In the past decade, shale gas has become the most import source of natural gas in the United States. Large amounts of light alkanes in shale gas, such as methane, ethane, and propane are available... Show moreIn the past decade, shale gas has become the most import source of natural gas in the United States. Large amounts of light alkanes in shale gas, such as methane, ethane, and propane are available as an industrial source of chemicals through the catalyzed, on-purpose light alkane dehydrogenation to olefins. Therefore, it is obvious there is a benefit to developing catalysts to directly convert shale gas to olefins. However, alkane dehydrogenation and non-oxidative methane coupling are thermodynamically unfavorable reactions at low temperatures. The energy requirements make these reactions less attractive for shale gas utilization. In principle, consuming the hydrogen product with a fuel cell can drive the thermodynamically unfavorable reaction by reducing the hydrogen partial pressure in the anode and by heat generating by the fuel cell, while also generating electricity in the process. Moreover, catalyst integration with fuel cell can facilitate the transfer of charge in anode which is rate determine step in the fuel cell. This thesis will focus on catalyst development for alkane dehydrogenation and exploring a way to integrate these catalysts with fuel cells.Chapters 2, 3 and 4 focus on designing, characterizing, and studying catalysts for non-oxidative coupling of methane (NOCM) and propane dehydrogenation (PDH). PtM (M is a transition metal) alloys were found to efficiently decrease the desorption energy of olefin products and avoid deeper C-H bond activation compared to metallic Pt. Based on the previous study of single cobalt on silica, a novel synthesis of PtCo3 was developed to further increase the activity of the PDH reaction. The Pt bimetallic catalyst made by novel synthesis route was proven to be one of several types of alloy. It was observed that extremely high conversion of PDH and high selectivity of target olefin were catalyzed by PtCo3/SiO2. Ga, as another promotor to replace Co, was also investigated. As expected, PtGa3 alloy was formed by a similar synthesis, and it showed extraordinary stability and activity for propane dehydrogenation. A Mo-Pt dual-metal catalyst was found to catalyze methane coupling even though Pt-Mo bimetallic alloys do not form. We hypothesize that Pt catalyzed C-H bond cleavage of CH4 to form methyl radical, and a MoOC species, formed by MoO3 reacting with CH4, could effectively facilitate methyl radical coupling to form larger alkanes and alkenes. Pt-Mo dual-metal catalyst had higher catalytic activity for methane coupling than a physical mixture of Pt and Mo and genuine PtMo alloy. Chapter 5 details our efforts to transplant PtM catalysts from silica support to target fuel cell material--(La,Sr)(Cr,Fe)O3 as a support. Different catalyst structures were observed, and, in this case, second transition metals become a barrier to prevent Pt aggregation. When using propane as fuel for fuel cell, we observed electrochemical redox reactions occurred via electrochemical analysis. However, the resistance of cell is comparatively high and limited overall system performance. Chapter 6 details a study of the impact of the electrode oxide phase on overall cell performance. In this case, we conducted a fundamental study of degradation of cathode material, (La,Sr)(Co,Fe)O3. We found that raw material and cells can degrade even under room temperature. Thus, the storage of raw powder and fabricated cells is critical for performance studies. This also indicates that our high cell resistance in previous electrochemical measurements could come from the insulating compound formation during storage. Some directions for future research on catalyst integration and electrochemical testing are outlined. Show less