���).

31"Formally, a bid stack is the matrix [ j V « Q« ], where j 2 [1]= is a column vector labeling each row
with the bidder who submitted that bid. Put differently, 9

8
is the unique solution to 8 2 I 98 . Optionally we could

stipulate that each of the bid index sets I 9 contain only consecutive numbers.
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Table �.�. An illustrative bid stack

Values V « Packages Q«

Bid 8 Bidder 9 $ Rand. Wine Cheese
X 1 Alice 20 79 1 0

2 Alice 0 0 0 0
3 Bob 10 12 0 1

X 4 Bob 0 0 0 0
X 5 Carol 10 31 0 1

6 Carol 0 0 0 0
7 Dan 25 80 1 1
8 Dan 12 59 1 0
9 Dan 5 74 0 1

X 10 Dan 0 0 0 0
This is an example of a bid stack (orig. pub. as Schwartz, ����) with = = 10 bids from 1 = 4 bidders, Alice, Bob,
Carol, and Dan. They are bidding for ? = 2 products, a bottle of wine and a hunk of cheese. The supply of both
products is one: s = [1, 1]«. The values matrix V has < = 2 rows, a dollar amount the bidder is willing to pay
for each package and a random number to break ties. The sets of bid indices are IAlice = {1, 2}, IBob = {3, 4},
ICarol = {5, 6}, and IDan = {7, 8, 9, 10}. X denotes the winning bids assuming no reserve price. The winning
bids’ total value is v⇤ = [30, 110]«, which beats the highest single bid of $�� by Dan. Carol’s bid in row � beats
Bob’s in row �, both of which are for the cheese without the wine, because of the tie breaker. Bob and Dan win
their explicit zero bids (0, 0), so they keep their cash, thirst, and hunger.

allocate32 to each bidder exactly one of their bid packages in such a way that maximizes the

social-welfare function while ensuring that the winning allocation does not exceed supply.

The social-welfare function is the sum of bid prices corresponding to the bid packages that

the winning allocation selects. Following Maldoom (����, § �) and D. Lehmann et al. (����,

p. ���), we write this problem as the zero-one integer linear program (����) in eq. (�.�) on

the next page. The decision variable G8 for 8 2 [=] indicates whether the auctioneer selects

bid 8 to win (G8 = 1) or not (G8 = 0); in particular, x represents an allocation as an indicator

32"In contrast to an allocation’s matching of packages of products to bidders, an assignment matches
bundles of items to bidders (cf. Maldoom, ����, § �.�).
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vector, and eq. (�.�)’s maximizers are winning allocations.

maximize
x

(V x)1 (�.�)

subject to Qx  s, (supply)

x 2 {0, 1}= , (nonnegativity and integrality)’
82I 9

G8 = 1, 9 = 1, . . . , 1. (exclusive or)

Since the first entry of each value vector is bid price, (V x)1 is the sum of bid prices. The

decision version of ��� returns whether a solution to eq. (�.�) exists with the the sum

of bid prices equaling or exceeding some given number (D. Lehmann et al., ����, p. ���).

The exclusive-or constraints ensure that each bidder wins exactly one of its bids. The

supply constraints ensure that the auctioneer has not sold more items than it has. The last

constraint ensures each bid 8 either wins (G8 = 1) or doesn’t (G8 = 0).

Many auctions have reserve prices: the least revenue an auctioneer accepts in ex-

change for a package (Cramton et al., ����a, p. ���; Klemperer, ����a, p. ���). We assume

the auctioneer’s valuation for all packages is linear, so we write product C’s reserve price as

AC 2 R and a package q’s reserve price as r«q, where r B (A1 , . . . , A?) is the vector of reserve

prices. What revenue means depends on an how the auctioneer determines final payments

from winners, which is the subject of section �.�. For now, it suffices to say that if a bidder

9 is to win a package q, the auctioneer would charge the bidder > 9(q) of currency. Reserve

prices indicates the auctioneer’s unwillingness to permit a bidder 9’s winning any package

q for which > 9(q) < r«q. Recent auctions such as Canada’s ��� MHz (����) and ��� MHz

(����) spectrum auctions have implemented reserve prices by appending to the bid stack

bids for each item of each product at the reserve price from separate dummy bidders for

each quantity of demand (Industry Canada, ����, para. ��; ���� Canada, ����, para. ��; this

idea has been known at least since Day & Cramton, ����, p. ���). This ensures bidders must

out bid the reserve price for every marginal unit of every product—at the computational

cost of lengthening the bid stack by
Õ?

C=1(BC + 1) bids. This is problematic because (the

decision version of) ��� is NP-complete (D. Lehmann et al., ����, Thm. ��.� on p. ���).

Instead, we follow Day and Cramton (����, pp. ���–���) in subtracting from the
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social-welfare function the auctioneer’s valuation of each package it’s considering selling.

(Incorporating reserves into the objective function loses no generality because we may

always take r = 0.) Mathematically this means that definition �.�.� incorporates reserve

prices directly into the objective function by adding r«(s�Qx). Since that vector is fixed for

any given x, we could follow Day and Cramton to the conclusion that we can replace the

first row of V with those bid prices less r«Q, the length-= row vector of reserve prices for

each package. We could then solve ��� and add r«Q8 back into the final payments from

each bidder winning a package Q8 . However, keeping reserve prices explicit in the formula-

tion provides an analytical framework for understanding how reserve prices interact with

subproblems and pricing. To this end, define the < ⇥ ? real reserve-values matrix

R B

2666664
r«

0

3777775
= e1r

«
, (�.�)

where 0 is the (< � 1) ⇥ ? matrix of all zeros and e1 is the first standard basis vector of

R? . We assume that no bidder has submitted a bid below the reserve price: +18 � r«Q8 for

all 8 2 [=] (Clock auction rules generally prevent submitting bids below reserve prices. For

example, see ���� Canada, ����, para. ��; Day & Cramton, ����, pp. ���–���, explained

why this rule is economically desirable).

Most auctions have tie-breaking rules in case multiple combinations of bids achieve

the same sum of bid prices. We model such tie-breaking rules using multi-criteria opti-

mization, meaning that we combine multiple objective functions into one optimization

according to some rule (Ehrgott, ����). Tie-breaking rules in auctions typically require

breaking ties among only the maximizers of eq. (�.�), and then maximizing another linear

objective function within the optimal set of the previous optimization, and so on (For an

example, see Power Auctions, ����, para. ��). Performing this literal sequence of recursive

optimizations is Algorithm �.� Ehrgott (����, pp. ���–���). On behalf of the Federal Com-

munications Commission (���), Hoffman et al. (����, slides ��–��) first suggested breaking

ties this way with a random linear objective function, arguing that randomly selecting

among optimal winning combinations is fair and a ���� solution avoids enumerating the



���

possibly millions of tied combinations.33 However, Maldoom (����, § �.�) did offer an al-

gorithm for enumerating all ties. Pekeč and Rothkopf (����, pp. ����–����) discussed why

some auction mechanisms might experience more ties than others and some of the options

for avoiding or breaking those ties. The authors point out that tie breaking is more impor-

tant for government than private auctioneers because of the need for fairness and equal

treatment as well as the risk of lawsuits. To generalize across multiple tie-breaking rules

while avoiding the need to enumerate ties, we formulate a lexicographic maximization

(Ehrgott, ����, § �.� on pp. ��� sqq.), which we denote max�, arg max�, etc., in our case over

the values vectors that constitute the columns of V . Auctioneers have explicitly used lexico-

graphic optimization before for modified ���s, such as the assignment phase of the ���’s

Auction ���� (the Incentive Auction’s forward auction), which maximized three measures

of spectrum contiguity (���, ����, app. H, § �). What we are offering here that is new is a

unified way to view all the common auction rules in one formulation.

Definition �.�.� (����). The lexicographic winner determination problem, or ����, for the

��� bidding language is to find a maximizer x of the following lexicographic linear ����,

whose maximum we denote v⇤.

maximize�
x

V x +R(s �Qx) (�.�)

subject to Qx  s,

x 2 {0, 1}= ,’
82I 9

G8 = 1, 9 = 1, . . . , 1.

Equation (�.�) (with R = 0) is very similar to a ?-dimensional version of the multi-

criteria knapsack problem, about which there is a small literature; subsection �.�.� briefly

discusses the multidimensional knapsack problem. Eben-Chaime (����) discussed para-

metric solutions for the bi-criteria case (< = 2) where, instead of lexicographic ordering,

33"The ��� has continued using breaking ties with random numbers, including in its ����–���� Incentive
Auction (see, e.g., ���, ����a, “Random Number” column). Canada’s ��� MHz (����) spectrum auction used
three tie breakers, the last of which was a random number (���� Canada, ����, paras. ��–��). The UK’s �G
(����) spectrum auction used two tie breakers, the second of which was a random number (Ofcom, ����,
regs. ��.(�)–��.(�)).
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the authors use the parameter to form a weighted sum of the two objective functions.

Klamroth and Wiecek (����) proposed several dynamic programming solutions to the

multi-criteria knapsack problem. They note that most of the literature on the problem fo-

cuses on weighted sums of the objective functions. However, they point out, there is some

literature on algorithms for finding Pareto optimal solutions or non-dominated points. The

authors’ dynamic programming solutions find the non-dominated solutions. Ehrgott and

Gandibleux (����) surveyed the state of the art—in ����—of multi-criteria combinatorial

optimization problems. It found that all the literature on the multi-criteria knapsack prob-

lem focused on finding Pareto optimal solutions or those optimizing certain parameterized

dot products of the objective functions (Ehrgott & Gandibleux, ����, § �.�, p. ���).

Let us return for a moment to our comment that the decision version of ��� is

NP-complete. A decision problem is one whose instance’s solutions are either true or false

(Cormen et al., ����, p. ����). We define the decision version of ���� analogously to that

of ���: whether a solution to eq. (�.�) exists whose objective value v⇤ ⌫ a for some given

a 2 R
<

. A decision problem is in NP if there is a polynomial-time algorithm that can

verify a problem instance’s solution given a certificate of that solution (Cormen et al., ����,

pp. ����, ����–����). A reduction from a first decision problem to a second is an algorithm

that converts instances of the first into instances of the second such that the solution to the

first is true if and only if the solution to the second is true (Cormen et al., ����, p. ����). A

decision problem is NP-hard if there is a polynomial time reduction from some NP-complete

problem to the problem in question; a problem is NP-complete if it is in NP and is NP-hard

(Cormen et al., ����, pp. ����, ����–����).

Proposition �.�.�. The decision version of ���� is NP-complete.

Proof. Given some certificate x 2 {0, 1}= and some target value a 2 R<

, we can determine

in polynomial time whether x is feasible for eq. (�.�) and whether V x +R(s �Qx) ⌫ a.

Therefore the decision version of ���� is in NP.

As mentioned above, the decision version of ��� is NP-complete. Every instance

of ��� is also an instance of ���� with < = 1. That is, the identity is a reduction from the
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NP-complete problem ��� to the NP problem ����, so ���� is NP-complete. ⇤

We return to computational complexity in subsection �.�.�’s theorem �.�.� on

page ��� once theorem �.�.� gives us a recursive formula for ����.

�.�.� Side Constraints. Beyond the ��� and supply constraints, the combinatorial auction

literature has paid some attention to side constraints (D. Lehmann et al., ����, p. ���),

which many real auctions have. For instance, the Canadian auction for the ��� MHz block

had a “set-aside” constraint preventing the “set-aside ineligible” bidders from winning too

much of any one product (Bono et al., ����; ���� Canada, ����, para. ��). In this subsection

we describe how to implement a wide variety of side-constraints without modifying the

form of eq. (�.�), and thus without writing new code. The key idea comes from linear

optimization theory: canonicalization, or rewriting linear constraints in a standard form.

We do not intend to handle all possible side constraints. Real auctions use only

linear constraints and are the ones we can handle easily. Such constraints can be written as

a system of constraints a«x  3, a«x = 3, or a«x � 3, where the a is an =-vector and 3 is

a scalar. We further restrict ourselves to considering only as and 3s with (hopefully small)

integer entries. This will keep our formulation compatible with the implementation ideas

discussed in section �.�. If the constraint comprises rational coefficients (all floating-point

numbers are rational), we can multiply both sides by the least common multiple of all the

denominators of the fractions written in lowest terms. Minoux (����/����, p. ���) explains

how to reduce any linear integer program to a linear ����.

The main idea is to rewrite side constraints as virtual supply constraints on virtual

products. This is essentially the same idea as dummy items in Fujishima et al. (����, August

�–/����), and is in direct analogy with canonicalization for ��s as discussed in Bertsimas

and Tsitsiklis (����, pp. �–�). We will construct a new packages matrix Q̃ and new supply

vector s̃ to replace Q and s in eq. (�.�). Virtual products correspond to new rows appended

to Q and new entries appended to s to form Q̃ and s̃, respectively. Our main tool is the

following lemma.

Lemma �.�.�. LetF , 3 2 R and a,x 2 R= . Suppose further thatx is a feasible solution to eq. ��.��.
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Then a«x  3 if and only if (a + F1)«x  3 + F1.

Proof. Since x is a feasible solution to eq. (�.�), the ��� constraints say that, for each 9 2 [1],

we have 1 =
Õ
82I 9 G8 , so

1 =
1’
9=1

1 =
1’
9=1

’
82I 9

G8 =
=’
8=1

G8 = 1«x.

The second to last step works because the I 9s partition [=]. The result then follows from

reading the following inequality either forward or backward and then canceling.

(a + F1)«x = a«x + F1«x = a«x + F1  3 + F1. ⇤

If we let

F B �min{0, 3, 01 , . . . , 0=}

F̂ B max{0, 3, 01 , . . . , 0=}

in lemma �.�.�, then 0  a + F1, 0  3 + F1, 0  �a + F̂1, and 0  �3 + F̂1. This allows

us to construct Q̃ and s̃ while ensuring they contain only nonnegative integers (as long as

a and 3 have been normalized to be integers). Finally, the transformation algorithm works

according to table �.�.

Table �.�. How to add side constraints to a canonical ����

Form of side constraint New columns to append to Q̃« New entries to append to s̃

a«x  3 a + F1 3 + F1
a«x � 3 �a + F̂1 �3 + F̂1
a«x = 3 a + F1 and �a + F̂1 3 + F1 and �3 + F̂1

A solution x is feasible for eq. (�.�) plus the side constraints if and only if it is

feasible for eq. (�.�) with Q̃ and s̃ replacing Q and s. To prove this, observe that a«x = 3

is the same as a«x  3 and a«x � 3 together; and that a«x � 3 is the same as �a«x  �3.

Then apply lemma �.�.�.

�.�.� Subproblems. Let’s break one big ���� into a bunch of smaller ones that are hopefully

easier to solve. Such smaller problems, or subproblems, arise in algorithms based on both
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branch and bound (�&�) and �� methodologies. In �&� the decision variables are partitioned,

a part is chosen, the remaining decision variables are fixed at some prospective solution, the

original problem is solved or estimated for the chosen part’s decision variables, and either

that combination of part/fixed-decisions is discarded as infeasible or the part is further

partitioned, solved, and so on (Minoux, ����/����, pp. ���–���). These combinations of

part/fixed-decisions form nodes in a search tree or decision tree (with edges describing

subset relations between a parent’s part and its children’s partition). Solving the original

problem after fixing decisions according to the node gives rise to one subproblem at each

node. The scheme by which we partition the decision variables determines which branch

of the decision tree to traverse next at each node in the tree. In �� recursion drives the

search for an optimal solution, thereby giving rise to a recursion tree (Cormen et al., ����,

p. ��); the nodes of the recursion tree correspond directly to subproblems. Hence we can

think about defining subproblems in terms of partitioning the decision variables, branching

strategies, or recursion.

Sandholm (����, § ��.�.� on pp. ���–���) presented or mentioned formulations

of subproblems for classical ��� that branch on items (“What bid should this item be

assigned to?” (Sandholm, ����, p. ���)); branch on bids (“Should this bid be accepted or

rejected?” (Sandholm, ����, p. ���)); and branch on multivariate combinations (“Of these

eleven bids, are at least three winners?” (Sandholm, ����, p. ���)). While the choice of

branching strategy (which Sandholm called the search formulation) does not affect the size

of the search tree (Sandholm, ����, Prop. ��.� on p. ���), combining a particular search

formulation with a bounding strategy can substantially change the amount of the decision

tree that the algorithm needs to search. Section �.� presents a bounding strategy for ����,

and subsection �.�.� briefly compares branching strategies.

Inspired by the recursive ��� formulae in Müller (����, Thm. ��.� on p. ���) and

Maldoom (����, Eq. (�) in § �.�), the branching strategy we will consider is one that we

call branching on bids by bidder: “Which one of this bidder’s bids should win?” Each

search-tree node has some current bidder 9  1 and some subset I of bidder 9’s bid

indices I 9 indicating which of bidder 9’s bids (V8 ,Q8) we are considering accepting (G8 = 1)
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or rejecting (G8 = 0) from among the 8 2 I. Sub-subsection �.�.�.� defines subproblem in

terms of branching on bids by bidder, but further analysis of the motivation for it awaits

subsection �.�.�’s recursive formula for subproblems, whereupon we will revisit branching.

We imagine fixing a prospective allocation of the supply s among some bidders

not including the current bidder 9, but now need to allocate the residual supply q  s

(q 2 N?) among the remaining bidders including bidder 9. Choosing for simplicity to keep

bidders in the same order throughout the search tree—and choosing arbitrarily to work in

descending order—let’s say that the prospective allocation is for bidders 9 + 1, . . . , 1. The

auctioneer divvies up the residual supply q among the remaining bidders 1, . . . , 9.

But not just among the remaining bidders. As subsection �.�.� pointed out, the

reserve-price rule is equivalent to the auctioneer’s bidding for all packages at the reserve

price. The auctioneer gets whatever the real bidders don’t—that is the s � Qx term in

eq. (�.�). Allocating to the auctioneer last will turn out to be convenient. Just as we have

labeled the bidders 1, . . . , 1, we now label the auctioneer zero. However, we set I0 B ;

because we are expressing the auctioneer’s reserve bids in the objective function rather

than in the constraints of eq. (�.�). This way all formulas in the sequel work for a base case

of the current bidder’s being the auctioneer (9 = 0).

Maybe by the time we have gotten to a node in the search tree, we have already

seen some feasible allocation. Its objective value gives us a lower bound a on the optimal

value v⇤ of eq. (�.�) less the value of the prospective allocation to bidders 9 + 1, . . . , 1 (cf.

the "�# variable in Sandholm et al., ����; other lower bounds are discussed in Sandholm,

����, pp. ���–���). We can give up in the middle of solving the subproblem as soon as we

notice that the optimal value of the subproblem plus the value of the prospective allocation

cannot exceed a. Summing the value of two independent allocations encourages us to

think of subproblems as ���� instances for “residual auctions” of the residual supply q

to bidders 0, 1, . . . , 9. By analogy, we call a the aggregate reserve (��) because the residual

auctions cannot conclude unless the winning allocation’s value exceeds it (see, e.g., ���,

����a, paras. ���–���). We consider any a 2 R<

to accommodate completely relaxing the
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constraint at the beginning of a search by setting a = �1.34

�.�.�.� Notation. For the sake of concision in definition �.�.� on the next page of subproblem

as we use the term going forward, we introduce some notation to hide the details of the

��� constraints. Denote the standard basis of R= as e1 , . . . , e= . For any J ✓ [=], denote

J ’s indicator vector as eJ B
Õ
82J e8 , so e[=] = 1 and e; = 0. Supposing x is the vector of

decision variables, then the dot product e«Ix =
Õ
82I G8 is the number of bids that x accepts

among bidder 9’s bids indexed by I. As we are considering only those of bidder 9’s bid

indices in I, definition �.�.� ensures that subproblems are instances of ���� by requiring

that the dot product equal one. This is the ��� constraint for bidder 9, just without all of 9’s

bids. However if the current bidder is the auctioneer, 9 = 0, then I ✓ I 9 = ; by definition,

so the dot product is zero. To handle both cases, definition �.�.� requires that that the dot

product equal min{ 9 , 1}. We call this the subset-I constraint, or just the subset constraint

if we don’t know which subset. When I = I 9 , bidder 9’s ��� constraint
Õ
82I 9 G8 = 1 implies

the subset-I constraint.

Define the matrix of exclusive-or constraints as the 1 ⇥ = matrix of zeros and ones,

E B

2666666664

e«I1

.

.

.

e«I1

3777777775
.

This way Ex = 1 if and only if
Õ
82I 9 G8 = 1 for all 9 = 1, . . . , 1, which is all the ���

constraints. However, in a subproblem, bidders 9+1, . . . , 1 are not bidding. Definition �.�.�

imposes the 9th exclusive-or constraint thatEx = e[9], the 1-vector with ones at coordinates

1, . . . , 9 and zeros at 9+1, . . . , 1. When the current bidder is the auctioneer, 9 = 0, the zeroth

��� constraint that Ex = e[0] = 0 together with the nonnegativity constraint imply x = 0

because {I✓ }1
✓=1 partitions [=].

Recall from the definition of R in eq. (�.�) that the quantity Rq = [ r«q
0
] is a column

vector whose first entry is the reserve price r«q of the residual supply package q and whose

34"An auctioneer with a real �� rule could initialize a solver with with a set appropriately. Even without
a real rule, there may be economic or policy reasons that a practitioner might know a priori a finite lower bound.
Starting search with a > �1 could speed up a �&� algorithm by pruning the search tree even before a feasible
solution is observed.
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subsequent < � 1 entries are all zeros.

Definition �.�.�. The ���� subproblem for current bidder 9 2 {0, . . . , 1}, residual supply

q 2 N? such that q  s, aggregate reserve a 2 R<

, and bid indices I ✓ I 9 is

maximize�
x

V x +R(q �Qx) (�.�)

subject to V x +R(q �Qx) ⌫ a, (aggregate reserve)

Qx  q, (supply)

Ex = e[9] , (9th exclusive or)

e«Ix = min{1, 9}, (subset I)

x 2 {0, 1}= . (nonnegativity and integrality)

Ignoring decision variables G8 for 8 2 –
1

✓=9 I✓ \ I, eq. (�.�) is just the ���� from

eq. (�.�) with 9 replacing the maximum bidder index 1, I replacing bidder 9’s bid-index set

I 9 , the residual supply q replacing the supply s, and, the aggregate reserve a replacing,

effectively, �1 in an �� constraint that eq. (�.�) implicitly simplifies out. Thus we distin-

guish among subproblems of eq. (�.�) by the values of 9, q, a, and I. For each value of 9,

the triple (q,a,I) is in the domain set D 9 B N? ⇥ R
< ⇥ 2I 9 . Throughout the remainder

of this report, we will need repeatedly to refer to various aspects of eq. (�.�) or relaxations

of it. Its nonnegativity, integrality, and 9th ��� constraints depend at most on the current

bidder 9. The feasible set, set of maximizers, optimal value, and other notions depend on

both 9 and (q,a,I). In the notation below, the optimal value v⇤ of the full ���� in eq. (�.�)

is v1(s,�1,I1).

Definition �.�.�. Denote eq. (�.�)’s set of feasible allocations as X 9(q,a,I), its subset of

eq. (�.�)’s winning allocations (maximizers) asW 9(q,a,I), and eq. (�.�)’s optimal value as

v 9(q,a,I) (Fixing 9, a, and I, the value function of eq. (�.�) is q 7! v 9(q,a,I). Nemhauser

& Wolsey, ����, § ��.�.� at p. ���). Define eq. (�.�)’s 9th-���-constrained polytope and its

integrality-constrained subset, as, respectively, P 9 B {x 2 R= | Ex = e[9] and x � 0} and

E 9 B P 9 \ {0, 1}= .
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We think of these functions as having default arguments: I 9 for I and �1 for a.

For each 5 2 {X ,W ,x, v}, we may write

5
9(q,a) B 5

9(q,a,I 9) and 5
9(q) B 5

9(q,�1) (�.�)

�.�.�.� Basic Properties. First let’s recapitulate definition �.�.�’s notation with alternative

expressions in case they’re clearer. The definition covers eq. (�.�)’s feasible set, set of winning

allocations, and the value of a winning allocation. We may think of them in a formal sense

as functions, respectively, X 9 : D 9 ! 2E 9 ,W 9 : D 9 ! 2E 9 , and v 9 : D 9 ! R< [ {�1} such

that

X 9(q,a,I) =

8>>>>>><
>>>>>>:
x 2 E 9

����������

Qx  q,

V x +R(q �Qx) ⌫ a, and

e«Ix = min{1, 9}

9>>>>>>=
>>>>>>;
,

W 9(q,a,I) = arg max�
x

V x +R(q �Qx)

subject to x 2 X 9(q,a,I),

v 9(q,a,I) = max�
x

V x +R(q �Qx)

subject to x 2 X 9(q,a,I).

Equation (�.�) is infeasible if and only ifX 9(q,a,I) = ; if35 and only ifW 9(q,a,I) =

; if and only if v 9(q,a,I) = �1 by our convention that max ; = �1.W 9(q,a,I) is exactly

the set of feasible allocations x 2 X 9(q,a,I) for which

V x +R(q �Qx) = v 9(q,a,I). (�.�)

When eq. (�.�) is feasible, eq. (�.�) is finite, and indeed V x + R(q �Qx) is finite for all

x 2 P 9 . This is because V , q, R, Q, and x are finite.

We will use the following monotonicity result frequently enough to profit by pack-

aging it into a lemma even though its proof is nothing more than “relax the �� constraint.”

Lemma �.�.�. The �� constraint in eq. ��.�� for the aggregate reservea is binding or infeasible if and

only if a lexicographically equals or exceeds the ��-unconstrained optimal value v 9(q,�1,I). In

35"The if direction follows from the fact thatW 9(q,a,I) is the set of maximizers over the finite set
X 9(q,a,I). Put differently, eq. (�.�) is either infeasible or has a finite optimal value; it cannot have an unbounded
solution.



���

detail, the subproblem is infeasible if a � v 9(q,�1,I). If a � v 9(q,�1,I), thenW 9(q,a,I) =

W 9(q,�1,I), so v 9(q,a,I) = v 9(q,�1,I).

An immediate corollary to lemma �.�.� is that eq. (�.�) is feasible only if v 9(q,a,I) ⌫

a, but we can replace “only if” with “if and only if” when a < �1. This holds even for

the auctioneer (9 = 0), who implicitly bids for all packages at their reserve prices. That is,

specializing lemma �.�.� for 9 = 0 yields the following.

X0(q,a,I) =W0(q,a,I) =

8>>>><
>>>>:
{0} a � Rq

; a � Rq,

v0(q,a,I) =

8>>>><
>>>>:
Rq a � Rq

�1 a � Rq.

(�.�)

In subsection �.�.� the recursive formulation of ���� subproblems in theorem �.�.� will

use eq. (�.�) as a base case. Indeed, the simplicity of the formulas confirms the intuition

we laid out in this subsection’s introduction that labeling the auctioneer as zero would be

convenient.

We may use the aggregate reserve a as a global “incumbent” lower bound because

of the following proposition, which says that we can update a to the best, feasible objective

value seen so far at future search-tree nodes that examine more of the current bidder’s bids.

This allows us to ratchet the �� constraint tighter without excluding any feasible, optimal

solutions.

Proposition �.�.�. If we have eq. ��.��’s maximum v 9(q,a,I) and we re-optimize with more of

the current bidder’s bids, replacing the subset of bid indices I with I0 for some I0 ✓ I 9 such that

I ✓ I0, then we can replace the aggregate reserve a with a0 B max�
�
a, v 9(q,a,I)

 
without

modifying the maximizers�

W 9(q,a,I0) =W 9(q,a0,I0). (�.�)

Proof. Since �1 � a andI ✓ I0, substituting �1 in for a andI0 in forI in eq. (�.�) relaxes

the �� and subset-I constraints, soX 9(q,a,I) ✓ X 9(q,�1,I0); v 9 is maximization over the

corresponding X 9 , so this implies v 9(q,a,I) � v 9(q,�1,I0). Hence if a0 = v 9(q,a,I) ⌫ a,

then v 9(q,�1,I0) lexicographically equals or exceeds both a and a0. Lemma �.�.� therefore

gives us both the left and right equalities,W 9(q,a,I0) =W 9(q,�1,I0) =W 9(q,a0,I0).
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Otherwise a0 = a � v 9(q,a,I). If a0 � v 9(q,�1,I0), then previous paragraph’s

conclusion still holds. Otherwise both a0 and a lexicographically exceed v 9(q,�1,I0).

Lemma �.�.� therefore gives us both the left and right equalities, W 9(q,a,I0) = ; =

W 9(q,a0,I0). ⇤

�.� Pre-Solving

This section considers operations on the bids of one bidder at a time that can speed

up solving eq. (�.�). Since we only consider one bidder’s bids here, we can simplify notation

somewhat. V and Q are the matrices of just one bidder’s bids, of which there are =. Bid 8

of the bidder’s bids is (V8 ,Q8). We also use 9 and : to denote bid indices.

�.�.� Dominated Bids. Nothing in the auction rules that eq. (�.�) embodies prevents a

bidder from outbidding himself. The resulting “dominated” bids can never win—we will

prove this later on in proposition �.�.�.

To set up the definition of dominance, consider a bidder’s marginal value for adding

one unit of some product: take the difference in values between two bids whose difference

in packages is one unit of that product. More generally, if 0 , 1 2 [=] we can compute the 0 , 1

margin of (V1 ,Q1) over (V0 ,Q0) as V1 �V0 if Q1 �Q0 is a package, i.e., has all nonnegative

entries, i.e., Q0  Q1 . To compute quickly or visualize tidily, we want to avoid dealing

with the bid (V0 ,Q0) if there’s another bid (V2 ,Q2) such that Q0  Q2  Q1 because

V1 � V0 = (V1 � V2) + (V2 � V0). That is, we can just compute the 0 , 2 and 2 , 1 margins,

skipping computation of the 0 , 1 margin.

Definition �.�.�. We say that a bid (V0 ,Q0) dominates another bid (V1 ,Q1) if Q0  Q1 but

V0 ⌫ V1 .

It is instructive to compare the definition of dominance with the following related

concepts. LetQ ✓ N? , and v : Q ! R< . q⇤ 2 Q is Pareto optimal if no q 2 Q exists such that

v(q)  v(q⇤), or, equivalently, if v(q) � v(q⇤) implies v(q) = v(q⇤). Further, v(q⇤) is a non-

dominated point and q⇤ dominates any q for which v(q) � v(q⇤) (Terminology varies across

the literature, but we have presented that of Ehrgott, ����, pp. ��, ��–��, after swapping

Ehrgott’s minimization viewpoint for ���’s maximization viewpoint). This meaning of
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dominates is connected to definition �.�.�’s by Proposition �.�.� on page ���.

Lemma �.�.� (Ehrgott, ����, Lem. �.� on p. ���). If q⇤ 2 Q and v(q) � v(q⇤) for all q 2 Q,

then q⇤ is Pareto optimal.

�.�.� Transitive Reduction. We now develop an algorithm, culminating in proposi-

tion �.�.�, to identify dominated bids.

If x and y are columns of Q, we say that y covers or is a cover of x in Q if x � y and

Q contains no z such that x � z � y (Hall, ����, p. ��). The directed graph ⌧ whose nodes

are the columns of Q (ignoring duplicates) and whose edges are its covering relations is

called the transitive reduction of  on Q (cf. Aho et al., ����, p. ���). That is x{⌧ y if and

only if y covers x in Q.

Lemma �.�.� (Aho et al., ����). The time complexity of an algorithm for computing the transitive

reduction of a directed graph is at least a constant multiple of the time complexity of an algorithm

for Boolean matrix multiplication.

At the time of this writing, the best algorithm for matrix multiplication has time

complexity worse than quadratic in the number of rows or columns.

We always orient directed edges upward from subset to superset to make it easy

to draw Hasse diagrams of the packages with bigger packages higher up (Hasse diagrams

are always drawn with edges implicitly pointing up. Gross & Yellen, ����, p. ���). ⌧ is a

directed, acyclic graph because  is a transitive relation.

Lemma �.�.�. The nodes x on a directed path in ⌧ ending at a node y are exactly the vectors

satisfying x  y.

Proof. A node in a graph is always on every path ending at itself, so we assume from now

on that x < y.

(). Suppose x lies on a directed path in ⌧ ending at y. Let ✓ � 1 be the length of the

path, set x1 B x and x✓+1 B y, and denote the nodes in the interior of the path as x8 for 8

from � to ✓ � 1, so that the path is

x = x1 { x2 { · · · { x✓ = y.
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From the definition of ⌧, we have x8 � x8+1 for 8 2 [✓ ]. Thus x � y.

(�). Suppose x � y. If y covers x, then x lies on the length-one path x{⌧ y. This

establishes our base case. Otherwise, there’s another column z of Q such that x � z � y.

We assume recursively that there is a path from z to y. This recursion must terminate in the

base case because Q has a finite number (=) of columns. ⇤

For bids we extend the notion of transitive reduction beyond the bids’ packages. The

transitive reduction of bids (V ,Q) is the directed graph � constructed from the transitive

reduction ⌧ of  on Q as follows. The main work here is being careful about duplicate bids:

bids for the same package. For each column x of Q, create a node in � labeled

min

 
arg max�
82[=]:Q8=x

V8

!

That is, we take the indices of the lexicographically maximally valued bids for package x,

and then break ties by picking the one with the lowest index. Then, for each pair of nodes

8 and 9 in �, we let � have the edge 8 {� 9 if and only if ⌧ has the edge Q8 {⌧ Q9 .

The transitive reduction of bids � can help us identify dominated bids as follows.

Define a vector M 2 ({�1} [ [=])= by, for all nodes 9 2 �,

"9 B

8>>>><
>>>>:

�1 if no edge of � points at 9

arg max�
82[=]:Q8�Q9

V8 else

If there are ties in the maximization, we can break them arbitrarily.

Proposition �.�.�. Define V�1 B (�1, . . . ,�1)« 2 R<

. Then a bid indexed by 9 is dominated if

and only if V"9
� V9 .

Proof. ( =) ). Suppose 9’s bid is dominated. Then there is some 8 2 [=] with Q8 � Q9 and

V8 � V9 . Thus the set over which "9 maximizes is non-empty. Then V"9
� V9 from the

definition of M .

((= ). Suppose V"9
� V9 . Since every vector in R< lexicographically succeeds V�1,

we know that "9 < �1, and hence that some edge of � points at 9, say 8 {� 9. This implies

that Q8 � Q9 , so the set over which "9 maximizes is non-empty. Then Q"9
� Q9 from the

definition of M , hence "9’s bid dominates 9’s. ⇤
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We can computeM using depth-first search in�’s transpose�
«. This is the directed

graph with the same vertex set as � in which, for all nodes 8 , 9, we have 8 {�
« 9 if and only

if 9 {� 8. In practice we compute �«, not �.

The following result is useful for constructing�«. Recall that in a directed graph, the

predecessors of a node 9 are the nodes from which an edge points to 9, and the successors

of 9 are the nodes to which an edge points from 9.

Proposition �.�.�. Suppose the bids are ordered so that Q1 ⌫ Q2 ⌫ · · · ⌫ Q= . For 8 2 [=], let �8

be the transitive reduction of bids indexed by [8] �i.e., � but ignoring any bids after the first 8 bids�.

Then the successors of 8 in �« are exactly the same as the successors of 8 in �«
8
.

Proof. The successors of 8 in �« are exactly those : 2 [=] for which Q8 � Q: and no 9 2 [=]

exists for which Q8 � Q9 � Q: . The successors of 8 in �«
8

have the same definition with =

replaced by 8. Thus, to prove the result, it suffices to show that all such : 2 [=] satisfy :  8.

Suppose : 2 [=] for which Q8  Q: . By lemma �.�.�, Q8 � Q: , which implies that

: < 8 because of our ordering of the bids. ⇤

�.� Upper Bounds

Solving v⇤ in eq. (�.�) via �&� requires having upper bounds on subproblems’ so-

lutions. Subsection �.�.� defined and briefly analyzed the branching scheme for generating

subproblems. This section develops various bounds for those subproblems (Minoux, ����/

����, p. ���). In subsection �.�.� we define the �� relaxation and Lagrangian dual of ����

subproblems, concluding that they are equal in theorem �.�.�, the subsection’s main result.

In subsection �.�.� we develop a fathoming algorithm from the �� relaxation in the subsec-

tion’s main result, theorem �.�.�. Any �&� algorithm for ���� can employ theorem �.�.�.

We have in mind to use it in a combination with the �� algorithm in section �.�.

�.�.� Dual Relaxations. Linear programming relaxations have been experimentally suc-

cessful upper bounds in ���, e.g., in Sandholm et al. (����). The main result of this subsec-

tion explains why: theorem �.�.� says that the optimal value of the �� relaxation equals that

of the Lagrangian dual, which in general is the tighter bound for a ����. Techniques other

than �� exist for finding upper bounds, but Sandholm (����, p. ���) found in a review of
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the literature at the time that for general ���, �� is superior.

The main difficulty in formulating the standard relaxations of ���� is the lexico-

graphic maximization, which bundles a sequence of < programs into a single � program.

Ehrgott (����, Alg. �.� on pp. ���–���) says that ����’s bundling of the sequence of tie-

breaker optimizations is reversible: When optimizing the objective function from row : of

of the values matrix V , add a constraint to the program ensuring that the :th program

meets the (: � 1)’s optimal value. This forms a sequence of : � 1 �� constraints using �

in direct analogy to the single �� constraint using ⌫ that appears in the subproblem in

eq. (�.�).

So instead of relaxing the ���� subproblem in eq. (�.�), we relax the sequence

programs in eq. (�.�) below for : 2 [<]. Let e1 , . . . , e< denote the standard basis of R< .

Definition �.�.�. For current bidder 9 2 {0, . . . , 1}, tie breaker : 2 [<], residual supply q,

and aggregate reserve a, we define the :th tie-breaker subproblem to be the following linear

����:

maximize
x

e«
:
[V x +R(q �Qx)] (�.�)

subject to e«1V x + r«(q �Qx) � 01 ,

.

.

.

e«
:�1V x � 0:�1 ,

Qx  q,

x 2 E 9 .

Equation (�.�)’s �� constraints (those involving a) look different from its objective

function only because eq. (�.�)’s definition of the reserve-values matrix R = e1r« allows us

to simplify e«
:
R depending on :.

With a small enough aggregate reserve a, the tie-breaker subproblem in eq. (�.�)

and the ���� subproblem in eq. (�.�) have the same optimal values E9
:
(q,a) at the first

few indices :. We won’t bother explicating small enough or few because we won’t solve the

tie-breaker subproblem directly in practice. Instead, definition �.�.� on the following page
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defines the �� relaxation of the tie-breaker subproblem, and theorem �.�.� on page ���

details the connection between the �� relaxation and v 9(q,a).

Definition �.�.�. The linear programming relaxation of the tie-breaker subproblem in

eq. (�.�) is the following ��, whose optimal value we denote I 9
:
(q,a):36

maximize
x

e«
:
[V x +R(q �Qx)] (�.��)

subject to e«1V x + r«(q �Qx) � 01 ,

.

.

.

e«
:�1V x � 0:�1 ,

Qx  q,

x 2 P 9 .

The only difference between eqs. (�.�) and (�.��) is that the latter relaxes the inte-

grality constraint by maximizing over the 9th-���-constrained polytope P 9 in place of its

integrality-constrained subset E 9 = P 9 \ {0, 1}= . ��s’ optimal values occur at the extreme

points, or basic feasible solutions (���s) (Bertsimas & Tsitsiklis, ����, Thm. �.� in § �.�), of

their feasible sets (Bertsimas & Tsitsiklis, ����, § �.� on pp. ��–��). P 9 is not the feasible

set of eq. (�.��), but the following lemma does hint at trying to find a related mathematical

program whose feasible set is either P 9 or E 9 . After the lemma’s proof, we will see just such

a program, the Lagrangian relaxation, whose feasible set is E 9 .

Lemma �.�.�. The set of P 9’s extreme points is E 9 , and the convex hull of E 9 is P 9 .

Proof. Write the 8th column of E as E8 . Because E has orthogonal—and thus linearly

independent—rows, x 2 R= is a ��� for P 9 if and only if x � 0, Ex = e[9], there exists

� = {81 , . . . , 81} ✓ [=] such that E81 , . . . ,E81
is linearly independent in R1 , and G8 = 0 if

8 8� (Bertsimas & Tsitsiklis, ����, Thm. �.�, § �.�). Note that if 8 2 I 9 , then E8 = e9 by the

definition of E. Thus linear independence of E81 , . . . ,E81
requires |� \ I 9 | = 1 for each

9 2 [1]. Without loss of generality, we may write � so that 8 9 2 I 9 for each 9 2 [1]. Thus, if

36"Formally, z 9 : R? ⇥R< ! (R [ {�1})< as eq. (�.��) is either infeasible or has a finite optimum.
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x 2 P 9 , then x is a ��� if and only if such a set � exists and 8 8� implies G8 = 0. This can

happen if and only if we have

e«I:x = G8:
+

’
82I:
8<8:

G8 = G8:
=

8>>>><
>>>>:

1 : 2 [9],

0 : 2 { 9 + 1, . . . , 1}.
(�.��)

x 2 P 9 satisfies eq. (�.��) if and only if x 2 E 9 , and hence x 2 R= is a ��� if and only if it’s in

E 9 .

Finally, the convex hull of E 9 , or the set of all convex combinations of elements of E 9 ,

is P 9 . This is because P 9 is a bounded polyhedron, and such sets are the convex hulls of

their extreme points (Bertsimas & Tsitsiklis, ����, Thm. �.�, § �.�). To see that P 9 is bounded,

observe that its elements are nonnegative, so, for allx 2 P 9 , kxk1 =
Õ
1

:=1
Õ
82I: G8 =

Õ9

:=1 1 =

9. ⇤

As usual, the linear ���� in eq. (�.�) is bound from above by its �� relaxation

in definition �.�.�, but ����s generally get tighter bounds from their Lagrangian duals

(Bertsimas & Tsitsiklis, ����, p. ���). We develop eq. (�.�)’s by loosely adapting Bertsimas

and Tsitsiklis (����, § ��.�). The trick is to keep the nonnegativity, integrality, and 9th ���

constraints of E 9 but to dualize the �� and supply constraints, replacing them with new

terms in the objective function. In the method of Lagrange multipliers each new term is the

product of a dual variable times the removed constraints’ violations V x +R(q �Qx) � a

and q � Qx, respectively. For each : 2 [<], we write the dual variables as �: 2 R? for

the supply constraints, and �:✓ 2 R for each �� constraint ✓ 2 [: � 1]. For convenience,

let � be the < ⇥ ? matrix whose rows are the �«
:
s. Form the lower triangle of the < ⇥ <

matrix � from the �:✓s, filling the diagonal and upper triangle with anything (we won’t

use them). We now define the Lagrangian relaxation (Nemhauser & Wolsey, ����, p. ���)

of the tie-breaker subproblem in eq. (�.�) for fixed dual variables � and �, current bidder

9, residual supply q, and aggregate reserve a, as the following linear ����, whose optimal



���

value we denote ✓ 9
:
(�, �):37

maximize
x

e«
:

�
V x +R(q �Qx)

�
+ �«

:
(q �Qx) +

:�1’
✓=1
�:✓e«

✓

�
V x +R(q �Qx) � a

�
(�.��)

subject to x 2 E 9 .

The goal is to use ⇣ 9 as an upper bound for the optimal value v 9(q,a) of the ����

subproblem in eq. (�.�). However, we must be careful with how the tie-breaker subproblem

in eq. (�.�) converts the ���� subproblem’s �� constraint from a lexicographic inequality

to a sequence of regular inequalities. As lemma �.�.� points out, eq. (�.�)’s lexicographic

inequality is feasible only if v 9(q,a) ⌫ a. In that case, the definition of ⌫ means that, for

some : 2 [<],

E
9

✓
(q,a) = 0✓ for each ✓ 2 [: � 1] (�.��)

The next lemma says ⇣ 9 indeed bounds v 9(q,a) in those first : entries if dual variables are

nonnegative (cf. Bertsimas & Tsitsiklis, ����, Lem. ��.� on p. ���). We can always cheat our

way into applying the lemma: eq. (�.��) is trivially true for : = 1.

Lemma �.�.�. If � and � have all nonnegative entries and eq. ��.��� holds for some : 2 [<], then

✓ 9
✓
(�, �) � E9

✓
(q,a) for each ✓ 2 [:].

Proof. Assume that the ���� subproblem in eq. (�.�) is feasible—if it weren’t, then our

convention says that v 9(q,a) = �1  ⇣(�, �). Choose any winning allocation x 2 W 9(q,a).

Further, assume that � has all nonnegative entries. Then Qx  q, so �(q �Qx) � 0.

Additionally suppose that eq. (�.��) holds for some : 2 [<] and that � has all

nonnegative entries. By eq. (�.�), v 9(q,a,I 9) = V x +R(q �Qx), which is finite. Thus the

first : � 1 entries of a are not 1 and of V x +R(q �Qx) � a are nonnegative, as is their

product with the corresponding entries of �. For any ✓ 2 [:], the first inequality below

follows from the fact that x 2 E 9(q,a), and the second from the foregoing non-negativity

37"Formally, ⇣ 9 : R<⇥? ⇥R<⇥< ! R< [ {�1} as eq. (�.��) is either infeasible or has a finite optimum
for all : 2 [<].
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facts.

✓ 9
✓
(�, �) � e«

✓

�
V x +R(q �Qx)

�
+ �«

✓
(q �Qx) +

✓�1’
⌘=1
�✓ ⌘e«

⌘

�
V x +R(q �Qx) � a

�

� e«
✓

�
V x +R(q �Qx)

�
= E9

✓
(q,a). ⇤

The problem of finding the best possible bound on the ���� subproblem in eq. (�.�)

from the Lagrangian relaxation in eq. (�.��) is the Lagrangian dual (Nemhauser & Wolsey,

����, p. ���) for : 2 [<], denoted

✓̂ 9
:
B min
�,��0

✓ 9
:
(�, �). (�.��)

This is well defined for a single choice each of � and of � across all < coordinates. That is,

there are minimizers �̂ and �̂ of eq. (�.��) such that ✓̂ 9
✓
= ✓ 9

✓
(�̂, �̂) for all ✓ 2 [<]. In eq. (�.��),

the :th entry of ⇣ 9(�, �) uses only the :th rows of � and �, so the minimization in eq. (�.��)

is independent for different values of :.

The importance of the next theorem, which says that the �� relaxation and the

Lagrangian dual have equal optima, is that the �� relaxation is an upper bound for the ����

subproblem (under the right conditions), and a relatively tight one at that. By lemma �.�.�,

✓̂ 9
✓
� E

9

✓
(q,a) for ✓ 2 [:] whenever a is small enough in its first : � 1 entries. The same

is true of the �� relaxation’s optimum z 9(q,a) in place of ⇣̂ 9 since they’re equal. This is

reassuring because definition �.�.� defines eq. (�.��) to be the �� relaxation of the tie-

breaker subproblem in eq. (�.�), not of the ���� subproblem in eq. (�.�) for which v 9 gives

the optimal value. An �� relaxation is not always as tight a bound as a Lagrangian dual

(Bertsimas & Tsitsiklis, ����, p. ���), but in this case they’re the same. This result extends

from subproblems to ���� by taking a = �1, 9 = 1 and q = s; and the result extends from

���� to classical ��� by taking < = 1.

Theorem �.�.�. The tie-breaker subproblem’s �� relaxation and Lagrangian dual have the same

optimal value �even if the �� relaxation is infeasible�.

Proof. Fixing an arbitrary : 2 [<], the goal is to prove that the Lagrangian dual’s optimal

value ✓̂ 9
:
= I

9

:
(q,a), the �� relaxation’s optimal value. Lemma �.�.� on page ��� says that the



���

convex hull of E 9 has integer extreme points, so Bertsimas and Tsitsiklis (����, p. ���) say that

the optimal value of eq. (�.�)’s �� relaxation equals the optimal value of its Lagrangian dual

problem (see also Nemhauser & Wolsey, ����, Cor. �.� in § ��.�.� on p. ���). Equations (�.��)

and (�.��) match Bertsimas and Tsitsiklis’s definition of �� relaxation and Lagrangian dual

for the tie-breaker subproblem in eq. (�.�) when 01 , . . . , 0:�1 are all finite, so ✓̂ 9
:
= I

9

:
(q,a) in

that case. However, we need to check what happens when one of the �� entries is infinite.

First suppose 0✓ = 1 for some entry ✓ 2 [: � 1] but that 0✓ 0 > �1 for all ✓ 0 2 [: � 1].

Then eq. (�.��) is infeasible due to its ✓ th �� constraint, so I 9
:
(q,a) = �1. For any x̂ 2 E 9 ,

the ✓ th entry of V x̂ +R(q �Qx̂) � a is �1. To minimize ✓ 9
:
(�, �) for any finite � � 0 over

finite � � 0, eq. (�.��) may achieve ✓̂ 9
:
 ✓ 9

:
(�, �) = �1 by choosing �:✓ > 0 because our

convention is that ✏ ⇥ �1 = �1 for any finite, positive ✏. Therefore ✓̂ 9
:
= �1 = I

9

:
(q,a).

Second suppose 0✓ = �1 for some entry ✓ 2 [:�1] but that 0✓ 0 < 1 for all ✓ 0 2 [:�1].

For any x̂ 2 E 9 , the ✓ th entry of V x̂ +R(q �Qx̂) � a is1. For any dual variables � and �

for which �:✓ < 0, ✓ 9
:
(�, �) = 1. To minimize ✓ 9

:
(�, �) for any finite � � 0 over finite � � 0,

eq. (�.��) may achieve ✓̂ 9
:
 ✓ 9

:
(�, �) < 1 only by choosing �:✓ = 0 because our convention is

that 0 ⇥1 = 0. Moreover, by choosing �:✓ 0 = 0 for all ✓ 0 2 [: � 1] for which 0✓ 0 = �1, we get

a finite ✓̂ 9
:
, as though the ✓ 0th �� constraint were not involved in eq. (�.��) in the first place.

Indeed, that is exactly the case for eqs. (�.�) and (�.��): �� constraints for which the �� is

�1 can never be binding and thus act as though they are not part of the definitions of those

problems. Therefore the conclusion of equality we came to in the case when 01 , . . . , 0:�1 are

all finite also applies when some or all of them are �1.

Finally, if the first :�1 entries of a contain both1 and �1, then eq. (�.��) minimizes

the Lagrangian dual by choosing the �:✓ s so that it’s positive in the columns corresponding

to a’s 1s and zero in the columns corresponding to a’s �1s. Then ✓̂ 9
:
= �1 = I

9

:
(q,a),

same as above. ⇤

�.�.� Fathoming. Theorem �.�.� below suggests an algorithm to fathom—preemptively

solve or skip—the subproblem v 9(q,a).

Remark �.�.�. The algorithm works as follows. Using an �� software package such as ����,
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Gurobi, lp_solve, and CPLEX, solve the �� relaxation in eq. (�.��) for each : until I 9
:
(q,a)

differs from 0: . If I 91(q,a) is infeasible (item �) or I 9
:
(q,a) < 0: (item �c), then prune—declare

infeasible—the subproblem. If the ��’s decision variables are all zeros and ones, then either

tighten the aggregate reserve a (item �(b)i) or use the decision variables as a solution to the

subproblem (item �(b)ii).

When reading theorem �.�.�, think of :⇤ as the “current” optimization that the

algorithm is running, and note that a is already tight for entries one through :⇤�1 (item �b).

To abate some of this and the next subsections’ index chasing, we define the notation

d[:] B (31 , . . . , 3:) 2 R
:

, the first : 2 [<] entries of any <-vector d 2 R
<

. We define

propositions of the form d[0]  d0[0] to be (trivially) true for any d, d0 2 R<

.

Theorem �.�.�. Let :⇤ 2 [<] such that z 9[:⇤�1](q,a) = a[:⇤�1] �which is trivially true if :⇤ = 1�.

�. E91(q)  I
9

1(q,a).

�. z 9(q,a) bounds v 9(q,a) as follows.

�a� v
9

[:⇤](q,a)  z
9

[:⇤](q,a), and E9
:
⇤+1(q,a)  I

9

:
⇤+1(q,a) if :⇤ < <.

�b� If X 9(q,a) < ;, then v
9

[:⇤�1](q,a) = z
9

[:⇤�1](q,a) and 0:⇤  E9
:
⇤(q,a)  I

9

:
⇤(q,a).

�c� If I 9
:
⇤(q,a) < 0:⇤ thenX 9(q,a) = ; and eq. ��.��� is infeasible for : 2 {:⇤ + 1, . . . ,<}.

�. If :⇤ > 1 and 01 > �1, then eq. ��.��� is feasible for : = :
⇤ and its maximizers are optimal

for : < :
⇤.

�. Suppose that x is a feasible solution to eq. ��.��� for : = :
⇤ and that ⇢:⇤ � 0:⇤ , where we

abbreviate the objective value ⇠ B V x +R(q �Qx).

�a� If :⇤ < <, then ⇢:⇤+1  I 9
:
⇤+1(q,a).

�b� Suppose x is integral.

i. If ⇢:⇤ > 0:⇤ or :⇤ = <, then x 2 X 9(q,a) andW 9(q, ⇠) =W 9(q,a).

ii. If :⇤ = < and x is optimal, then x 2 W 9(q,a).

Note that item �a implies that, if :⇤ � < � 1, then v 9(q,a) � z 9(q,a).
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Items � and � assume that x is a feasible—not necessarily (except item �(b)ii)

optimal—solution. When < = 1, Item �(b)ii is classical ���’s “INTEGER case”, as Sand-

holm (����, pp. ���–���) described it, in which the �� relaxation yields an optimal, integer

solution x. However, for ���� with :⇤ < < (or when x is not optimal), item �(b)i does not

permit fathoming the subproblem with an optimal solution.

What item �(b)i does permit is that, if we find an integer solution x such that

⇢:⇤ > 0:⇤ , then we can replace a with ⇠ = V x+R(q �Qx), analogously to proposition �.�.�.

In particular, v 9(q,a) = v 9(q, ⇠), and, by item �, a[:⇤�1] = ⇠[:⇤�1], so z
9

[:⇤](q,a) = z
9

[:⇤](q, ⇠).

We are also assured that z 9(q, ⇠) � ⇠ because x is a feasible solution for I 9
:
(q, ⇠) for all :. If

additionally x is optimal, then we would have z
9

[:⇤](q, ⇠) = ⇠[:⇤]. This allows us to carry on

computing I 9
:
⇤+1(q, ⇠) when :

⇤ < <, acting acting as though a had been ⇠ the whole time.

We now have tighter bounds in the sense that

I
9

:
⇤+1(q,a) � I

9

:
⇤+1(q, ⇠) � E

9

:
⇤+1(q, ⇠) = E

9

:
⇤+1(q,a) � ⇢:⇤+1.

Theorem �.�.� also permits for some shortcuts. Item �a tells us that, when :
⇤ < <,

even if ⇢:⇤ = 0:⇤ , we need not optimize eq. (�.��) for : = :
⇤ + 1 as long as ⇢:⇤+1 > 0:⇤+1.

That check only takes O(=) time to compute, whereas just one step of the revised simplex

method takes O
�
=(? + 1 + :

⇤ � 1)
�

in the worst case (Bertsimas & Tsitsiklis, ����, § �.�).

However, we might still want to optimize eq. (�.��) for : = :
⇤ + 1 so we can take advantage

of item �b. One heuristic for deciding whether to take a chance on optimizing eq. (�.��) for

: = :
⇤+1 is being sure to do so if there is an integer feasible solution at hand to eq. (�.��) for

: = :
⇤. Even without treating item �a as a shortcut, it allows for checking solver software

for numerical inaccuracies in computing the value of the objective function.

Another shortcut is available for moving from one subproblem to another. When a

bid’s package Q8 is big enough and its value V8 is small enough, we can avoid calculating

z 9�1(�,u) for � = q � Q8 and u = a � V8 if we have already computed z 9(q,a). Given

theorem �.�.�, we would only be fathoming v 9�1(�,u) if z 9(q,a) ⌫ a.

Proof of theorem �.�.�. A recurring but implicit theme in the sub-proofs below is the applica-

tion to the �� constraints of lemma �.�.�, which says that � implies ⌫.
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Proof of item �. IfW 9(q) = ;, then E91(q) = �1  I
9

1(q,a). If x 2 W 9(q), then x 2 E 9 ✓ P 9

and Qx  q, so x is feasible for eq. (�.��) when : = 1, so I 91(q,a) � e«1V x + r«
�
q �Qx

�
=

E
9

1(q). y

Proof of item �. If X 9(q,a) = ;, then v 9(q,a) = �1, but �1  z 9(q,a).

Suppose X 9(q,a) < ;. Then v 9(q,a) ⌫ a by lemma �.�.�. In particular, E91(q,a) �

01. Since ⇣̂ 9 minimizes over the closed set of matrices �, � with nonnegative real en-

tries, there exist such matrices for which ⇣ 9(�, �) = ⇣̂ 9 = z 9(q,a) by theorem �.�.�. By

lemma �.�.�, E91(q,a)  ✓ 91(�, �) = I
9

1(q,a). If :⇤ > 1, then we have equality across:

01 = E
9

1(q,a) = I
9

1(q,a). Indeed, suppose :
⇤ > 1, and, by way of induction on :

⇤, that

a[:⇤�1] = v
9

[:⇤�1](q,a) = z
9

[:⇤�1](q,a). Then the same reasoning as for :⇤ = 1 dictates for :⇤ > 1

that 0:⇤  E9
:
⇤(q,a)  I

9

:
⇤(q,a). If 0:⇤ = I

9

:
⇤(q,a), then, again, there’s equality across, thereby

completing the induction. Regardless of equality at :⇤, if :⇤ < <, then, again by lemma �.�.�

and theorem �.�.�, E9
:
⇤+1(q,a)  I

9

:
⇤+1(q,a).

However, if I 9
:
⇤(q,a) < 0:⇤ , then the inequality above is a contradiction, soX 9(q,a) =

;. Moreover, no x 2 P 9 such that Qx  q can satisfy
�
V x +R(q �Qx)

�
[:�1] � a[:�1] for

: > :
⇤, so eq. (�.��) is infeasible for : > :

⇤. y

Proof of item �. If :⇤ > 1 and 01 > �1, then I 91(q,a) = 01 > �1. Supposing inductively that

I
9

:
(q,a) > �1 for : 2 [:⇤ � 1], there exists a feasible solution x satisfying the constraints

of eq. (�.��) for : = :
⇤. Hence I 9

:
⇤(q,a) > �1. Abbreviate the objective function’s value

⇠ B V x +R(q �Qx).

Further, x is feasible for eq. (�.��) for : 2 [:⇤], so ⇠[:⇤]  z
9

[:⇤](q,a) because a[:⇤�1] 

⇠[:⇤�1]. Hence ⇠[:⇤�1] = z
9

[:⇤�1](q,a). y

Proof of item �. Suppose that x 2 P 9 such that Qx  q and ⇠[:⇤] � a[:⇤].

If :⇤ < <, then x is a feasible solution to eq. (�.��) for : = :
⇤ + 1. Hence ⇢:⇤+1 

I
9

:
⇤+1(q,a).

Now suppose x is integral, which implies that x 2 E 9 .

Combining ⇠[:⇤] � a[:⇤] with either ⇢:⇤ > 0:⇤ or :⇤ = < yields ⇠ ⌫ a. Therefore

x 2 X 9(q,a). Hence ⇠ � v 9(q,a), so, by lemma �.�.�,W 9(q, ⇠) =W 9(q,a).
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Further, suppose :⇤ = < and x is optimal. From item � we have that v 9(q,a) 

z 9(q,a), and hence v 9(q,a) � z 9(q,a). From item � and the optimality of x, we have that

⇠ = z 9(q,a). Putting this together with the facts that ⇠ � v 9(q,a) and x 2 X 9(q,a), we

conclude that x 2 W 9(q,a). y
⇤

�.�.� Reusing Relaxations. Under certain circumstances, we can reuse solutions to ��

relaxations we computed for one subproblem when we descend the search tree to another

subproblem. The previous subsection suggests an algorithm for fathoming the subproblem

with current bidder 9, residual supply q, and aggregate reserve a. The algorithm involves

computing the �� relaxation in eq. (�.��) for : = 1 until the �� relaxation’s optimal value no

longer equals the :th entry of a. Theorem �.�.� denotes by :⇤ that last :. Proposition �.�.�

below suggests hanging onto certain functions of the :⇤ maximizers x of those :⇤ ��s. They

serve as pruning bounds if we descend the search tree from bidder 9 to bidder 9 � 1 at a

subproblem with too large an aggregate reserve u and too small a residual supply �. The

proposition may allow us to prune the new search-tree node before we even compute its

�� relaxation for the cost of a few vector-matrix multiplications and storing the resulting :⇤

floating-point numbers and ? integers.

Since the goal of proposition �.�.� is to tell us something about a subproblem when

the current bidder is 9 � 1 based on data gathered about a subproblem when the current

bidder was 9, we need notation for removing bidder 9 from a solution. Let P 2 R=⇥= be the

linear projection that zeros out all entries except those indexed by I 9 :

P B
’
82I 9

e8e
«
8
.

If I is the = ⇥ = identity matrix, then I �P zeros out just the entries indexed by I 9 , so that

if x 2 P 9 , then (I � P )x 2 P 9�1.

Proposition �.�.�. Suppose 9 2 [1]. Let :⇤ be the same as given in theorem �.�.�� x be a maximizer

of eq. ��.��� for : = :
⇤� u 2 R<

such that u[:⇤] �
�
V (I � P )x +R(q �Qx)

�
[:⇤]� and � 2 N?

such that �  q �QPx. Then X 9�1(�,u) = ;.



���

Proof. Our goal is to show that

u � z 9�1(�,u), (�.��)

which, by item �c of theorem �.�.�, proves that X 9�1(�,u) = ;.

We will limit ourselves to the first few entries of these vectors, as follows. From the

hypothesis that u[:⇤] �
�
V (I � P )x +R(q �Qx)

�
[:⇤], we know there is a :̃ 2 [:⇤] such that

u[:̃�1] =
�
V (I � P )x +R(q �Qx)

�
[:̃�1] (�.��)

and D
:̃
> e«

:̃

�
V (I � P )x +R(q �Qx)

�
. Put differently, :̃ is the least for which

u[:̃] �
�
V (I � P )x +R(q �Qx)

�
[:̃]. (�.��)

Theorem �.�.�’s item � and the fact that x is a maximizer of eq. (�.��) for : = :
⇤ � :̃

combine to show the second equality below:
�
V (I � P )x +R(q �Qx)

�
[:̃] =

�
V x +R(q �Qx)

�
[:̃] � (V Px)[:̃]

= z
9

[:̃](q,a) � (V Px)[:̃]

=
�
z 9(q,a) � V Px

�
[:̃].

(�.��)

We claim, and will prove at the end, that

�
z 9(q,a) � V Px

�
[:̃] � z

9�1
[:̃] (q �QPx,a � V Px). (�.��)

Moreover, by the definition of :⇤ in theorem �.�.� and the fact that :̃  :⇤, we also have

z
9

[:̃�1](q,a) � (V Px)[:̃�1] = a[:̃�1] � (V Px)[:̃�1]

= (a � V Px)[:̃�1] ,

which, in combination with eqs. (�.��) and (�.��), implies

(a � V Px)[:̃�1] = u[:̃�1].

From that equation and our assumptions that �  q �QPx, we see that relaxing the supply

constraints in eq. (�.��) yields

z
9�1
[:̃] (q �QPx,a � V Px) � z

9�1
[:̃] (�,u). (�.��)

Combining eqs. (�.��) to (�.��) achieves eq. (�.��), our goal. (Don’t forget that  implies �

by lemma �.�.�).
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Proof of eq. (�.��). Suppose there is a y 2 P 9�1 such that Qy  q �QPx. If there isn’t, the

right-hand side of eq. (�.��) is �1 and we’re done. Let :̂ 2 [:̃] be the largest for which we

can furthermore make such a y satisfy

�
V y +R(q �QPx �Qy)

�
[:̂�1] � (a � V Px)[:̂�1]. (�.��)

This way y is a feasible decision variable for I 9�1
:

(q �QPx,a � V Px) for each : 2 [:̂], so

z
9�1
[:̂]

(q �QPx,a � V Px) �
�
V y +R(q �QPx �Qy)

�
[:̂]. (�.��)

Because I 9�1
:

(q �QPx,a�V Px) = �1 for each : 2 { :̂ + 1, . . . , :̃}, it remains only to prove

eq. (�.��) with :̂ replacing :̃.

We will now show that ŷ B y + Px is a feasible decision variable in eq. (�.��) for

each : 2 [:̂]. Since 9 > 0 we have e«I 9x = 1, and since ŷ � 0, we have

Eŷ = e[9�1] +EPx = e[9�1] + e9 = e[9] ,

so ŷ 2 P 9 . ŷ satisfies the rest of the constraints:

Qŷ = Qy +QPx

 q �QPx +QPx

= q;

�
V ŷ +R(q �Qŷ)

�
[:̂�1]

=
�
V y + V Px +R(q �Qy �QPx)

�
[:̂�1]

� (a � V Px + V Px)[:̂�1]

= a[:̂�1] ,

where the inequality on the right comes from eq. (�.��). ŷ’s consequent feasibility implies

z
9

[:̂]
(q,a) �

�
V ŷ +R(q �Qŷ)

�
[:̂]

=
�
V y +R(q �QPx �Qy)

�
[:̂] + (V Px)[:̂].

By choosing the best possible y (possibly a different y for each value of :), we can conclude

that, for each : 2 [:̂],

z 9(q,a)[:̂] � z
9�1
[:̂]

(q �QPx,a � V Px) + (V Px)[:̂]. y
⇤
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In practice, after computing z
9

[:⇤](q,a), we need to store :⇤,
�
V (I � P )x

�
[:⇤], and

q �QPx. For convenience, let :1 B :
⇤, b B V (I �P )x, and q1 B q �QPx. When can we

replace the stored data :1 , b, q1 with new data :3 2 [<], d 2 R< , and q3 2 R?? It is always

safe when u[:1] � b[:1] implies u[:1] � b[:1] and �  q1 implies �  q1 for all u 2 R<

and

� 2 N? . This occurs exactly when :1  :3, b[:1] � d[:1], and q1  q3.

�.� Dynamic Programming

This section develops the elements of a dynamic programming algorithm for ����.

The development comprises subsections �.�.� and �.�.�’s recursive description of ����

in theorem �.�.� as well as subsection �.�.�’s memoization scheme to avoid computing

subproblems more than once. While Sniedovich (����), a monograph focused on the math-

ematical theory of �� (see also Minoux, ����/����, § � on pp. ��� sqq.), averred that there

was no consensus on just what constitutes ��, we use the term here in the operational sense

of Cormen et al. (����, chap. �� on pp. ���–���): �� starts with an optimization problem

that has optimal substructure in that the optimal values of the independent, overlapping

subproblems appear in a recursive description of the problem’s optimum, and the subprob-

lems admit a scheme to avoid repeating computations of them. Independent means that that

choosing a solution to one subproblem does not affect the feasible sets for other subprob-

lems. Overlapping means that solving two subproblems requires computing the same, third

subproblem.

Dynamic programming fits into the �&� structure we have been developing. Subsec-

tion �.�.� defined branching on bids by bidder, and section �.� extended bounding with ��

relaxations to ����’s lexicographic maximization. Minoux (����/����, § �.�.� on pp. ���–

���) discussed combining �� and �&� via the example of the longest-path problem. The

principal is the same as other �&� techniques. Before the full optimization at a node of

the search tree, quickly compute an upper bound. In ��, the recursion tree determines

the search tree, and the full optimization involves the enumeration of the node’s children.

Theorem �.�.�’s eq. (�.��) explicates how that enumeration works for ���� with branching

on bids by bidder. (In particular, �� maximization algorithms are always equivalent to the

longest-path problem in a certain supergraph of the recursion tree (Minoux, ����/����,
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p. ���).)

Remark �.�.�. Thus the full algorithm for computing v 9(q,a,I 9) is, more or less, as follows.

�. Check the memo per lemma �.�.��.

�. If necessary, check the �� relaxation per theorem �.�.�.

�. If necessary, perform a full optimization per theorem �.�.�.

�. Record the result into the memo per remark �.�.��.

While other techniques, such as cutting planes (for a discussion of branch-and-cut

algorithms for ���, see Sandholm, ����, pp. ���–���), fit into the �&� structure as well,

we focus on �� for a few reasons. First it streamlines algebraic reasoning about ����.

Theorem �.�.� and proposition �.�.� offer results generic to ���� (not just a particular

algorithm) with simple proofs using theorem �.�.�’s recursive formula. Second the ��

memos can speed up certain popular pricing computations, the topic of section �.�, in

particular corollary �.�.�.

Third �� has fewer opportunities for numerical problems than ��-based algorithms

such as the �&� algorithm using �� relaxations in Nemhauser and Wolsey (����, § ��.�.�

on pp. ���–���). The simplex algorithm for solving ��s can have bad numerical properties

(Ogryczak, ����). Governments auctioning public assets and bidders spending tens of

billions of dollars have little tolerance for rounding errors. For instance, in the UK’s ����

auction of �G spectrum, the auctioneer Ofcom contracted with outside auditors to compare

the results of three independent implementations of ��� (Smith Institute, ����, February

��/����). (This is why we are not discussing probabilistic or approximation algorithms

(Bertsimas & Tsitsiklis, ����, § ��.� on pp. ��� sqq.).) In a �� algorithm by contrast testing

prospective solutions’ feasibility can occur in exact, integer rather than floating-point (��)

arithmetic. The one place a �� algorithm for ���� needs to use �� arithmetic is summing up

values vectors V8 and comparing them lexicographically. Assuming the �� implementation

is compatible with the ubiquitous ����-��� standard, rounding from a real number to an ��

number is monotonic, and addition and subtraction are exactly rounded (Higham, ����/
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����, pp. ��, ��), so there is no opportunity for numerical problems in maximizing on the

first values-matrix row. However, more research is needed on lexicographic comparisons

of �� vectors. Recall from subsection �.�.� that for two real <-vectors, ↵ � � when �: = �:

for each : < :
⇤ for some :⇤ 2 [<] and �:⇤ < �:⇤ . Monotonicity of �� arithmetic does not

guarantee that the first :⇤ � 1 entries of these vectors continue to equal each other exactly

after rounding to �� numbers. Indeed standard textbooks and references on numerical

analysis and �� systems, such as Goldberg (����), Higham (����/����), Muller et al. (����),

and Trefethen and Bau (����), virtually ignore the topic of �� comparison.

We briefly mention some literature on �� for ���. Maldoom (����) presented a

full �� algorithm for multiunit ���. Müller (����) reviewed recursive formulations for

a variety of classes of ��� instances chosen for computationally tractability, except for

Thm. ��.� on p. ���, which regards generic, multiunit ���. That theorem generalizes

results from two other studies of multiunit ���. Tennenholtz (����, p. ���) looked at a

version of multiunit ��� through the lens of keeping the number of products ? fixed

and analyzed the problem’s computational tractability using a certain, recursively defined

graph. Van Hoesel and Müller (����, p. ��) also kept ? fixed, showing specifically for ? = 1

that an optimal �� algorithm can have a running time in O(1B), where B is the supply of

the one product; cf. theorem �.�.� on page ���.38

�.�.� From Indicators to Indices. So far we have represented allocations of products to

bidders as indicator vectors x of winning bids. In subsection �.�.� eq. (�.��)’s recursive

formulation of eq. (�.�)’s ���� subproblem is in terms of winning bids’ indices 8 in the

columns of V and Q. This subsection maps between the two representations. We assume

9 < 0 because the auctioneer submits no bids. Lemma �.�.� below provides for the existence

of the indices given an indicator vector. We will use it like “given a feasible allocation

x 2 X 9(q,a,I), select bidder 9’s winning bid index 8 according lemma �.�.�”.

Lemma �.�.�. Suppose 9 < 0 and x obeys the nonnegativity, integrality, and 9th ��� constraints�

x 2 E 9 . For each bidder � 2 [9], there is a unique winning bid index 8� 2 I� for which G8� = 1,

38"By theorem �.�.�, assuming away the asymptotics of ? assumes away the exponential upper bound
on ��’s running time for ���.
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and that 8� is the unique element of the set arg max
82I� G8 . Moreover, if x obeys the subset-I

constraint, then 8 9 2 I.

Proof. The result follows directly from the definitions of the respective constraints. ⇤

Next, lemma �.�.� provides for the optimality of an index for the current bidder

9 given an indicator vector representation of an allocation for bidder 9 � 1’s subproblem.

This inductive result sets up the proof of theorem �.�.�’s recursive formula for the optimal

value v 9(q,a,I) of the ���� subproblem in eq. (�.�). In particular, the lemma is one way

of describing ����’s optimal substructure via subsection �.�.�’s branch-on-bids-by-bidder

scheme. Let e1 , . . . , e= denote the standard basis of R= .

Lemma �.�.�. Suppose that 9 < 0 and that x is a winning allocation for the subproblem in eq. ��.��,

i.e., x 2 W 9(q,a,I). Per lemma �.�.� select bidder 9’s unique winning bid index 8 2 I, for which

G8 = 1. Then Q8  q and there is an x0 2 W 9�1(q �Q8 ,a � V8 ,I 9�1) such that

x � e8 2 W 9�1(q �Q8 ,a � V8 ,I 9�1), (�.��)

x0 + e8 2 W 9(q,a,I). (�.��)

Proof. The proofs of eqs. (�.��) and (�.��) are very similar, but eq. (�.��) itself is the reason

we can know that x0 2 W 9�1(q�Q8 ,a�V8 ,I 9�1) is even possible. To avoid repeating several

lengthy equations, we cheat a little by assuming that Q8  q and that x0 exists so that we

can prove both equations in parallel. The proof of eq. (�.��) does not depend on x0 at all, so

it will fully justify x0’s existence. Along the way it will also prove the technical condition

that Q8  q.

First we show feasibility, x � e8 2 X 9�1(q � Q8 ,a � V8) and x0 + e8 2 X 9(q,a,I),

starting with the respective ��, supply, and ��� constraints on x and x0. In the following

list of implications, the left column presents facts arising from x 2 X 9(q,a,I) and x0 2

X 9�1(q � Q8 ,a � V8). Equalities trailing on from there follow by adding the zero vector

in the form of �V8 + V8 , �Q8 + Q8 , or �e9 + e9 (where e9’s length is 1 and e8’s is =) and

then rearranging using V e8 = V8 , Qe8 = Q8 , and, since 8 2 I 9 , Ee8 = e9 . The right column

justifies the set memberships that we want to show.
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Aggregate-reserve constraint

a � V x +R(q �Qx)

= V (x � e8) + V8 =) a � V8 � V (x � e8)

+R
�
(q �Q8) �Q(x � e8)

�
+R

�
(q �Q8) �Q(x � e8)

�

a � V8 � V x0 +R
�
(q �Q8) �Qx0

�
= V x0 +R

�
q �Q(x0 + e8)

�
=) a � V (x0 + e8) +R

�
q �Q(x0 + e8)

�
Supply constraints

q � Qx = Q(x � e8) +Q8 =) q �Q8 � Q(x � e8) (�.��)

q �Q8 � Qx0 =) q � Q(x0 + e8)

Exclusive-or constraints

e[9] = Ex = E(x � e8) + e9 =) E(x � e8) = e[9] � e9 = e[9�1]

Ex0 = e[9�1] = e[9] � e9 =) e[9] = Ex0 + e9 = E(x0 + e8)

Next we consider the nonnegativity and integrality constraints. x, x0, and e8 are

each in {0, 1}= , and e8 is zero everywhere but the 8th coordinate. We specifically chose 8

so that G8 = 1, hence x � e8 2 {0, 1}= . So is x0 + e8 as long as G0
8
= 0, which it is because

8 2 I ✓ I 9 but Ex0 = e[9�1] implies that e«I 9x
0 =

Õ
✓2I 9 G

0
✓
= 0 even though x0 � 0. We now

have enough to conclude that q � Q8 : The right side of eq. (�.��) and the facts that Q and

x � e8 are nonnegative imply q �Q8 � 0.

The last elements of feasibility are the respective subset constraints. We saw above

that x � e8 satisfies the (9 � 1)th ��� constraint, and that in turn implies that it satisfies

the subset-I 9�1 constraint. Consequently x � e8 2 X 9�1(q �Q8 ,a � V8 ,I 9�1), which justifies

the existence of x0. Per the previous paragraph 0 = e«I 9x
0 � e«Ix

0 � 0 because I ✓ I 9 , and

e«Ie8 = 1 because 8 2 I, so e«I(x0 + e8) = 1 = min{1, 9}. Consequently x0 + e8 2 X 9(q,a,I).

From that feasibility consequence and the fact that x 2 W 9(q,a,I) we have that

v 9(q,a,I) equals the left side of

V x +R(q �Qx) ⌫ V (x0 + e8) +R
�
q �Q(x0 + e8)

�
. (�.��)
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Rearrange this using q �Qx = (q �Q8) �Q(x � e8) and q �Q(x0 + e8) = (q �Q8) �Qx0 to

obtain

V (x � e8) +R
�
(q �Q8) �Q(x � e8)

�
⌫ V x0 +R

�
(q �Q8) �Qx0

�
, (�.��)

the right side of which equals v 9�1(q � Q8 ,a � V8) because x0 2 W 9�1(q � Q8 ,a � V8).

Consequently x � e8 2 W 9�1(q �Q8 ,a � V8).

From that optimality consequence, the inequality in eq. (�.��) and hence also the one

in eq. (�.��) are both equalities. The latter equality then implies thatx0+e8 2 W 9(q,a,I). ⇤

�.�.� Recursion. The main result of this subsection is theorem �.�.�, which rewrites ����

from a lexicographic, linear ���� as in eq. (�.�) to a recursive maximization problem. Our

focus here remains on definition �.�.�’s subproblems, and the theorem’s eq. (�.��) is in

terms of the optimal-value function v 9(q,a,I). Let e1 , . . . , e= denote the standard basis of

R= .

Theorem �.�.�. The following recursive ���� Bellman equation holds for the optimal value of

the ���� subproblem in eq. ��.�� �cf. Bellman’s equation in the graph-shortest-path problem defined

in Bertsimas & Tsitsiklis, ����, § �.���

v 9(q,a,I) = max�
8

v 9�1(q �Q8 ,a � V8) + V8 (�.��)

subject to v 9�1(q �Q8 ,a � V8) + V8 ⌫ a, �aggregate reserve�

v 9�1(q �Q8 ,a � V8) < �1, �recursive feasibility�

Q8  q, �supply�

8 2 I , �subset I�

for all residual supplies q  s, all aggregate reserves a 2 R
<

, and all bid-index subsets I ✓ I 9

for the current bidder 9 2 [1]. When 9 = 0, eq. ��.�� on page ��� serves as the recursion’s base

case. Further, let B 9(q,a,I) denote the set of maximizers or winning bid indices 8 of eq. ��.���’s

right-hand side when 9 < 0.39 Then B 9(q,a,I) equals the set of 8 2 I for which G8 = 1 for some

x 2 W 9(q,a,I) via lemma �.�.�.

39"Formally, B 9 : D 9 ! 2I 9 for each bidder 9 2 [1].
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Remark �.�.�. Another way to read the last part of theorem �.�.� is thatW 9(q,a,I) equals

the set of vectors e81 + · · · + e8 9 for any sequence of indices40

8 9 2 B 9(q,a,I), (�.��)

8 9�1 2 B 9�1(q �Q8 9
,a � V8 9 ,I 9�1),

.

.

.

81 2 B1(q �Q8 9
� · · · �Q82 ,a � V8 9 � · · · � V82 ,I1).

Proof of theorem �.�.�. Let � denote the maximum objective value on right side of eq. (�.��).

First we show that v 9(q,a,I) ⌫ �. If B 9(q,a,I) = ;, then our convention says that

� = �1, so we’re done. Suppose instead that 80 2 B 9(q,a,I). Equation (�.��)’s recursive-

feasibility constraint implies that there is a winning allocation x0 2 W 9�1(q �Q8
0 ,a � V80).

Applying eq. (�.�) to get eq. (�.��) below, the ���� objective value for x B x0 + e80 is

V x +R(q �Qx) = V (x0 + e80) +R
⇥
q �Q

�
x0 + e80)

⇤
= V x0 + V80 +R

⇥
(q �Q8

0) �Qx0
⇤

= v 9�1(q �Q8
0 ,a � V80) + V80 (�.��)

= �.

Therefore we have to prove that x is a feasible allocation for eq. (�.�) so that its ����

objective value is at most v 9(q,a,I), and thus so is �. Since 80 2 B 9(q,a,I) ✓ I ✓ I 9 but

the current bidder for x0 is 9 � 1, all the entries of x0 + e80 are either zero or one. By the same

token, x satisfies the 9th ��� and subset-I constraints. Because of eq. (�.��), eq. (�.�)’s and

eq. (�.��)’s �� constraints are the same. Finally, x satisfies the supply constraint because

Qx = Qx0 +Q8
0 , and our choice of x0 implies Qx0  q �Q8

0 . We may now conclude that x

is a feasible allocation, so

� = V x +R(q �Qx) � v 9(q,a,I). (�.��)

Second, we show that v 9(q,a,I) � �. IfW 9(q,a,I) = ;, then our convention says

that v 9(q,a,I) = �1, so we’re done. Suppose instead that x̂ 2 W 9(q,a,I). Lemma �.�.�

40"Equation (�.��)’s term V
8 9
+ · · · +V

8✓
, for ✓ 2 {2, . . . , 9}, is the <-dimensional analog of 6, the “sum of

prices of the bids accepted on the [search-tree] path”, from Sandholm, ����, Eq. ��.� on p. ���.
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implies that there is a unique winning bid index 8 2 I, for which Ĝ8 = 1. Applying

eq. (�.�) and replacing x with x̂ in lemma �.�.�’s eq. (�.��) to get eq. (�.��) below, the

Bellman-equation objective value for 8 is

v 9�1(q �Q8 ,a � V8) + V8 = V (x̂ � e8) +R
⇥
(q �Q8) �Q(x̂ � e8)

⇤
+ V8 (�.��)

= V x̂ +R[q �Qx̂]

= v 9(q,a,I).

Therefore we have to prove that 8 is a feasible bid index for eq. (�.��) so that its

Bellman-equation objective value is at most �, and thus so is v 9(q,a,I). We already know

that 8 2 I. Lemma �.�.� tells us that 8 satisfies eq. (�.��)’s supply and recursive-feasibility

constraints. Because of the latter, lemma �.�.� says that v 9�1(q �Q8 ,a � V8) ⌫ a � V8 , so

eq. (�.��)’s �� constraint holds. We may now conclude that 8 is a feasible solution to the

right-hand side of eq. (�.��), so

v 9(q,a,I) = v 9�1(q �Q8 ,a � V8) + V8 � �. (�.��)

Putting together eqs. (�.��) and (�.��) gives equality across: the ���� and Bellman-

equation objective values of x and 8 both equal � = v 9(q,a,I), which is the same thing as

eq. (�.��). This means that x and 8 are not just feasible but optimal solutions for eqs. (�.�)

and (�.��), i.e., x 2 W 9(q,a,I) and 8 2 B 9(q,a,I). ⇤

From eq. (�.��), we can derive a Bellman equation for v 9(q) with zero reserve prices

(r = 0) and no �� constraint (a = �1) that looks almost exactly like the the one in Maldoom

(����, Eq. (�) in § �.�) for ��� (see also Müller, ����, Thm. ��.� on p. ���). For 9 2 [1], we

have

v 9(q) = max�
8

v 9�1(q �Q8) + V8 (�.��)

subject to Q8  q

8 2 I 9

Equation (�.��) uses lexicographic maximization “ max�” whereas Maldoom’s Bellman

equation used regular maximization “max” over just bid prices. Lexicographic maximiza-

tion allows us to solve the ���� in eq. (�.�) not as a sequence of instances of ��� but
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directly, taking advantage of the information between tie breakers : 2 [<] available from a

fathoming algorithm based on theorem �.�.�. Maldoom (����, § �.�) provided an algorithm

for extracting all tied outcomes. With eq. (�.��), there is no need: any maximal solution

satisfying eq. (�.��) has already fulfilled all the tie-breaking rules.

Equation (�.��) finally gives full clarity to what branching on bids by bidder meant in

subsection �.�.�, so we turn back for a moment to that subsection’s discussion of branching

schemes. Branching on bids by bidder produces a search tree whose nodes (for subproblems

whose solution sets we call) B 9(q,a,I 9) at the same distance from the root B1(s,�1,I1)

have the same current bidder 9, and the edges coming out of a node correspond to each of

bidder 9’s packages Q8  q, 8 2 I 9 . In contrast, branching on bids, which Sandholm (����,

p. ���) found to yield faster algorithms than branching on items, produces essentially the

same search tree as the naive �� algorithm, e.g., Müller (����, Thm. ��.� on p. ���), for the

multidimensional knapsack problem (���) in eq. (�.��) below (Minoux, ����/����, p. ���).

Holte (����) was among the first to notice that ��� can be reinterpreted as ���.

maximize
x

(V x)1 (�.��)

subject to Qx  s,

x 2 {0, 1}= .

The ��� knows nothing of the bidder structure of ���. At one extreme where there

is only one bidder (1 = 1), the ��� in eq. (�.�) is the ���. In any case the virtual-products

canonicalization from subsection �.�.� can convert a 1-bidder ��� into a single-bidder ���

(A large class of integer linear programs can be written as a ���. See subsection �.�.� and

Minoux, ����/����, p. ���). At the other extreme where there is one bidder per bid (1 = =),

eq. (�.�) is either infeasible or has the trivial solution x⇤ = 1. Between those two extremes,

bidders submit approximately the same number of bids, which is the same as saying that

the maximum number of bids any one bidder has, max9 |I 9 |, is approximately the average

=/1; and the number of bids per bidder approximately equals the number bidders, which

is the same as saying that =/1 ⇡ 1.41 In subsection �.�.� we mentioned that branching

41"The number of bids per bidder’s approximating the number of bids means =/1 ⇡ 1, which implies
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strategies affect running time of algorithms not through the size of the search tree but

through the bounding half of branch and bound. Under this intermediate regime, branching

on bids by bidders in a �&� algorithm allows for computing the �� relaxation for multiple

bids at once while still breaking up the state space. This leads us to the following conjecture.

Conjecture �.�.�. When restricted to ���� instances in which max9 |I 9 | ⇡ =/1 ⇡
p
=, �&�

algorithms that branch on bids by bidder are faster asymptotically as = !1 than those that branch

on bids.

Another asymptotic acceleration might be available by being careful about how we

enumerate {8 2 I 9 | Q8  q} in eq. (�.��). By lemma �.�.� Q8  q implies Q8 � q, so storing

the packages in lexicographic order at least facilitates avoiding the inspection of packages

lexicographically larger than q because we can stop iterating as soon as we see such a

package. One data structure that stores strings—here, the positive (Matrices of packages

tend in practice to be very sparse, so avoiding the storage of zeros may be profitable.

A variety of methods for compressing sparse matrices exist, including the compressed-

column representation described in Golub & Van Loan, ����/����, § ��.�.� on pp. ���–

���) entries of a package vector—in lexicographic order is the radix tree (Cormen et al.,

����, pp. ���–���). Suppose we index each bidder’s packages {Q8 | 8 2 I 9} with distinct

radix trees whose edge labels correspond to the entries of Q8 and whose node labels

correspond to 8. Concatenating the edge labels of a path from the tree’s root ending at

a node labeled 8 allows us to read off the entries of Q8 . Ordering the out-edges of each

node ascending by edge label results in a lexicographic depth-first search order for the tree.

Careful control of the tree’s traversal might yield an enumeration algorithm that minimizes

how many columns of Q it examines beyond those that obey q’s supply constraint. If such

an algorithm inspects O(1) extra packages, then lemma �.�.� would enjoy an asymptotic

speed up as = !1 compared to naively enumerating {8 2 I 9 | Q8 � q} and checking each

package for the supply constraint.

Assuming some optimal enumeration scheme, we generalize to ���� from Müller

= ⇡ 12. Hence 1 ⇡
p
= ⇡ =/1.
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(����, Thm. ��.� on p. ���), which says that an optimal algorithm for classical ��� has

an asymptotic running time of O
�
1?(ksk1 + 1)? max9 |I 9 |

�
, where ksk1 B maxC BC , the

maximum supply of any of the ? different products. The proof follows Müller’s closely.

Theorem �.�.�. An optimal algorithm to solve the optimal value v⇤ of the ���� in eq. ��.�� has an

asymptotic running time in O
�
1(? + <)(ksk1 + 1)? max9 |I 9 |

�
.

Proof. We don’t need the �� constraint for now, so write v 9(q) in place of v 9(q,�1). By

theorem �.�.�, v⇤ = v1(s), which we can compute by comparing and adding at most

max9 |I 9 | numbers of the form E
9

:
(@1 , . . . , @?) and subtracting ? numbers (the q �Q8 term

in eq. (�.��)). In that expression, : 2 [<], 9 2 [1], @1 2 {0, . . . , B1}, . . . , and @? 2 {0, . . . , B?}.

However, the ? subtractions need happen only once per expression v 9(@1 , . . . , @?) for all :

entries. That’s a total of 1(? + <)(max9 |I 9 |)
Œ?

C=1(BC + 1)  1(? + <)(ksk1 + 1)?(max9 |I 9 |)

numbers to compare and add in the worst case. ⇤

Theorem �.�.� gives us the tools finally to prove that dominated bids (definition �.�.�)

are never necessary for a bidder to submit. Recall that (V� ,Q�) dominates (V� ,Q�) if and

only if Q�  Q� and V� � V�, i.e., bid � is for less stuff at a higher price than bid �.

Proposition �.�.�. Suppose 9 > 0. If (V� ,Q�) dominates (V� ,Q�) for some �, � 2 I for some

I ✓ I 9 , then � 2 B 9(q,a,I) only if � 2 B 9(q,a,I). Moreover, if V� � V�, then � 8 B 9(q,a,I).

Remark �.�.�. If we modify eq. (�.�) to embody auction rules that disallow the winning

allocation to leave any number of items unsold in each product, that is by replacing the “”

in the supply constraints with an “=”, proposition �.�.� could fail. The auctioneer might

select a bid for a larger package at a lower value—preferring (V� ,Q�) over (V� ,Q�) in

proposition �.�.�—if doing so allowed the auction to clear with no unsold items.

Proof of proposition �.�.�. Suppose �, � 2 I ✓ I 9 , Q�  Q� and V� � V�. Suppose further

that � satisfies the constraints of eq. (�.��): v 9�1(q�Q� ,a�V�)+V� ⌫ a, v 9�1(q�Q� ,a�V�) <

�1, andQ�  q. (Without this assumption, we would be done already with � 8 B 9(q,a,I).)

Thus Q�  q.
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Further, q �Q� � q �Q� and a � V� � a � V�. Thus subtracting the � bid from the

residual supply and aggregate reserve is a relaxation of the subproblem’s supply and ��

constraints compared with doing the same thing with �:

v 9�1(q �Q� ,a � V�) ⌫ v 9�1(q �Q� ,a � V�),

and thus

v 9�1(q �Q� ,a � V�) + V� ⌫ v 9�1(q �Q� ,a � V�) + V� .

Therefore � satisfies the constraints of eq. (�.��) and with at least as great an objective value

as �’s bid. Hence bid � wins only if � does too.

Now suppose further that V� � V�. Then the inequality above becomes strict, and

the objective value for bid � strictly exceeds the objective value for bid �. Hence bid � cannot

win. ⇤

�.�.� Memoization. To reduce the number of times we actually solve a subproblem

recursively using eq. (�.��), we save the results of prior computations, including in the case

of infeasibility. Maldoom (����, § �.�) proposed a �� algorithm based on the ��� Bellman

eq. (�.��). That algorithm avoided repeating computations using the bottom-up method

(Cormen et al., ����, p. ���): by computing v1(q) for all q  s, then v2(q) for all q  s, etc.,

until reaching bidder 1 and computing v1(s). The other choice of method—ours here—in

�� algorithm design is top-down with memoization: we check if we already have saved

the result of the current subproblem and return it if so; otherwise we compute ����’s

Bellman eq. (�.��) recursively as written, but save or memoize (or cache (Sandholm, ����,

p. ���)) the result before returning. While bottom-up �� algorithms tend to have better

constant factors in their asymptotic running times, memoized top-down algorithms can be

asymptotically faster if solving the problem’s Bellman equation recursively typically does

not require solving all subproblems (Cormen et al., ����, pp. ���, ���).

Indeed, real ��� (and thus ����) instances tend to be quite sparse in this sense. To

make this concrete, consider the set {q �Q8 | 8 2 I 9 and Q8  q} of residual supplies in

the recursive calls to v 9�1(q � Q8 ,a � V8) in eq. (�.��) when 9 2 [1]. That set contains at

most |I 9 | package vectors, the number of bids that bidder 9 submitted. It is typically much
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smaller than eq. (�.��)’s state space, the set of all residual supplies q0 such that q0  q. The

cardinality of the state space generally determines the practical computational difficulty

of a dynamic programming problem (Minoux, ����/����, p. ���). In our case, the state

space contains exactly
Œ?

C=1(@C + 1) package vectors, which is on the order of 2? .42 Indeed,

real auctions usually limit by rule the number of bids a bidder may submit whereas 2?

may be quite large. For example, the UK’s ���� auction of �G spectrum had 239 possible

packages for sale (Day & Cramton, ����, p. ���), but the auctioneer permitted at most �,���

bids per bidder (Ofcom, ����, reg. �� at para. ��). Canada’s ���� auction of the ��� MHz

band offered bidders either 516 or 816 distinct packages (depending on the bidder) (Bono

et al., ����; ���� Canada, ����, paras. �, ��, ��), but no bidder submitted more than ��� bids

(TELUS Communications Inc. submitted ��� bids in the suplementary round. ���� Canada,

����a). This leads us to posit the following Conjecture.

Conjecture �.�.��. When restricted to ���� instances in which the maximum number max9 |I 9 |

of bids that any bidder submitted is bounded by a polynomial function of ? and maxC BC , a top-down

�� algorithm with memoization for the Bellman eq. ��.��� is faster than a bottom-up �� algorithm

asymptotically in ? and in =.

The purpose of memoization is to record the results of each call to v 9(q,a) imple-

mented in terms of the recursion in eq. (�.��) with I = I 9 . We do not need to save results in

the middle of iterating over I 9 , so we drop the notation for subsets of bid indices, relying

on our convention that v 9(q,a) ⌘ v 9(q,a,I 9), etc., for the remainder of this subsection. We

also do not need to save results in the base case because eq. (�.�) on page ��� provides a

complete solution when 9 = 0, so we assume 9 2 [1] for the remainder of this subsection.

While some memoization schemes for some problems record just the optimal cost of a

subproblem, we can save significant time reconstructing the winning allocation from the

optimal objective values if we store the winning bid index at each call (Cormen et al., ����,

p. ���). To abstract away the order of iteration over I 9 (Bid ordering when branching on

42"A proof of conjecture �.�.�� would need to take into account the number of entries of q that are zero.
When q = s, the full supply, every entry of q is non-zero, so

Œ?

C=1(@C + 1) � Œ?

C=1 2 = 2? . If, for example, a
bidder 90 > 9 has a bid for a package Q

8
0 that demands the entire supply BC = &C80 of some product C, then the

residual supply @C of product C is zero.
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bids in ��� is discussed in Sandholm, ����, pp. ���–���), we suppose only that a winning-

bid-index function � 9 returns either 1 for an infeasible subproblem or some winning bid

index � 9(q,a) 2 B 9(q,a) for a feasible subproblem. Sandholm (����, pp. ���–���) reviewed

techniques for memoization in ��� subproblems that branch on bids. What remains in this

subsection is to derive a technique appropriate for ���� when branching on bids by bidder.

We then define a memo entry as43

µ9(q,a) B

8>>>><
>>>>:

�
� 9(q,a), v 9(q,a)

�
if v 9(q,a) < �1

(1,a) if v 9(q,a) = �1.

After each time that v 9(q,a) returns an optimal value (or �1 for infeasibility) in

the recursion of the Bellman eq. (�.��), we record the residual supply q and the aggregate

reserve a by appending them as new columns to the matrices  9 2 N?⇥⇤ and A9 2 R
<⇥⇤

,

respectively. Here ? ⇥ ⇤ and < ⇥ ⇤mean that 9 has ? rows, A9 has < rows, and they both

have an equal number of columns depending on how many times v 9 has returned a result.

We also store a memo entry in bidder 9’s memo, which we define as44

c9( 9
,A9

, q) B µ9(q, ⌘)

where ⌘ B min�
�
A
9

✓

�� 9

✓
= q

 
.

(�.��)

Remark �.�.��. The matrices 9 and A9 represent the state of the algorithm specific to bidder

9, and, in particular, the order of calls to eq. (�.��). Recall our convention that min ; = 1.

Thus, if q is not a column of 9 , then c9( 9
,A9

, q) = (1,1). This indicates that v 9(q,a) has

not been computed yet for any aggregate reserve a except possibly a = 1, for which we

already know the subproblem is infeasible. After each call to eq. (�.��), we replace 9 and

A9 with [ 9 q ] and [A9 a ] respectively. As an optimization, if q is already column ✓ of 9

and a � ⌘, we may instead skip updating 9 and update A9 in place by replacing ⌘ with a

in column ✓ . Further, if the call to eq. (�.��) found that
�
8 2 I 9

�� Q8  q
 
= ;, then we know

both v 9(q,a) = �1 and v 9(q,�1) = �1, so we may update A9 by inserting �1 rather

43"Formally, � 9 : N? ⇥R< ! I 9 [ {1} and µ9 : N? ⇥R< ! (I 9 [ {1}) ⇥R< .

44"Formally, c9 :
–1
✓=0

⇣
N?⇥✓ ⇥R<⇥✓

⌘
⇥ N? ! (I 9 [ {1}) ⇥R< .



���

than a in place of ⌘. Finally, we can accelerate the search for q among the columns of 9 by

indexing the columns with a radix tree, discussed briefly in subsection �.�.�, whose edge

labels correspond to the entries of 9

✓
and whose node labels correspond to ✓ .

Lemma �.�.��. Suppose 9 > 0. Let 8 2 I 9 [ {1} and u 2 R<

such that (8 ,u) B c9( 9
,A9

, q) =

µ9(q, ⌘), where 9 , A9 , and ⌘ are the same as in eq. ��.���. Then u ⌫ v 9(q). Equality holds if and

only if u = �1 or 8 < 1. If 8 is finite then so is u. Moreover, v 9(q,a) = �1 if either u � a, or

u = a and 8 = 1� and v 9(q,a) = u if u ⌫ a and 8 < 1.

We summarize lemma �.�.�� in table �.� (cf. the bulleted list at Sandholm, ����,

p. ���). Notice that u = �1 implies D1 = �1, and, since u ⌫ v 9(q), if D1 = �1, then v 9(q)

cannot be entirely finite, so it is �1. The lemma says that we need only compute v 9(q,a)

from scratch if u � a, 8 = 1, and D1 < �1; this includes the scenario in which q is not a

column of 9 because then u = 1 and 8 = 1.

Table �.�. Summary of lemma �.�.��: how to read the recursion memo

8 = 1 8 < 1
D1 = �1 ◊ v 9(q) = �1

(impossible)
D1 < �1,u 8 R<

? v 9(q) � u
u 2 R< X v 9(q) = u

u � a ◊ v 9(q,a) = �1 ◊ v 9(q,a) = �1
u = a

X v 9(q,a) = u
u � a ? inconclusive if D1 < �1

What does the memo entry (8 ,u) B c9( 9
,A9

, q) tell us about subproblem v 9(q,a)?
X Memo contains solution. ◊ Subproblem is infeasible. ? Must solve subproblem.

Proof of lemma �.�.��. First suppose v 9(q) � ⌘ or v 9(q) = ⌘ = �1. According to lemma �.�.�,

v 9(q, ⌘) = �1, so 8 = 1 and u = ⌘. Hence u ⌫ v 9(q). Under our current assumptions,

⌘ = v 9(q) if and only if v 9(q) = ⌘ = �1, which happens if and only if u = �1.

Next suppose that ⌘ � v 9(q) and either �1 < ⌘ or ⌘ < v 9(q). Then v 9(q) < �1.

According to lemma �.�.�, v 9(q, ⌘) = v 9(q) < �1, so 8 = � 9(q, ⌘) < 1 and u = v 9(q, ⌘) =

v 9(q).

Now we can see that 8’s being finite implies u’s being finite. The suppositions leading

the previous two paragraphs are mutually exclusive and cover all possibilities. In the first
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one, 8 = 1, whereas in the second one, both 8 and u were finite.

Finally, we deduce v 9(q,a) from 8 and u. An aggregate reserve of �1 completely

relaxes the �� constraint, so v 9(q,a) � v 9(q,�1). By eq. (�.�), v 9(q,�1) = v 9(q). From the

foregoing considerations, we have that v 9(q) � u, so v 9(q,a) � u. According to lemma �.�.�,

u � a implies v 9(q,a) = �1. If 8 = 1, then v 9(q, ⌘) = �1 and u = ⌘. If additionally

u = a, then a = ⌘, so v 9(q,a) = �1. However, if 8 < 1, then v 9(q, ⌘) < �1 and

u = v 9(q, ⌘) = v 9(q). If additionally u ⌫ a, then v 9(q) ⌫ a, so v 9(q,a) = v 9(q) = u by

lemma �.�.�. ⇤

The memoization strategy for ��� that Sandholm (����, pp. ���–���) presented

includes two extensions that we have not contemplated here. The first is to store the result

of the �� relaxation of a subproblem in the memo entry. Then in the “? inconclusive” case

in table �.�, if the cached upper bound is less than a, we can prune the current subproblem

as infeasible. In the context of ���� with < > 1 using theorem �.�.�, we would have to

store both :
⇤ and z

9

[:⇤](q,a). Such a technique requires further study to determine if the

resulting pruning justifies the enlarged memo entries. The second extension is to eject large

or rarely used entries from the cache, or to be more selective about which subproblems get

saved at all. The need arises in large problems when the memos start to take up too much

memory. Sandholm represented packages as sets of items whereas we represent them as

vectors. Our representation may be amenable to carefully ordering the iteration over I 9 in

the optimization in eq. (�.��), e.g., by sorting the columns of Q lexicographically. It may be

possible to prove some subproblems won’t be used again after a certain point as long as

unexplored nodes of the search tree always iterate in the same order. We could then delete

the corresponding columns of 9 and A9 and corresponding memo entries.

�.� Price Determination

An auction’s pricing rule > is how the auctioneer determines how much to charge

winning bidders in exchange for the packages they win. In detail, if we let BS stand for the

entire bid stack {I 9}1
9=1, V , and Q, then > 9(BS, q) 2 R is the amount bidder 9 would have

to pay to the auctioneer in exchange for winning package q. This formulation allows us to

discuss hypotheticals, such as the reserve-price rule that prevents a bidder from winning a
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package q if r«q < > 9(BS, q). The pricing rules of choice in combinatorial auctions are from

the class of opportunity-cost pricing rules in which the auctioneer charges the winner of

a package at least as much as any other bidder (or combination of bidders) would have

been willing to pay for that package. Our focus in this section is on forward auctions,

which, for our purposes, are auctions for which all bid prices—the first row of the values

matrix V —are all nonnegative. A procurement or reverse auction, in which the auctioneer

is buying rather than selling (Cramton et al., ����a, pp. ���–���), has all nonpositive bid

prices.

Our pricing algorithms fairly closely follow Maldoom (����)’s rendition of core-

constraint generation (���) that Day and Raghavan (����, § � on pp. ����–����) proposed.

The main difference is that we tend to formulate the relevant mathematical programs in

terms of prices rather than payoffs. Day and Cramton (����) described how the algorithm

works in practice in several real-world auctions.

�.�.� Counterfactuals. A common tool we use is the counterfactual ���, for which we need

the following notation. The positive part �+ of a number (or infinity) � 2 R is max{�, 0}.

Define the reduction � 9 2 R[ {1} for bidder 9 > 0. Then we may define the counterfactual

��� reduced by � to be

⌧⇤� Bmax
x

r«(s �Qx) +
1’
9=1

’
82I 9

(+18 � � 9)+G8

subject to x 2 X1(s).

(�.��)

Equation (�.��) is just an instance of ���� with < = 1 tie breaker (hence no need for

lexicographic maximization) and (+18 � � 9)+ replacing V8 for each 8 2 I 9 and each 9 2 [1].

In the objective function of eq. (�.��), the summand (+18 � � 9)+ is always finite because +18

is real so (+18 � 1)+ = 0 for all 9 2 [1] and all 8 2 I 9 . Moreover, since we are currently

assuming the first row of V has all nonnegative entries, we have (+18 � 0)+ = +18 .

In analogy to definitions �.�.� and �.�.�, we define the subproblem of the counter-

factual ��� reduced by � 2 (R [ {1})1 for current bidder 9 2 {0, . . . , 1}, residual supply

q 2 N? such that q  s, aggregate reserve 01 2 R, and bid indices I ✓ I 9 to be eq. (�.��),
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and we denote its maximum value as ⌧ 9�(q, 01 ,I).45

maximize
x

r«(q �Qx) +
1’
:=1

’
82I:

(+18 � �:)+G8 (�.��)

subject to x 2 X 9(q,a,I),

where a B [01 ,�1, . . . ,�1]«.

As in eq. (�.�), we set ⌧ 9�(q, 01) B ⌧ 9�(q, 01 ,I 9) and ⌧ 9�(q) B ⌧ 9�(q,�1). It follows that

⌧1�(s) = ⌧⇤�.

Lemma �.�.�. Fix 01 2 R and let a B [01 ,�1, . . . ,�1]«. If �: = 0 for all :  9, then

⌧ 9�(q, 01 ,I) = E91(q,a,I), (�.��)

Proof. The feasible set X 9(q,a,I) of eq. (�.�) is the same as that of eq. (�.��). Every x in

the feasible set has G8 = 0 for all 8 2 I: for all : > 9. Since +18 2 [0,1) and :  9 implies

�: = 0, we have (+18 � �:)+ = +18 for all 8 2 I: for all :  9. By eq. (�.�), e«1R = r. Hence the

objective function in eq. (�.��) is

r«(s �Qx) +
1’
:=1

’
82I:

(+18 � �:)+G8 = r«(s �Qx) +
9’

:=1

’
82I:

+18 G8 = e«1[V x +R(s �Qx)].

Lexicographic maximization in eqs. (�.�) and (�.�) maximizes the first entry e«1V x of V x

first, so, for anyY ✓ {0, 1}= ,

max
�
e«1V x + r«(q �Qx)

�� x 2 Y 
= e«1 max�{V x +R(q �Qx) | x 2 Y}.

Hence the objective function of E91 is e«1V x + r«(q �Qx) maximized over (R, <). With the

same feasible set, objective function, and order, the left and right sides of eq. (�.��) are

equal. ⇤

We say that ⌧⇤� in eq. (�.��) is the counterfactual ��� for biddersA ✓ [1] if

� 9 =

8>>>><
>>>>:
1 9 2 A

0 9 8 A

45"Formally, ⌧9� : N? ⇥R ⇥ 2I 9 ! R.
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We will have no need for sets A for which any bidder 9 2 A lost the auction for a

winning allocation x in eq. (�.�), which is to say that +18 = 0 for the 8 2 I 9 such that G8 = 1.

(A loser may still have won a positive package; losing simply refers to the package’s being

associated with no bid value in the first values row.)

�.�.� Reusing Memos. We may speed up computation of a counterfactual ��� reduced by

� as follows. Suppose we have computed the ���� in eq. (�.�) using dynamic programming

via theorem �.�.�. Every time we evaluated v 9(q,a) for 9 2 [1], q 2 N? such that q  s,

and a 2 R<

, we stored q and a as columns of matrices 9 and A9 respectively. From there

we computed memos c9 as in eq. (�.��). Let A B { 9 2 [1] | � 9 < 0}. Putting together

lemmas �.�.�� and �.�.�, we obtain the following corollary.

Corollary �.�.�. Consider the setup in the paragraph above. Suppose 9 2 [minA � 1]. Let

8 2 N[ {1} and u 2 R<

such that c9( 9
,A9

, q) C (8 ,u). If u = �1 or 8 < 1, then ⌧ 9�(q) = D1.

If D1 < 0 or D1 = 0 and 8 = 1, then ⌧ 9�(q, 0) = �1.

When computing the counterfactual for a set of bidders the least of whose id is 9,

the recursion memo storing v1(s) does not need to modify its stored value of v:(q) for : < 9

and any package q. This allows subsequent runs of the dynamic programming solver to

avoid recomputing its entire recursion memo.
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Series A, ��(�), ���–���.

Ycart, B. (����). Markov processes and exponential families on a finite set. Statistics &
Probability Letters, �(�), ���–���. https://doi.org/��.����/����-����(��)�����-�

Ycart, B. (����a). Integer valued markov processes and exponential families. Statistics &
Probability Letters, ��(�), ��–��. https://doi.org/��.����/����-����(��)�����-O

Ycart, B. (����b). Markov processes and exponential families. Stochastic Processes and their
Applications, ��(�), ���–���. https://doi.org/��.����/����-����(��)�����-�

Zhong, L. (����, August �). Truncated stochastic approximation with moving bounds (Doctoral
dissertation). Dept. of Mathematics, Royal Holloway, University of London. Retrieved
February �, ����, from https://pure.royalholloway.ac.uk/portal/en/publications/
truncated-stochastic-approximation-with-moving-bounds(cee�d�d�-���d-���e-
��e�-�e����fb��a�).html

https://doi.org/10.2307/2287447
https://doi.org/10.1007/BF02294137
http://economics.ut.ac.ir/documents/3030266/14100645/Jeffrey_M._Wooldridge_Introductory_Econometrics_A_Modern_Approach__2012.pdf
http://economics.ut.ac.ir/documents/3030266/14100645/Jeffrey_M._Wooldridge_Introductory_Econometrics_A_Modern_Approach__2012.pdf
http://economics.ut.ac.ir/documents/3030266/14100645/Jeffrey_M._Wooldridge_Introductory_Econometrics_A_Modern_Approach__2012.pdf
https://doi.org/10.1007/978-3-642-14104-1_7
https://doi.org/10.1080/01621459.2018.1448829
https://doi.org/10.1017/S0021900200008305
https://doi.org/10.1016/0167-7152(89)90046-1
https://doi.org/10.1016/0167-7152(92)90213-O
https://doi.org/10.1016/0304-4149(92)90121-6
https://pure.royalholloway.ac.uk/portal/en/publications/truncated-stochastic-approximation-with-moving-bounds(cee4d5d2-059d-467e-86e9-7e8798fb03a0).html
https://pure.royalholloway.ac.uk/portal/en/publications/truncated-stochastic-approximation-with-moving-bounds(cee4d5d2-059d-467e-86e9-7e8798fb03a0).html
https://pure.royalholloway.ac.uk/portal/en/publications/truncated-stochastic-approximation-with-moving-bounds(cee4d5d2-059d-467e-86e9-7e8798fb03a0).html

	ACKNOWLEDGMENTS
	AUTHORSHIP STATEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	ABSTRACT
	Chapters
	1. Introduction
	2. Interpretable Data Reduction for Network Markov Chains
	2.1. Introduction
	2.2. Sufficiency and Parametric Markov Chains
	2.3. Conditional Exponential Families
	2.3.1 Literature Review
	2.3.2 Characterizing Exponential Families of Markov Chains
	2.3.2.1 Preparatory Definitions
	2.3.2.2 Exponential Families of a Stochastic Process
	2.3.2.3 Initial-Condition Exponential Families
	2.3.2.4 The Main Theorem

	2.3.3 CEF Likelihood Functions
	2.3.4 The Structure of MEF Transition Matrices
	2.3.4.1 CEF Representations of MEFs


	2.4. Permutation-Uniform Markov Chains
	2.4.1 Literature Review
	2.4.2 Independence
	2.4.3 Consequences of Independence
	2.4.4 Infinite State Spaces
	2.4.5 Finite State Spaces
	2.4.5.1 Symmetry

	2.4.6 Permutation Uniformity and CEFs

	2.5. Markov Chains of Graphs
	2.5.1 Literature Review
	2.5.2 Finite Exchangeability
	2.5.3 Dyadic Independence
	2.5.3.1 Exponential Random Multigraph Models
	2.5.3.2 Independent Sequences and Multigraphs
	2.5.3.3 Permutation Uniformity

	2.5.4 Examples from the Literature
	2.5.5 A Model of Loyalty

	2.6. Conclusion

	3. Hypothesis Tests for Mixed Membership Stochastic Block Models
	3.1. Model
	3.1.1 Basic Notation
	3.1.2 State Space
	3.1.3 Probability Distributions
	3.1.4 Sufficient Statistics

	3.2. Goodness of Fit
	3.2.1 Test Statistic
	3.2.2 p-Value Definitions
	3.2.3 Estimation
	3.2.3.1 Fiber Sampling
	3.2.3.2 Simple-Hypothesis p-Value
	3.2.3.3 Convergence Rate

	3.2.4 Optimization


	4. Lexicographic Winner Determination
	4.1. Model
	4.1.1 Notation
	4.1.2 Formulation
	4.1.3 Side Constraints
	4.1.4 Subproblems
	4.1.4.1 Notation
	4.1.4.2 Basic Properties


	4.2. Pre-Solving
	4.2.1 Dominated Bids
	4.2.2 Transitive Reduction

	4.3. Upper Bounds
	4.3.1 Dual Relaxations
	4.3.2 Fathoming
	4.3.3 Reusing Relaxations

	4.4. Dynamic Programming
	4.4.1 From Indicators to Indices
	4.4.2 Recursion
	4.4.3 Memoization

	4.5. Price Determination
	4.5.1 Counterfactuals
	4.5.2 Reusing Memos



	BIBLIOGRAPHY

