
FAST AUTOMATIC BAYESIAN CUBATURE USING MATCHING KERNELS

AND DESIGNS

BY

JAGADEESWARAN RATHINAVEL

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Applied Mathematics
in the Graduate College of the
Illinois Institute of Technology

Approved
Advisor

Chicago, Illinois
December 2019

ACKNOWLEDGMENT

I want to thank my advisor Prof. Fred J Hickernell for his support and guid-

ance in my completion of this thesis and throughout my studies here at IIT. His

support and motivation have given me the confidence to endure through the research.

I would like to also thank the GAIL project collaborators with whom I have

worked to add my new algorithms to the GAIL MATLAB toolbox: Prof. Sou-Cheng

Choi, Yuhan Ding, Lan Jiang, Xin Tong, and Kan Zhang. Especially, Prof. Sou-

Cheng Choi’s support and guidance as the project leader helped me to focus on my

cubature algorithms.

My special gratitude also goes to my thesis committee members, Prof. Jinqiao

Duan, Prof. Fred J Hickernell, Prof. Shuwang Li, and Prof. Geo↵rey Williamson.

Above all, I want to thank them because they were flexible and willing to dedicate

time to review my work and attend my comprehensive and defense examinations.

I would like to thank Prof. Dirk Nuyens for suggestions, valuable tips and

notes when we were researching higher order nets and kernels.

I would like to thank the organizers of the SAMSI-Lloyds-Turing Workshop

on Probabilistic Numerical Methods, where a part of preliminary version of this work

was discussed. I also thank Prof. Chris Oates and Prof. Sou-Cheng Choi for valuable

comments.

I would like to specifically thank my friend Samuel Davidson for reviewing and

suggesting the improvements on the text.

Last but not least, I would not be able to make it without the support of my

family. I would like to thank my wife for her continuous support and sacrifice. I also

would like to thank my parents for their endless support.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

LIST OF TABLES . vi

LIST OF FIGURES . viii

ABSTRACT . ix

CHAPTER

1. INTRODUCTION . 1

1.1. Cubature . 1
1.2. Stopping Criterion . 2
1.3. Low Discrepancy Points 3
1.4. Prior Work . 3

2. BAYESIAN CUBATURE 6

2.1. Bayesian Posterior Error 6
2.2. Hyperparameter Estimation 8
2.3. Empirical Bayes . 9
2.4. Full Bayes . 10
2.5. Generalized Cross-Validation 16
2.6. Cone of Functions and the Credible interval 19
2.7. The Automatic Bayesian Cubature Algorithm 22
2.8. Example with the Matérn Kernel 24

3. FAST AUTOMATIC BAYESIAN CUBATURE 28

3.1. Fast Bayesian Transform Kernel 28
3.2. Empirical Bayes . 32
3.3. Full Bayes . 35
3.4. Generalized Cross-Validation 35
3.5. Product Kernels . 36

4. INTEGRATION LATTICES AND
SHIFT INVARIANT KERNELS 40

4.1. Extensible Integration Lattice Node Sets 40
4.2. Shift Invariant Kernels 41
4.3. Continuous Valued Kernel Order 45
4.4. Summary . 50

iv

4.5. Periodizing Variable Transformations 51

5. SOBOL’ NETS AND WALSH KERNELS 54

5.1. Sobol’ Nets . 54
5.2. Walsh Kernels . 57
5.3. Eigenvectors . 61
5.4. Higher Order Nets . 67

6. NUMERICAL IMPLEMENTATION 69

6.1. Overcoming Cancellation Error 69
6.2. Kernel Hyperparameters Search 72

7. NUMERICAL RESULTS AND OBSERVATIONS 75

7.1. Testing Methodology 75
7.2. Multivariate Gaussian Probability 76
7.3. Keister’s Example . 78
7.4. Option Pricing . 81
7.5. Discussion . 87
7.6. Comparison with cubMC g, cubLattice g and cubSobol g . 89
7.7. Shape Parameter Fine-tuning 92

8. CONCLUSION AND FUTURE WORK 94

8.1. Conclusion . 94
8.2. Future Work . 95

APPENDIX . 98

BIBLIOGRAPHY . 98

v

LIST OF TABLES

Table Page

7.1 Comparison of average performance of cubatures for estimating the
Keister integral (7.1) for 1000 independent runs. These results can
be conditionally reproduced with the script, KeisterCubatureExam-
pleBayes.m, in GAIL. 90

7.2 Comparison of average performance of cubatures for estimating the
d = 20 Multivariate Normal (2.26) for 1000 independent runs with
" = 10�3. These results can be conditionally reproduced with the
script, MVNCubatureExampleBayes.m, in GAIL. 91

7.3 Comparison of average performance of Bayesian Cubature with com-
mon shape parameter vs dimension specific shape parameter for esti-
mating the d = 3 Fresnel Sine integral. These results can be condi-
tionally reproduced with the script, demoMultiTheta.m, in GAIL. . 92

vi

LIST OF FIGURES

Figure Page

2.1 Example integrands 1) fnice, a smooth function, 2) fpeaky, a peaky
function. The function values fpeaky(xi) = fnice(xi) = fsmooth(xi)
for i = 1, · · · , n. This plot can be conditionally reproduced using
DemoCone.m . 21

2.2 Probability distributions showing the relative integral position of a
smooth and a peaky function. fnice lies within the center 99% of
the confidence interval, and fpeaky lies on the outside of 99% of the
confidence interval. This plot can be conditionally reproduced using
DemoCone.m . 22

2.3 The d = 3 multivariate normal probability transformed to an inte-
gral of fGenz with d = 2. This plot can be reproduced using Inte-

grandPlots.m in GAIL. 25

2.4 Multivariate Gaussian probability: Guaranteed integration using
Matérn kernel in d = 2 using empirical Bayes stopping criterion
within error tolerance ". This figure can be conditionally repro-
duced using matern guaranteed plots.m in GAIL. 26

2.5 Multivariate Gaussian probability estimated using Matérn kernel in
d = 2 using empirical Bayes stopping criterion. Computation time
rapidly increases with increase of n. This figure can be conditionally
reproduced using matern guaranteed plots.m in GAIL. 27

4.1 Example of a shifted integration lattice node set in d = 2. This plot
can be reproduced using PlotPoints.m. 41

4.2 Fourier kernel . 43

5.1 Example of a scrambled Sobol’ node set in d = 2. This plot can be
reproduced using PlotPoints.m. 58

5.2 Walsh kernel . 60

7.1 Lattice: MVN guaranteed: MLE 77

7.2 Lattice: MVN guaranteed: Full Bayes 77

7.3 Lattice: MVN guaranteed: GCV 78

7.4 Sobol: MVN guaranteed: MLE 79

7.5 Sobol: MVN guaranteed: Full Bayes 79

vii

7.6 Sobol: MVN guaranteed: GCV 80

7.7 Lattice: Keister guaranteed: MLE 81

7.8 Lattice: Keister guaranteed: Full Bayes 82

7.9 Lattice: Keister guaranteed: GCV 82

7.10 Sobol: Keister guaranteed: MLE 83

7.11 Sobol: Keister guaranteed: Full Bayes 83

7.12 Sobol: Keister guaranteed: GCV 84

7.13 Lattice: Option pricing guaranteed: MLE 85

7.14 Lattice: Option pricing guaranteed: Full Bayes 86

7.15 Lattice: Option pricing guaranteed: GCV 86

7.16 Sobol: Option pricing guaranteed: MLE 87

7.17 Sobol: Option pricing guaranteed: Full Bayes 88

7.18 Sobol: Option pricing guaranteed: GCV 88

viii

ABSTRACT

Automatic cubatures approximate multidimensional integrals to user-specified

error tolerances. In many real-world integration problems, the analytical solution is

either unavailable or di�cult to compute. To overcome this, one can use numerical

algorithms that approximately estimate the value of the integral.

For high dimensional integrals, quasi-Monte Carlo (QMC) methods are very

popular. QMC methods are equal-weight quadrature rules where the quadrature

points are chosen deterministically, unlike Monte Carlo (MC) methods where the

points are chosen randomly. The families of integration lattice nodes and digital nets

are the most popular quadrature points used. These methods consider the integrand

to be a deterministic function. An alternate approach, called Bayesian cubature,

postulates the integrand to be an instance of a Gaussian stochastic process.

For high dimensional problems, it is di�cult to adaptively change the sampling

pattern. But one can automatically determine the sample size, n, given a fixed and

reasonable sampling pattern. We take this approach using a Bayesian perspective.

We assume a Gaussian process parameterized by a constant mean and a covariance

function defined by a scale parameter and a function specifying how the integrand

values at two di↵erent points in the domain are related. These parameters are es-

timated from integrand values or are given non-informative priors. This leads to a

credible interval for the integral. The sample size, n, is chosen to make the credible

interval for the Bayesian posterior error no greater than the desired error tolerance.

However, the process just outlined typically requires vector-matrix operations

with a computational cost of O(n3). Our innovation is to pair low discrepancy nodes

with matching kernels, which lowers the computational cost to O(n log n). We begin

the thesis by introducing the Bayesian approach to calculate the posterior cubature

error and define our automatic Bayesian cubature (Chapter 2). Although much of

ix

this material is known, it is used to develop the necessary foundations. Some of the

major contributions of this thesis include the following: 1) The fast Bayesian trans-

form is introduced. This generalizes the techniques that speedup Bayesian cubature

when the kernel matches low discrepancy nodes. 2) The fast Bayesian transform

approach is demonstrated using two methods: a) rank-1 lattice sequences and shift-

invariant kernels, and b) Sobol’ sequences and Walsh kernels. These two methods are

implemented as fast automatic Bayesian cubature algorithms in the Guaranteed Au-

tomatic Integration Library (GAIL). 3) We develop additional numerical implemen-

tation techniques: a) rewriting the covariance kernel to avoid cancellation error, b)

gradient descent for hyperparameter search, and c) non-integer kernel order selection.

The thesis concludes by applying our fast automatic Bayesian cubature algorithms

to three sample integration problems. We show that our algorithms are faster than

the basic Bayesian cubature and that they provide answers within the error tolerance

in most cases. A significant portion of this thesis comprising an automatic Bayesian

cubature algorithm using lattice sequences and shift-invariant kernels was published

and discussed in [1, 2].

The Bayesian cubatures that we develop are guaranteed for integrands belong-

ing to cone of functions which reside in the middle of the sample space. The concept

of a cone of functions is also explained briefly.

x

1

CHAPTER 1

INTRODUCTION

1.1 Cubature

Cubature is the problem of inferring a numerical value for a definite integral,

µ :=
R
Rd g(x) dx, where µ has no closed form analytic expression. Typically, g is acces-

sible through a black-box function routine. Cubature means numerical multivariate

integration and is a key component of many problems in scientific computing, finance

[3], statistical modeling, imaging [4], uncertainty quantification, machine learning [5],

etc.

The integral may often be expressed as

µ := µ(f) := E[f(X)] =

Z

[0,1]d
f(x) dx, (1.1)

where f : [0, 1]d ! R is the integrand, and X ⇠ U [0, 1]d. The process of transforming

the original integral into the form of (1.1) is addressed in [6, 7, 8, 9, 10]. The cubature

may be an a�ne function of integrand values:

bµ := bµ(f) := w0 +
nX

i=1

f(xi)wi, P := {xi}
n

i=1 ⇢ [0, 1]d (1.2)

where the weights, w0, and w = (wi)ni=1 2 Rn, and the nodes, P , are chosen to make

the error, |µ� bµ|, small. The integration domain [0, 1]d is convenient for the low

discrepancy node sets that we use. The nodes are assumed to be deterministic. The

integral of function f is the same over [0, 1]d or (0, 1)d or [0, 1)d. So we use [0, 1]d

or [0, 1)d depending on the application. Most often [0, 1)d is preferred especially for

extensible node-sets because it partitions easily into congruent subhypercubes. This

research focuses on multivariate numerical integrals where the computational cost is

a bottleneck.

2

1.2 Stopping Criterion

We construct a reliable stopping criterion that determines the number of in-

tegrand values required, n, to ensure that the error is no greater than a user-defined

error tolerance denoted by ", i.e.,

|µ� bµ|  ". (1.3)

Rather than relying on strong assumptions about the integrand, such as an upper

bound on its variance or total variation, we construct a stopping criterion that is based

on a credible interval arising from a Bayesian approach to the problem. We build upon

the work of Briol et al. [11], Diaconis [12], O’Hagan [13], Ritter [14], Rasmussen and

Ghahramani [15], and others. Our algorithm is an example of probabilistic numerics.

To study numerical algorithms from a statistical point of view, where uncertainty is

formally due to the presence of an unknown numerical error, is the goal of probabilistic

numerics.

Our primary contribution in this research is to demonstrate how the choice

of a family of covariance kernels that match the low discrepancy sampling nodes

facilitates fast computation of the cubature and the data-driven stopping criterion.

Our Bayesian cubature requires a computational cost of

O
�
n$(f) +Nopt[n$(C) + n log(n)]

�
, (1.4)

where $(f) is the cost of one integrand value, $(C) is the cost of a single covariance

kernel value, O(n log(n)) is the cost of a fast Bayesian transform, and Nopt is an

upper bound on the number of optimization steps required to choose the hyperpa-

rameters. If function evaluation is expensive, e.g., the output of a computationally

intensive simulation, or if $(f) = O(d) for large d, then $(f) might be similar in mag-

nitude to Nopt log(n) in practice. Typically, $(C) = O(d). Note that the O(n log(n))

contribution is d independent.

3

In contrast to our fast algorithm, the typical computational cost for Bayesian

cubature is

O
�
n$(f) +Nopt[n

2$(C) + n
3]
�
, (1.5)

which is explained in Section 2.7. Note that apart from evaluating the integrand, the

computational cost in (1.5) is much larger than that in (1.4).

1.3 Low Discrepancy Points

Low discrepancy points are characterized by how uniformly the points are

distributed, which is measured by the discrepancy. The goal is to have maximum

uniform space filling. The discrepancy is defined as below. Let M be the set of all

intervals of the form
Q

d

`=1[a`, b`) = {x 2 Rd : a`  x`  b`, 0  a`  b`  1}. Then,

the discrepancy of a point set P is,

D(P) := sup
M2M

����
|M \ P|

|P|
� �L(M)

���� ,

where |P| is the cardinality of the set P , and �L is the Lebesgue measure. The low

discrepancy points satisfy D(P) = O((log n)d/n). In this work we experiment with

two most popular low discrepancy point sets, 1) lattice points, and 2) Sobol’ points.

1.4 Prior Work

Hickernell [16] compares di↵erent approaches to cubature error analysis de-

pending on whether the rule is deterministic or random and whether the integrand is

assumed to be deterministic or random. Error analysis that assumes a deterministic

integrand lying in a Banach space leads to an error bound that is typically impracti-

cal for deciding how large n must be to satisfy (1.3). The deterministic error bound

includes a (semi-)norm of the integrand, which is often more complex to compute

than the original integral.

Hickernell and Jiménez-Rugama [17, 18] have developed stopping criteria for

4

cubature rules based on low discrepancy nodes by tracking the decay of the discrete

Fourier coe�cients of the integrand. The algorithms proposed here also rely on dis-

crete Fourier coe�cients, but in a di↵erent way. We only discuss automatic Bayesian

cubature for absolute error tolerances in this thesis. The recent work by Hickernell,

Jiménez-Rugama, and Li [19] suggests how one might accommodate more general er-

ror criteria, such as relative error tolerances which has been adapted in the MATLAB

implementation of our algorithms.

Chapter 2 explains the Bayesian approach to calculate the posterior cubature

error and defines our automatic Bayesian cubature. Although much of this material

is known, it is included for completeness. We end Chapter 2 by demonstrating why

Bayesian cubature is typically computationally expensive. Chapter 3 introduces the

concept of covariance kernels that match the nodes and expedite the computations

required by our automatic Bayesian cubature. Chapter 4 implements this concept

for shift invariant kernels and rank-1 lattice nodes. It also develops approaches to

build shift-invariant kernels of continuous valued kernel order rather than fixing the

kernel order to integer values. Chapter 5 demonstrates another implementation of

matching nodes and kernel using Sobol’ points and Walsh kernels. It also shows that

the fast Walsh Hadamard as the fast Bayesian transform for this case. Chapter 6

describes how to avoid cancellation error for kernels of product form. It also covers

some of the additional techniques used in the implementation of our Bayesian Cu-

bature algorithms. Numerical examples are provided in Chapter 7 to demonstrate

the performance and advantages of our new algorithms. We conclude with a brief

discussion and potential future work in Chapter 8.

We use the terms integrand or function interchangeably to denote the function

f being considered for the numerical integration. Also, we use the terms, nodes,

points, node-sets, designs, and data-sites interchangeably to denote the points P

5

used in the cubature.

6

CHAPTER 2

BAYESIAN CUBATURE

The Bayesian approach for numerical analysis was popularized by Diaconis

[12]. The earliest reference for such kind of approach dates back to Poincaré, where,

the theory of interpolation was discussed. Diaconis motivates the reader by inter-

preting the most well known numerical methods, 1) trapezoidal rule and 2) splines,

from the statistical point of view with whatever is known about the integrand as

prior information. For example, the trapezoidal rule can be interpreted as a Bayesian

method with prior information being modeled as a Brownian motion in the sample

space C[0, 1), the space of continuous functions.

This research is focused on the Bayesian approach for numerical integration

that is known as Bayesian cubature as introduced by O’Hagan [20]. Bayesian cu-

bature returns a probability distribution, that expresses belief about the true value

of integral, µ(f). This posterior probability distribution is based on a prior that

depends on f , which is computed via Bayes’ rule using the data contained in the

function evaluations [11]. The distribution in general captures numerical uncertainty

due to the fact that we have only used a finite number of function values to evaluate

the integral.

2.1 Bayesian Posterior Error

We assume the integrand, f , is an instance of a stochastic Gaussian process,

i.e., f ⇠ GP(m, s
2
C✓). Specifically, f is a real-valued random function with constant

mean m and covariance function s
2
C✓, where s is a positive scale factor, and C✓ :

[0, 1]d ⇥ [0, 1]d ! R is a symmetric, positive-definite function and, parameterized by

✓:

C
T = C, aT

Ca > 0, where C = (C✓(xi,xj))
n

i,j=1 ,

7

for all a 6= 0, n 2 N, distinct x1, . . . ,xn 2 [0, 1]d. (2.1)

The covariance function, C, and the Gram matrix, C, depend implicitly on ✓, but the

notation may omit this for simplicity’s sake. Procedures for estimating or integrating

out the hyperparameters m, s, and ✓ are explained later in this section.

For a Gaussian process, all vectors of linear functionals of f have a multivariate

Gaussian distribution. For any deterministic sampling scheme with distinct nodes,

{xi}
n

i=1, and defining f := (f(xi))
n

i=1 as the multivariate Gaussian vector of function

values, it follows from the definition of a Gaussian process that

f ⇠ N (m1, s2C), (2.2a)

µ ⇠ N (m, s
2
c0), (2.2b)

where c0 :=

Z

[0,1]d⇥[0,1]d
C✓(x, t) dx dt, (2.2c)

cov(f , µ) =

✓Z

[0,1]d
C(t,xi) dt

◆n

i=1

=: c. (2.2d)

Here, c0 and c depend implicitly on ✓. We assume the covariance function C is simple

enough that the integrals in these definitions can be computed analytically. We need

the following lemma to derive the posterior error of our cubature.

Lemma 2.1.1. [21, (A.6), (A.11–13)] If Y = (Y 1,Y 2)T ⇠ N (m,C), where Y 1 and

Y 2 are random vectors of arbitrary length, and

m =

0

BB@
m1

m2

1

CCA =

0

BB@
E(Y 1)

E(Y 2)

1

CCA ,

C =

0

BB@
C11 C

T

21

C21 C22

1

CCA =

0

BB@
var(Y 1) cov(Y 1,Y 2)

cov(Y 2,Y 1) var(Y 2)

1

CCA

then

Y 1|Y 2 ⇠ N
�
m1 + C

T

21C
�1
22 (Y 2 �m2), C11 � C

T

21C
�1
22 C21

�
.

8

Moreover, the inverse of the matrix C may be partitioned as

C
�1 =

0

BB@
A11 A

T

21

A21 A22

1

CCA ,

A11 = (C11 � C12C
�1
22 C21)

�1
, A21 = �C

�1
22 C21A11,

A22 = C
�1
22 + C

�1
22 C21A11C

T

21C
�1
22 .

It follows from Lemma 2.1.1 that the conditional distribution of the integral

given observed function values, f = y is also Gaussian:

µ|(f = y) ⇠ N
�
m(1� cTC�11) + cTC�1y, s

2(c0 � cTC�1c)
�
. (2.3)

The natural choice for the cubature is the posterior mean of the integral, namely,

bµ|(f = y) = m(1� 1T
C
�1c) + cTC�1y, (2.4)

which takes the form of (1.2). Under this definition, the cubature error has zero mean

and a variance depending on the choice of nodes:

(µ� bµ)|(f = y) ⇠ N
�
0, s

2(c0 � cTC�1c)
�
.

A credible interval for the integral is given by

Pf [|µ� bµ|  errCI] = 99%, (2.5a)

errCI = 2.58s
p

c0 � cTC�1c. (2.5b)

Naturally, 2.58 and 99% can be replaced by other quantiles and credible levels.

2.2 Hyperparameter Estimation

The credible interval in (2.5) suggests how our automatic Bayesian cubature

proceeds. Integrand data is accumulated until the width of the credible interval, errCI,

is no greater than the error tolerance. As n increases, one expects c0 � cTC�1c to

9

decrease for well-chosen nodes, {xi}
n

i=1. Please note that the credible interval depends

on the parameters m, s, and ✓

Note that errCI has no explicit dependence on the integrand values, even

though one would intuitively expect that a larger integrand should imply a larger

errCI. This is because the hyperparameters, m, s, and ✓, have not yet been inferred

from integrand data. After inferring the hyperparameters, errCI does reflect the size

of the integrand values. The following next few sections describe three approaches to

hyperparameter estimation.

2.3 Empirical Bayes

The first and a very straight forward approach is to estimate the parameters

via maximum likelihood estimation. The log-likelihood function of the parameters

given the function data y is:

l(s,m,✓|y) = �
1

2
s
�2(y �m1)TC�1(y �m1)

�
1

2
log(det C)�

n

2
log(s2) + constants.

Maximizing the log-likelihood first with respect to m, then with respect to s, and

finally with respect to ✓ yields

mEB =
1T

C
�1y

1T
C�11

,

s
2
EB =

1

n
(y �mEB1)

T
C
�1(y �mEB1)

=
1

n
yT


C
�1
�

C
�111T

C
�1

1T
C�11

�
y,

✓EB = argmin
✓

⇢
log

✓
yT


C
�1
�

C
�111T

C
�1

1T
C�11

�
y

◆
+

1

n
log(det(C))

�
.

The empirical Bayes estimate of ✓ balances minimizing the covariance scale factor,

s
2
EB, against minimizing det(C).

Under these estimates of the parameters, the cubature (2.4) and the credible

10

interval (2.5) simplify to

bµEB :=

✓
(1� 1T

C
�1c)1

1T
C�11

+ c

◆T

C
�1y,

err2EB :=
2.582

n
yT


C
�1
�

C
�111T

C
�1

1T
C�11

�
y(c0 � cTC�1c),

Pf [|µ� bµEB|  errEB] = 99%. (2.6)

Here c0, c, and C are assumed implicitly to be based on ✓ = ✓EB.

2.3.1 Gradient descent to find optimal shape parameter. The equation

specifying ✓EB as defined in (2.16) does not say how the parameter search can be

done. There exist empirical algorithms [22, 23] that one could use to accomplish the

same. Since the objective function is known we could compute the gradient. Using

the gradient of l(s,m,✓|y), one can apply optimization techniques such as gradient

descent to find the optimal value faster. Let us define the objective function for the

same purpose by excluding the negative sign, which modifies the problem to become

a minimization of

L(✓|y) :=
1

n
log(det C) + log

�
(y �mEB1)

T
C
�1(y �mEB1)

�
+ constants.

Taking derivative with respect to ✓`, for ` = 1, · · · , d

@

@✓`
L(✓|y) =

1

n

@

@✓`
log(det C) +

@

@✓`
log
�
(y �mEB1)

T
C
�1(y �mEB1)

�

=
1

n
trace

✓
C
�1 @C

@✓`

◆
�

�
(y �mEB1)TC�1

�T ⇣ @C
@✓`

⌘
((y �mEB1)TC�1)

(y �mEB1)TC�1(y �mEB1)

where we used some of the results from [24]. This can be used with gradient descent

as follows,

✓
(j+1)
`

= ✓
(j)
`
� ⌫`

@

@✓`
L(✓|y), j = 0, 1, · · · (2.7)

where ⌫` is the step size for the gradient descent.

2.4 Full Bayes

11

Rather than using maximum likelihood to determine m and s, one can treat

them as hyper-parameters with a non-informative, conjugate prior, namely ⇢
m,s2(⇠,�) /

1/�. Then the posterior density for the integral given the data using Bayes theorem

is,

⇢µ(z|f = y)

/

Z 1

0

Z 1

�1
⇢µ(z|f = y,m = ⇠, s

2 = �)⇢f (y|⇠,�)⇢m,s2(⇠,�) d⇠d�

by the properties of conditional probability

/

Z 1

0

Z 1

�1
⇢µ(z|f = y,m = ⇠, s

2 = �)⇢f (y|⇠,�)⇢m,s2(⇠,�) d⇠d�

by Bayes’ Theorem

/

Z 1

0

1

�(n+3)/2

Z 1

�1
exp

✓
�

1

2�

⇢
[z � ⇠(1� cTC�11)� cTC�1y]2

c0 � cTC�1c

+ (y � ⇠1)TC�1(y � ⇠1)

�◆
d⇠d�

by (2.2), (2.3) and ⇢m,s2(⇠,�) / 1/�

/

Z 1

0

1

�(n+3)/2

Z 1

�1
exp

✓
�

↵⇠
2
� 2�⇠ + �

2�(c0 � cTC�1c)

◆
d⇠d�,

where

↵ = (1� cTC�11)2 + 1T
C
�11(c0 � cTC�1c),

� = (1� cTC�11)(z � cTC�1y) + 1T
C
�1y(c0 � cTC�1c),

� = (z � cTC�1y)2 + yT
C
�1y(c0 � cTC�1c).

In the derivation above and below, factors that are independent of ⇠, �, or z can be

discarded since we only need to preserve the proportion. But, factors that depend

on ⇠, �, or z must be kept. Completing the square ↵⇠
2
� 2�⇠ + � = ↵(⇠ � �/↵)2 �

(�2
/↵) + �, allows us to evaluate the integrals with respect to ⇠ and �:

⇢µ(z|f = y)

/

Z 1

0

1

�(n+3)/2
exp

✓
�

� � �
2
/↵

2�(c0 � cTC�1c)

◆
· · ·

12

· · ·

Z 1

�1
exp

✓
�

↵(⇠ � �/↵)2

2�(c0 � cTC�1c)

◆
d⇠d�

/

Z 1

0

1

�(n+2)/2
exp

✓
�

� � �
2
/↵

2�(c0 � cTC�1c)

◆
d�

/

✓
� �

�
2

↵

◆�n/2
/
�
↵� � �

2
��n/2

.

Finally, we simplify the key term:

↵� � �
2 = 1T

C
�11(c0 � cTC�1c)(z � cTC�1y)2

� 21T
C
�1y(c0 � cTC�1c)(1� cTC�11)(z � cTC�1y)

+ (1� cTC�11)2yT
C
�1y(c0 � cTC�1c)

+ [1T
C
�11yT

C
�1y � (1T

C
�1y)2](c0 � cTC�1c)2

/ 1T
C
�11

✓
z � cTC�1y �

(1� cTC�11)1T
C
�1y

1T
C�11

◆2

�
[(1� cTC�11)1T

C
�1y]2

1T
C�11

+ (1� cTC�11)2yT
C
�1y

(c0 � cTC�1c)[1T
C
�11yT

C
�1y � (1T

C
�1y)2]

/

z �


(1� cTC�11)1

1T
C�11

+ c

�T
C
�1y

!2

+


(1� cTC�11)2

1T
C�11

+ (c0 � cTC�1c)

�
⇥ yT


C
�1
�

C
�111T

C
�1

1T
C�11

�
y

/ (z � bµfull)
2 + (n� 1)�2

full

/

✓
1 +

1

n� 1

(z � µfull)2

b�2
full

◆
,

i.e.,

↵� � �
2
/

✓
1 +

(z � bµfull)2

(n� 1)b�2
full

◆
, (2.8)

where bµfull = bµEB and

b�2
full :=

1

n� 1
yT


C
�1
�

C
�111T

C
�1

1T
C�11

�
y ⇥


(1� cTC�11)2

1T
C�11

+ (c0 � cTC�1c)

�
.

The confidence interval is:

Pf [|µ� bµEB|  errfull] = 99%, (2.9)

13

where

errfull := tn�1,0.995b�full > errEB.

Here tn�1,0.995 denotes the 99.5 percentile of a standard Student’s t-distribution with

n� 1 degrees of freedom. This means that µ|(f = y), properly centered and scaled,

has a Student’s t-distribution with n�1 degrees of freedom. The estimated integral is

the same as in the empirical Bayes case, bµfull = bµEB, but the credible interval is wider.

In other words, the stopping criterion for the full Bayes case is more conservative than

that in the empirical Bayes case, (2.6).

Because the shape parameter, ✓, enters the definition of the covariance kernel

in a non-trivial way, the only way to treat it as a hyperparameter and assign a

tractable prior would be for the prior to be discrete. We believe in practice that

choosing such a prior involves more guesswork than using the empirical Bayes estimate

of ✓ in (2.16) or the cross-validation approach described next.

2.4.1 Full Bayes with general prior. Rather than using non-informative,

conjugate prior one can use general prior, namely ⇢
m,s2(⇠,�) / g(�), which can

generalize to any general function. One would be curious if the posterior function can

be obtained from the data, i.e, the integrand values. The posterior density for the

integral given the data using Bayes theorem is,

⇢µ(z|f = y)

/

Z 1

0

Z 1

�1
⇢µ(z|f = y,m = ⇠, s

2 = �)⇢f (y|⇠,�)⇢m,s2(⇠,�) d⇠d�

by the properties of conditional probability

/

Z 1

0

Z 1

�1
⇢µ(z|f = y,m = ⇠, s

2 = �)⇢f (y|⇠,�)⇢m,s2(⇠,�) d⇠d�

by Bayes’ Theorem

/

Z 1

0

g(�)

�(n+1)/2

Z 1

�1
exp

✓
�

1

2�

⇢
[z � ⇠(1� cTC�11)� cTC�1y]2

c0 � cTC�1c

14

+ (y � ⇠1)TC�1(y � ⇠1)

�◆
d⇠d�

by (2.2), (2.3) and ⇢m,s2(⇠,�) / g(�)

/

Z 1

0

g(�)

�(n+1)/2

Z 1

�1
exp

✓
�

↵⇠
2
� 2�⇠ + �

2�(c0 � cTC�1c)

◆
d⇠d�,

where

↵ = (1� cTC�11)2 + 1T
C
�11(c0 � cTC�1c),

� = (1� cTC�11)(z � cTC�1y) + 1T
C
�1y(c0 � cTC�1c),

� = (z � cTC�1y)2 + yT
C
�1y(c0 � cTC�1c).

In the derivation above and below, factors that are independent of ⇠, �, or z can be

discarded since we only need to preserve the proportion. But, factors that depend

on ⇠, �, or z must be kept. Completing the square ↵⇠
2
� 2�⇠ + � = ↵(⇠ � �/↵)2 �

(�2
/↵) + �, allows us to evaluate the integrals with respect to ⇠ and �:

⇢µ(z|f = y)

/

Z 1

0

g(�)

�(n+1)/2
exp

✓
�

� � �
2
/↵

2�(c0 � cTC�1c)

◆
· · ·

· · ·

Z 1

�1
exp

✓
�

↵(⇠ � �/↵)2

2�(c0 � cTC�1c)

◆
d⇠d�

/

Z 1

0

g(�)

�n/2
exp

✓
�

� � �
2
/↵

2�(c0 � cTC�1c)

◆
d�.

This can be interpreted as Laplace transform of g(�),

⇢µ(z|f = y) /

Z 1

0

g(�)

�n/2
exp

✓
�

� � �
2
/↵

2�(c0 � cTC�1c)

◆
d�

/

Z 1

0

g(�)

�n/2
exp

✓
�
1

�
�

◆
d�,

where � =
� � �

2
/↵

2(c0 � cTC�1c)
/ 1 +

(z � bµfull)2

(n� 1)b�2
full

.

Let � =
1

w
, d� = �w�2dw then,

⇢µ(z|f = y) /

Z 1

0

g(�)

�n/2
exp

✓
�
1

�
�

◆
d�

15

=

Z 1

0

g(1/w)

w�n/2
exp (�w�) (�w�2)dw

=

Z 0

1
�g(1/w)w

n
2�2 exp (�w�) dw

=

Z 1

0

g(1/w)w
n�4
2 exp (�w�) dw

= LT {g(1/·)}(
n�4
2) (�) ,

where LT (·) denotes the Laplace transform and (n�42) indicates the n�4
2 th derivative

taken after the transform. Here we used frequency domain derivative property of the

Laplace transform. The above result can be further simplified by replacing � � �
2
/↵

from (2.8),

⇢µ(z|f = y) / LT {g(1/·)}(
n�4
2) (�)

/ LT {g(1/·)}(
n�4
2)

✓
1 +

(z � bµfull)2

(n� 1)b�2
full

◆
by (2.8).

Thus, ⇢µ(z|f = y) is proportional to (n�42)th derivative of the Laplace transform of

g(1/·) evaluated at �, where � / 1 + (z�bµfull)2

(n�1)b�2
full

.

We demonstrate the general prior with the non-informative conjugate that we

used above, i.e., if g(1/�) = � then,

⇢µ(z|f = y) =

Z 1

0

g(1/w)w
n
2�2 exp (�w�) dw

= (LT (g(1/t)))(
n
2�2) |t=� = (LT (t))(

n
2�2) |t=�

=
�
1/u2

�(n2�2) |u=�

/ �
�n/2 =

✓
� � �

2
/↵

2(c0 � cTC�1c)

◆�n/2

/

✓
� �

�
2

↵

◆�n/2

/
�
↵� � �

2
��n/2

,

where we used the fact that the Laplace transform of g(1/t) = t is 1/u2. After the

transform, taking (n2 � 2)th derivative gives us the result. This shows when using a

16

generic prior, it leads to a posterior of the form ⇢µ(z|f = y) / LT {g(1/·)}(
n�4
2) (�)

with full Bayes approach, i.e, the posterior ⇢µ(z|f = y) is a function of 1 + (z�bµfull)2

(n�1)b�2
full

.

Our motivation to experiment with the general prior was to show that it may

be possible to infer the prior from the integrand samples. We demonstrated it with

the non-informative prior, which shows the possibility to compute the prior from

function values. Obtaining an arbitrary prior from the integrand samples is the topic

of future work.

2.5 Generalized Cross-Validation

A third parameter optimization technique is leave-one-out cross-validation

(CV). Let eyi = E[f(xi)|f�i = y�i], where the subscript �i denotes the vector exclud-

ing the ith component. This is the conditional expectation of f(xi) given all data but

the function value at xi. The cross-validation criterion, which is to be minimized,

is sum of squares of the di↵erence between these conditional expectations and the

observed values:

CV =
nX

i=1

(yi � eyi)2. (2.10)

Let A = C
�1, let ⇣ = A(y �m1), and partition C, A, and ⇣ as

C =

0

BB@
cii CT

�i,i

C�i,i C�i,�i

1

CCA , A =

0

BB@
aii AT

�i,i

A�i,i A�i,�i

1

CCA , ⇣ =

0

BB@
⇣i

⇣�i

1

CCA ,

where the subscript i denotes the ith row or column, and the subscript �i denotes all

rows or columns except the i
th. Following this notation, Lemma 2.1.1 implies that

eyi = m+CT

�i,iC
�1
�i,�i(y�i �m1)

⇣i = aii(yi �m) +AT

�i,i(y�i �m1)

= aii[(yi �m)�CT

�i,iC
�1
�i,�i(y�i �m1)]

17

= aii(yi � eyi).

Thus, (2.10) may be re-written as

CV =
nX

i=1

✓
⇣i

aii

◆2

, where ⇣ = C
�1(y �m1).

The generalized cross-validation criterion (GCV) replaces the ith diagonal element of

A in the denominator by the average diagonal element of A [25, 26, 27]:

GCV =

P
n

i=1 ⇣
2
i�

1
n

P
n

i=1 aii

�2 =
(y �m1)TC�2(y �m1)

�
1
n
trace(C�1)

�2 .

The loss function GCV depends on m and ✓, but not on s. Minimizing the

GCV yields

mGCV =
1T

C
�2y

1T
C�21

,

✓GCV = argmin
✓

⇢
log

✓
yT


C
�2
�

C
�211T

C
�2

1T
C�21

�
y

◆
� 2 log

�
trace(C�1)

��
.

Plugging this value of m into (2.4) yields

bµGCV =

✓
(1� 1T

C
�1c)C�11

1T
C�21

+ c

◆T

C
�1y.

An estimate for s may be obtained by noting that by Lemma 2.1.1,

var[f(xi)|f�i = y�i] = s
2
a
�1
ii
.

Thus, we may estimate sGCV using an argument similar to that used in deriving the

GCV and then substituting mGCV for m:

s
2 = var[f(xi)|f�i = y�i]aii

⇡
1

n

nX

i=1

(yi � eyi)2aii =
1

n

nX

i=1

⇣
2
i

aii

⇡

1
n

P
n

i=1 ⇣
2
i

1
n

P
n

i=1 aii
=

(y �m1)TC�2(y �m1)

trace(C�1)
=: s

2
GCV.

18

The confidence interval based on generalized cross-validation corresponds to

(2.5) with the GCV estimates for m, s, and ✓:

errGCV = 2.58sGCV

p
c0 � cTC�1c, (2.11)

Pf [|µ� bµGCV|  errGCV] = 99%. (2.12)

The methods developed for hyperparameter estimation from the previous sec-

tions are summarized as a theorem below:

Theorem 2.5.1. There are at least three approaches to estimating or integrating

out the hyperparameters defining the Gaussian process from which the integrand is

drawn: empirical Bayes, full Bayes, and generalized cross-validation. Under these

three approaches, we have the following:

mEB =
1T

C
�1
✓ y

1T
C
�1
✓ 1

, mGCV =
1T

C
�2
✓ y

1T
C
�2
✓ 1

, (2.13)

s
2
EB =

1

n
yT


C
�1
✓ �

C
�1
✓ 11T

C
�1
✓

1T
C
�1
✓ 1

�
y, (2.14)

b�2
full =

1

n� 1
yT


C
�1
✓ �

C
�1
✓ 11T

C
�1
✓

1T
C
�1
✓ 1

�
y

⇥


(1� cTC�1✓ 1)2

1T
C
�1
✓ 1

+ (c0 � cTC�1✓ c)

�
, (2.15)

s
2
GCV = yT


C
�2
✓ �

C
�2
✓ 11T

C
�2
✓

1T
C
�2
✓ 1

�
y
⇥
trace(C�1✓)

⇤�1
,

✓EB = argmin
✓

⇢
log

✓
yT


C
�1
✓ �

C
�1
✓ 11T

C
�1
✓

1T
C
�1
✓ 1

�
y

◆
+

1

n
log(det(C✓))

�
, (2.16)

✓GCV = argmin
✓

⇢
log

✓
yT


C
�2
✓ �

C
�2
✓ 11T

C
�2
✓

1T
C
�2
✓ 1

�
y

◆
� log

�
trace(C�2✓)

��
, (2.17)

bµEB = bµfull =

✓
(1� 1T

C
�1
✓ c)1

1T
C
�1
✓ 1

+ c

◆T

C
�1
✓ y, (2.18)

bµGCV =

✓
(1� 1T

C
�1
✓ c)C�1✓ 1

1T
C
�2
✓ 1

+ c

◆T

C
�1
✓ y. (2.19)

19

The credible intervals widths, errCI, are given by

errx = 2.58sx

q
c0 � cTC�1✓ c, x 2 {EB,GCV}, (2.20)

errfull = tn�1,0.995b�full > errEB. (2.21)

The resulting credible intervals are then

Pf [|µ� bµx|  errx] = 99%, x 2 {EB, full,GCV}. (2.22)

Here tn�1,0.995 denotes the 99.5 percentile of a standard Student’s t-distribution with

n � 1 degrees of freedom. In the formulas above, ✓ is assumed to take on the values

✓EB or ✓GCV as appropriate.

In the theorem above, note that if the original covariance kernel, C, is replaced

by bC for some positive constant b, the cubature, bµ, the estimates of ✓, and the

credible interval half-widths, errx for x 2 {EB, full,GCV}, all remain unchanged.

The estimates of s2 are multiplied by b
�1, as would be expected.

2.6 Cone of Functions and the Credible interval

In this research we assume that the integrand belongs to a cone of well-behaved

functions, C , to make the computations bounded in terms of function data. The

concept of cone in general for cubature error analysis can be stated using the error

bound definition. Suppose that

|µ(f)� bµn(f)|  errCI(f(x1), · · · , f(xn)) (2.23)

for some f , which it is 99% of the time under our hypothesis. Also note that our

errCI (2.20) (2.21) are positively homogeneous functions, meaning,

errCI(ay1, · · · , ayn) = |a| errCI(y1, · · · , yn).

20

One can verify the homogeneity of (2.20) and (2.21) easily. Thus if f satisfies (2.23),

then

|µ(af)� bµn(af)| = |a| |µ(f)� bµn(f)|

 |a| errCI(f(x1), · · · , f(xn))

= errCI(af(x1), · · · , af(xn))

for all real a. Thus the set of all f satisfying (2.23) is a cone, C . Cones of functions

satisfy the property that if f 2 C then af 2 C .

In the context of Bayesian cubature, one can explain the cone concept begin-

ning with the definition of credible interval (2.5). Let f ⇠ GP , be an instance of a

Gaussian stochastic process:

Pf [|µ(f)� bµn(f)|  errCI(f)] � 99%.

This can be interpreted as |µ(f)� bµn(f)|  errCI(f) with 99% confidence. If f is in

the 99% middle of the sample space with f(xi) = yi then af is also in the middle

99% of the sample space with af(xi) = ayi.

We demonstrate the credible interval using the following example. For this

purpose, choose a smooth and periodic integrand fsmooth(x) = exp(
P

d

`=1 cos(2⇡x`))

and another integrand fpeaky(x) = fsmooth + apeakyfnoise where apeaky 2 R. Here

fnoise(x) = (1 � exp(2⇡
p
�1xT⇣)), ⇣ 2 Rd is some d-dimensional vector belonging

to the dual space of the lattice nodes for some {xi}
n

i=1. The ⇣ in the dual space of

lattice nodes implies that fnoise(xi) = 0 at the sampling nodes {xi}
n

i=1. The fnice is

obtained by kernel interpolation of the n samples of fsmooth at {xi}
n

i=1. We chose the

Matérn kernel (2.24) for the interpolation. Please note that fpeaky(xi) = fnice(xi) =

fsmooth(xi) for i = 1, · · · , n.

In Figure 2.1, the sampled function values are shown as dots. One can imagine

21

Figure 2.1. Example integrands 1) fnice, a smooth function, 2) fpeaky, a peaky function.
The function values fpeaky(xi) = fnice(xi) = fsmooth(xi) for i = 1, · · · , n. This plot
can be conditionally reproduced using DemoCone.m

these samples were obtained from fnice, a moderately smoother function or from fpeaky,

a highly oscillating function. In this example, we used apeaky = 2.

When using n = 16 rank-1 lattice points, and r = 1 shift-invariant kernel, we

get the posterior distribution of µ as shown in Figure 2.2. The true integral value is

shown as µsmooth which is at the center of the plot. The integral of the peaky function

fpeaky lies outside of the 99% of the credible interval given by (2.6), whereas the µnice

falls within.

Our Bayesian cubature algorithms compute the approximate integral using

only the samples of the integrand. Estimated integral value of our algorithm closely

matches the integral of a smooth function that falls within the middle of the confidence

interval. If the true integrand were to resemble the smooth approximate function then

the estimated integral will be accurate.

22

Figure 2.2. Probability distributions showing the relative integral position of a smooth
and a peaky function. fnice lies within the center 99% of the confidence interval,
and fpeaky lies on the outside of 99% of the confidence interval. This plot can be
conditionally reproduced using DemoCone.m

2.7 The Automatic Bayesian Cubature Algorithm

The previous section presents three credible intervals, (2.6), (2.9), and (2.12),

for the µ, the desired integral. Each credible interval is based on di↵erent assumptions

about the hyperparameters m, s, and ✓. We stress that one must estimate these

hyperparameters or assume a prior distribution on them because the credible intervals

are used as stopping criteria for our cubature rule. Since a credible interval makes a

statement about a typical function—not an outlier—one must try to ensure that the

integrand is a typical draw from the assumed Gaussian process.

Our Bayesian cubature algorithm increases the sample size until the width

of the credible interval is small enough. This is accomplished through successively

doubling the sample size. The steps are detailed in Algorithm 1.

We recognize that multiple applications of our credible intervals in one run

of the algorithm is not strictly justified. However, if our integrand comes from the

23

middle of the sample space and not the extremes, we expect our automatic Bayesian

cubature to approximate the integral within the desired error tolerance with high

probability. The example in the next section and the examples in Chapter 7 support

that expectation. We also believe that an important factor contributing to the oc-

casional failure of our algorithm is unreasonable parameterizations of the stochastic

process from which the integrand is hypothesized to be drawn. Overcoming this latter

challenge is a topic for future research.

Algorithm 1 Automatic Bayesian Cubature
Require: a generator for the sequence x1,x2, . . .; a black-box function, f ; an ab-

solute error tolerance, " > 0; the positive initial sample size, n0; the maximum

sample size nmax

1: n n0, n
0
 0, err 1

2: while err > " and n  nmax do

3: Generate {xi}
n

i=n0+1 and sample {f(xi)}ni=n0+1

4: Compute ✓ by (2.16) or (2.17)

5: Compute err according to (2.20), (2.21), or (2.11)

6: n
0
 n, n 2n0

7: end while

8: Sample size to compute bµ, n n
0

9: Compute bµ, the approximate integral, according to (2.18) or (2.19)

10: return bµ, n and err

As described above, the computational cost of Algorithm 1 is the sum of the

following:

• O
�
n$(f)

�
for the integrand data, where $(f) is the computational cost of a

single f(x); $(f) may be large if it is the result of an expensive simulation; $(f)

is typically proportional to d;

24

• O
�
Noptn

2$(C✓)
�
for the evaluation of the Gram matrix C✓, Nopt is the number

of optimization steps required, and $(C✓) is the computational cost of a single

C✓(t,x); $(C✓) is typically proportional to d; and

• O
�
Noptn

3
�
for the matrix inversions and determinant calculations; this cost is

independent of d.

As we see in the example in the next section, the cost increases quickly as the

n required to meet the error tolerance increases. This motivates the fast Bayesian

cubature algorithm presented in Chapter 3.

2.8 Example with the Matérn Kernel

To demonstrate automatic Bayesian cubature consider a Matérn covariance

kernel:

C✓(x, t) =
dY

`=1

exp(�✓|x` � t`|)(1 + ✓|x` � t`|). (2.24)

Also, consider the integration problem of evaluating multivariate Gaussian probabili-

ties :

µ =

Z

(a,b)

exp
�
�

1
2t

T
⌃
�1t
�

p
(2⇡)d det(⌃)

dt, (2.25)

where (a, b) is a finite, semi-infinite or infinite box in Rd. This integral does not have

an analytic expression for general ⌃, so cubatures are required.

Genz [28] introduced a variable transformation to transform (2.25) into an

integral on the unit cube. Not only does this variable transformation accommodate

domains that are (semi-)infinite, it also tends to smooth out the integrand better,

which expedites the cubature. Let ⌃ = LL
T be the Cholesky decomposition where

L = (ljk)dj,k=1 is a lower triangular matrix. Iteratively define

↵1 = �(a1), �1 = �(b1),

25

Figure 2.3. The d = 3 multivariate normal probability transformed to an integral of
fGenz with d = 2. This plot can be reproduced using IntegrandPlots.m in GAIL.

↵`(x1, ..., x`�1) = �

1

l``

a` �

`�1X

k=1

l`k�
�1(↵k + xk(�k � ↵k))

!!
, ` = 2, ..., d,

�`(x1, ..., x`�1) = �

1

l``

b` �

`�1X

k=1

l`k�
�1(↵k + xk(�k � ↵k))

!!
, ` = 2, ..., d,

fGenz(x) =
dY

`=1

[�`(x)� ↵`(x)]. (2.26)

where � is the cumulative standard normal distribution function. Then,

µ =

Z

[0,1]d�1

fGenz(x) dx.

This approach transforms a d
0 dimensional integral into a d = d

0
� 1 dimensional

integral.

We use the following parameter values in the simulation:

d = 3, a =

0

BBBB@

�6

�2

�2

1

CCCCA
, b =

0

BBBB@

5

2

1

1

CCCCA
, L =

0

BBBB@

4 1 1

0 1 0.5

0 0 0.25

1

CCCCA
.

26

Figure 2.4. Multivariate Gaussian probability: Guaranteed integration using Matérn
kernel in d = 2 using empirical Bayes stopping criterion within error tolerance ".
This figure can be conditionally reproduced using matern guaranteed plots.m in
GAIL.

The node sets are randomly scrambled Sobol’ points [29, 30]. The results are

for 400 randomly chosen " in the interval [10�5, 10�2] as shown in Figure 2.4. In

each run, the nodes are randomly scrambled. We observe the algorithm meets the

error criterion 95% of the time even though we used 99% credible intervals. One

possible explanation is that the matrix inversions in the algorithm are ill-conditioned

leading to numerical inaccuracies. Another possible explanation is that this Matérn

covariance kernel is not a good match for the integrand.

On our test computer, it took more than an hour to compute bµn with n = 214.

As shown in Figure 2.5, the computation time increases rapidly with n. The empirical

Bayes estimation of ✓, which requires repeated evaluation of the objective function,

is the most time consuming of all. This is due to fact that the objective function

needs to be computed multiple times in every iteration to find its minimum. It takes

tens of seconds to compute bµn with " = 10�5. In contrast, this example in Chapter 7

take less than a hundredth of a second to compute bµn with the same " using our new

27

Figure 2.5. Multivariate Gaussian probability estimated using Matérn kernel in d =
2 using empirical Bayes stopping criterion. Computation time rapidly increases
with increase of n. This figure can be conditionally reproduced using matern -

guaranteed plots.m in GAIL.

algorithm. Not only is the Bayesian cubature with the Matérn kernel slow, but also

C✓ becomes highly ill-conditioned as n increases. So, Algorithm 1 in its current form

is impractical when n must be large.

28

CHAPTER 3

FAST AUTOMATIC BAYESIAN CUBATURE

The generic automatic Bayesian cubature algorithm described in the previous

section requires O
�
n$(f) +Nopt[n2$(C✓) + n

3]
�
operations to compute the cubature.

Now we explain how to speed up the calculations. A key is to choose covariance

kernels that match the nodes, {xi}
n

i=1, so that the vector-matrix operations required

by Bayesian cubature can be accomplished using fast Bayesian transforms at a com-

putational cost of O
�
n$(f) + Nopt[n$(C✓) + n log(n)]

�
. We develop the concept of

fast Bayesian transform and show how matching kernels and nodes with three key

assumptions are used.

3.1 Fast Bayesian Transform Kernel

We make some assumptions about the relationship between the covariance

kernel and the nodes. In Chapter 4 these assumptions are shown to hold for rank-1

lattices and shift-invariant kernels and again in Chapter 5 to hold for Sobol’ nodes

and Walsh kernels. Although the integrands and covariance kernels are real, it is

convenient to allow related vectors and matrices to be complex. A relevant example

is the fast Fourier transform (FFT) of a real-valued vector, which is a complex-valued

vector.

We introduce some further notation

C = C✓ =
⇣
C✓(xi,xj)

⌘n
i,j=1

= (C1, ...,Cn)

=
1

n
V⇤V

H
, V

H = nV
�1
, (3.1)

V = (v1, ...,vn)
T = (V 1, ...,V n)

C
p =

1

n
V⇤

p
V
H
, 8p 2 Z,

where V
H is the Hermitian of V, C1, · · · ,Cn are columns of C, V 1, · · · ,V n are

29

columns of V, and v1, · · · ,vn are rows of V. The columns of matrix V are eigenvectors

of C, and ⇤ is a diagonal matrix of eigenvalues of C. In this and later sections, we drop

the ✓ dependence of various quantities for simplicity of notation. The normalization

of V assumed in (3.1) conveniently allows the first eigenvector, V 1, to be the vector

of ones in (3.2b) below. For any n⇥ 1 vector b, define the notation eb := V
Hb.

We make three assumptions that allow the fast computation:

V may be identified analytically, (3.2a)

v1 = V 1 = 1, (3.2b)

Computing V
Hb requires only O(n log n) operations 8b. (3.2c)

We call the transformation b 7! V
Hb a fast Bayesian transform and C✓ a fast Bayesian

transform kernel for the matching nodes {xi}
1
i=1.

Under assumptions (3.2) the eigenvalues may be identified as the fast Bayesian

transform of the first column of C:

� =

0

BB@

�1

...

�n

1

CCA = ⇤1 = ⇤v⇤1 =

✓
1

n
V
H
V

◆

| {z }
I

⇤v⇤1

= V
H

✓
1

n
V⇤v⇤1

◆
= V

HC1 = eC1, (3.3)

where I is the identity matrix and v⇤1 is the complex conjugate of the first row of V.

Also note that the fast Bayesian transform of 1 has a simple form

e1 = V
H1 = V

HV 1 =

0

BBBBB@

n

0
...

0

1

CCCCCA
.

Many of the terms that arise in the calculations in Algorithm 1 take the form

aT
C
pb for real a and b and integer p. These can be calculated via the transforms

30

ea = V
Ha and eb = V

Hb as

aT
C
pb =

1

n
aT

V⇤
p
V
Hb =

1

n
eaH

⇤
peb =

1

n

nX

i=1

�
p

i
ea⇤
i
ebi,

Note that ea⇤ appears on the right side of this equation because aT
V = (VHa)⇤ = ea⇤.

In particular,

1T
C
�p1 =

n

�
p

1

, 1T
C
�py =

ey1
�
p

1

,

yT
C
�py =

1

n

nX

i=1

|eyi|2

�
p

i

, cTC�11 =
ec1
�1

,

cTC�1y =
1

n

nX

i=1

ec⇤
i
eyi
�i

, cTC�1c =
1

n

nX

i=1

|eci|2

�i

,

where ey = V
Hy and ec = V

Hc. For any real b, with eb = V
Hb, it follows that eb1 is real

since the first row of VH is 1.

The covariance kernel used in practice also may satisfy an additional assump-

tion: Z

[0,1]d
C(t,x) dt = 1 8x 2 [0, 1]d, (3.4)

which implies that c0✓ = 1 and c✓ = 1. Under (3.4), the expressions above may be

further simplified:

cTC�11 = cTC�1c =
n

�1
.

We use the fast Bayesian transform to speedup the computation of the hyperparame-

ter ✓, the credible interval width errCI, and the integral estimate bµ that we presented

in Theorem 2.5.1 as shown next. The assumptions and results in this chapter lead to

the following theorem.

Theorem 3.1.1. Under assumptions (3.2), the parameters and credible interval half-

widths in Theorem 2.5.1 may be expressed in terms of the fast Bayesian transforms

of the integrand data, the first column of the Gram matrix, c0, and c as follows:

mEB = mfull = mGCV =
ey1
n

=
1

n

nX

i=1

yi,

31

s
2
EB =

1

n2

nX

i=2

|eyi|2

�i

,

b�2
full =

1

n(n� 1)

nX

i=2

|eyi|2

�i

"
�1

n

✓
1�

ec1
�1

◆2

+

c0 �

1

n

nX

i=1

|eci|2

�i

!#
,

s
2
GCV =

1

n

nX

i=2

|eyi|2

�2
i

"
nX

i=1

1

�i

#�1
,

✓EB = argmin
✓

"
log

nX

i=2

|eyi|2

�i

!
+

1

n

nX

i=1

log(�i)

#
, (3.5a)

✓GCV = argmin
✓

"
log

nX

i=2

|eyi|2

�2
i

!
� 2 log

nX

i=1

1

�i

!#
, (3.5b)

bµEB = bµfull = bµGCV =
ey1
n

+
1

n

nX

i=2

ec⇤
i
eyi
�i

,

errEB =
2.58

n

vuut
nX

i=2

|eyi|2

�i

c0 �

1

n

nX

i=1

|eci|2

�i

!
,

errfull = tn�1,0.995b�full,

errGCV =
2.58

n

8
<

:

nX

i=2

|eyi|2

�2
i

"
1

n

nX

i=1

1

�i

#�1
c0 �

1

n

nX

i=1

|eci|2

�i

!9=

;

1/2

.

Under the further assumption (3.4), it follows that

bµEB = bµfull = bµGCV =
ey1
n

=
1

n

nX

i=1

yi, (3.6)

and so bµ is simply the sample mean. Also, under assumption (3.4), the credible

interval half-widths simplify to

errEB =
2.58

n

vuut
nX

i=2

|eyi|2

�i

✓
1�

n

�1

◆
, (3.7a)

errfull = tn�1,0.995

vuut 1

n(n� 1)

nX

i=2

|eyi|2

�i

✓
�1

n
� 1

◆
, (3.7b)

32

errGCV =
2.58

n

8
<

:

nX

i=2

|eyi|2

�2
i

"
1

n

nX

i=1

1

�i

#�1✓
1�

n

�1

◆9=

;

1/2

. (3.7c)

In the formulas for the credible interval half-widths and � depends on ✓, and ✓ is

assumed to take on the values ✓EB or ✓GCV as appropriate.

The remaining part of the chapter proves this theorem. We apply the fast

Bayesian transform to speedup empirical Bayes, full Bayes and Generalized cross

validation stopping criteria.

3.2 Empirical Bayes

Under assumptions (3.2), the empirical Bayes parameters in (2.13), (2.14),

(2.16) (2.18), and (2.20) can be expressed in terms of the fast Bayesian transforms of

the function data, the first column of the Gram matrix, and c as follows:

mEB =
ey1
n

=
1

n

nX

i=1

yi,

s
2
EB =

1

n2

nX

i=2

|eyi|2

�i

,

✓EB = argmin
✓

"
log

nX

i=2

|eyi|2

�i

!
+

1

n

nX

i=1

log(�i)

#
,

bµEB =
ey1
n

+
1

n

nX

i=2

ec⇤
i
eyi
�i

,

errEB =
2.58

n

vuut
nX

i=2

|eyi|2

�i

c0 �

1

n

nX

i=1

|eci|2

�i

!
,

The quantities on the right hand sides can be obtained in O(n log n) operations by

fast Bayesian transforms.

Under the further assumption (3.4) it follows that

bµEB =
ey1
n

=
1

n

nX

i=1

yi,

33

errEB =
2.58

n

vuut
nX

i=2

|eyi|2

�i

✓
1�

n

�1

◆
.

Thus, in this case bµ is simply the sample mean.

3.2.1 Gradient of the objective function using fast Bayesian transform.

We refer back to Section 2.3.1, where we discuss about using gradient descent for

hyperparameter search but the computational cost is of O(Noptn
3). Here we develop

a techniques to speed up the computation. If V does not depend on ✓ then one can

fast compute the derivative of Gram matrix C. Starting from the definition (3.1) and

taking derivative w.r.t. ✓`,

@C

@✓`
=

1

n
V
@⇤

@✓`
V
H =

1

n
V⇤̄(`)V

H
,

where ⇤̄(`) = diag(�̄(`)), and

�̄(`) =
@�

@✓`
=

✓
@�i

@✓`

◆n

i=1

=

✓
@

@✓`
V
HC1

◆
= V

H

✓
@

@✓`
C✓(x1,xi)

◆n

i=1

, (3.8)

where we used the fast Bayesian transform property (3.3). We use the notation

�̄(`) = V
HC̄1(`) to denote the derivative of the eigenvalue �(`), where C̄1(`) denotes

the first row of the gram matrix after taking the derivative in the `th variable, i.e.

C̄1(`) =

✓
@

@✓`
C✓(x1,xi)

◆n

i=1

.

The goal is to compute the derivative of the objective function faster. First, let’s

rewrite the objective function from (3.5a) in two parts,

LEB(✓|y) =
1

n
log(det C)

| {z }
L|C|

+ log
�
(y �mEB1)

T
C
�1(y �mEB1)

�
| {z }

Ly

,

=: L|C| + Ly.

Now, take the derivative:

@

@✓`
LEB(✓|y) =

@

@✓`
L|C| +

@

@✓`
Ly .

34

Now we tackle the individual terms,

@

@✓`
L|C| =

@

@✓`

1

n
log(det C)

=
1

n
trace

✓
C
�1 @C

@✓`

◆
=

1

n
trace

✓
V⇤

�1
V
H
1

n
V⇤(`)V

H

◆

=
1

n
trace

�
V⇤

�1
⇤(`)V

H
�
, where we used V

H
V = n,

=
1

n
trace

V diag

�i(`)

�i

!n

i=1

V
H

!
=

1

n

nX

i=1

�i(`)

�i

,

where we used the fact from [31],

log(det C) = trace(log(C)).

Part of the Ly was already simplified using the fast Bayesian transform,

(y �mEB1)
T
C
�1(y �mEB1) =

1

n

nX

i=2

|eyi|2

�i

.

Using the above result,

@

@✓`
Ly =

@

@✓`

log

1

n

nX

i=2

|eyi|2

�i

!

=

1

n

nX

i=2

|eyi|2

�i

!�1
@

@✓`

1

n

nX

i=2

|eyi|2

�i

!

=

1

n

nX

i=2

|eyi|2

�i

!�1
1

n

nX

i=2

|eyi|2

�2
i

✓
�
@�i

@✓`

◆

= �

nX

i=2

|eyi|2

�i

!�1
nX

i=2

|eyi|2
�̄i(`)

�2
i

!
.

Finally, using the above results,

@

@✓`
LEB(✓|y) =

1

n

nX

i=1

�̄i(`)

�i

�

nX

i=2

|ỹ
i
|
2
�̄i(`)

�2
i

!
nX

i=2

|ỹ
i
|
2

�`

!�1
, (3.9)

where �̄i(`) is the derivative of the ith eigenvalue of C in the `th variable. Please

recollect the gradient descent proposed in (2.7) can be computed faster in O(n log n)

using the result (3.9). A technique to compute this faster is discussed in Section 3.5.

35

3.3 Full Bayes

For the full Bayes approach the cubature is the same as for empirical Bayes.

We also defer to empirical Bayes to estimate the parameter ✓. The width of the

confidence interval is errfull := tn�1,0.995b�full, where b�2
full can also be computed swiftly

under assumptions (3.2):

b�2
full =

1

n(n� 1)

nX

i=2

|eyi|2

�i

"
�1

n

✓
1�

ec1
�1

◆2

+

c0 �

1

n

nX

i=1

|eci|2

�i

!#
,

Under assumption (3.4) further simplification can be made:

b�2
full =

1

n(n� 1)

nX

i=2

|eyi|2

�i

✓
�1

n
� 1

◆
,

It follows that

errfull = tn�1,0.995

vuut 1

n(n� 1)

nX

i=2

|eyi|2

�i

✓
�1

n
� 1

◆
.

3.4 Generalized Cross-Validation

GCV yields a di↵erent cubature, which nevertheless can also be computed

quickly using the fast Bayesian transform. Under assumptions (3.2):

mGCV = mEB =
ey1
n

=
1

n

nX

i=1

yi,

s
2
GCV :=

1

n

nX

i=2

|eyi|2

�2
i

"
nX

i=1

1

�i

#�1
,

✓GCV = argmin
✓

"
log

nX

i=2

|eyi|2

�2
i

!
� 2 log

nX

i=1

1

�i

!#
, (3.10)

bµGCV = bµEB =
ey1
n

+
1

n

nX

i=2

ec⇤
i
eyi
�i

,

errGCV =
2.58

n

8
<

:

nX

i=2

|eyi|2

�2
i

"
1

n

nX

i=1

1

�i

#�1
⇥

c0 �

1

n

nX

i=1

|eci|2

�i

!9=

;

1/2

.

Moreover, under further assumption (3.4) it follows that

bµGCV = bµEB = bµfull =
ey1
n

=
1

n

nX

i=1

yi,

36

errGCV =
2.58

n

8
<

:

nX

i=2

|eyi|2

�2
i

"
1

n

nX

i=1

1

�i

#�1✓
1�

n

�1

◆9=

;

1/2

.

In this case too, bµ is simply the sample mean.

3.4.1 Gradient of the objective function. Using the results obtained from

the Section 3.2.1 with empirical Bayes, one can reduce the computational cost of the

derivative of the objective function in (3.10),

LGCV(✓|y) = log

nX

i=2

|eyi|2

�2
i

!
� 2 log

nX

i=1

1

�i

!
.

Using the similar techniques from Section 3.2.1, the derivative of the objective func-

tion w.r.t ✓`:

@

@✓`
LGCV(✓|y)

=

nX

i=2

|eyi|2

�2
i

!�1
@

@✓`

nX

i=2

|eyi|2

�2
i

!
� 2

nX

i=1

1

�i

!�1
@

@✓`

nX

i=1

1

�i

!

=

nX

i=2

|eyi|2

�2
i

!�1
nX

i=2

|eyi|2

�3
i

(�2)
@�i

@✓`

!

� 2

nX

i=1

1

�i

!�1
nX

i=1

1

�2
i

(�1)
@�i

@✓`

!

= �2

nX

i=2

|eyi|2

�2
i

!�1
nX

i=2

|eyi|2 �̄i(`)

�3
i

!
+ 2

nX

i=1

1

�i

!�1
nX

i=1

�̄i(`)

�2
i

!
.

Thus,

@

@✓`
LGCV(✓|y) = �2

nX

i=2

|eyi|2

�2
i

!�1
nX

i=2

|eyi|2 �̄i(`)

�3
i

!

+ 2

nX

i=1

1

�i

!�1
nX

i=1

�̄i(`)

�2
i

!
, (3.11)

where �̄i(`) is the derivative of the ith eigenvalue of the Gram matrix, C, in the `th

variable. We discuss a technique to compute �̄i(`) in the next section below.

3.5 Product Kernels

37

In this research, we use product kernels in the demonstrations and numerical

implementations. They got nice properties which are helpful to obtain analytical

results easily. Product kernels in d dimensions are of the form,

C✓(t,x) =
dY

`=1


1� ⌘` C(x`, t`)

�
(3.12)

where ⌘` is called shape parameter in the `th variable for ` = 1, · · · , d, and C is chosen

such that to ensure C✓ is symmetric and positive definite. Our goal is to compute

�̄i(`) for which the kernel derivative is necessary. The derivative of the product kernels

can be obtained easily. Please note that ✓ denotes all the hyper parameters of the

kernel C where ⌘ is one of them and called the shape parameter.

3.5.1 Derivative of the product kernel when ⌘1 = · · · = ⌘d = ⌘. It was

suggested to use gradient descent to find optimal shape parameter in Section 2.3.1.

In this section, we compute the gradient for product kernels. When the ⌘1 = · · · =

⌘d = ⌘, the derivative of a product kernel w.r.t. ⌘ can be obtained as below,

@

@⌘
C✓(t,x) =

@

@⌘

dY

j=1


1� ⌘C(xj, tj)

�

=
dX

`=1

dY

j=1,j 6=`


1� ⌘C(xj, tj)

�✓
�C(x`, t`)

◆

=
dY

j=1


1� ⌘C(xj, tj)

� dX

`=1

✓
�C(x`, t`)

◆

1� ⌘C(x`, t`)

= C✓(t,x)
1

⌘

dX

`=1

✓
1� ⌘C(x`, t`)� 1

◆

1� ⌘C(x`, t`)

= C✓(t,x)
1

⌘

dX

`=1

✓
1�

1

1� ⌘C(x`, t`)

◆

= (d/⌘)

dY

j=1


1� ⌘C(xj, tj)

�!

| {z }
C✓(t,x)

✓
1�

1

d

dX

`=1

1

1� ⌘C(x`, t`)

◆
.

38

Thus,

@

@⌘
C✓(t,x) = (d/⌘)C✓(t,x)

✓
1�

1

d

dX

`=1

1

1� ⌘C(x`, t`)

◆
.

3.5.1.1 When ⌘` is di↵erent for each ` = 1, · · · , d. In this case, we will have

a vector of length d shape parameters. Derivative of the kernel, C✓(t,x) (3.12), with

respect to ⌘` is,

@

@⌘`
C✓(t,x) =

@

@⌘`

dY

j=1


1� ⌘jC(xj, tj)

�
, where ` = 1, · · · , d

=
dY

j=1,j 6=`


1� ⌘jC(xj, tj)

�✓
�C(x`, t`)

◆

=
dY

j=1


1� ⌘jC(xj, tj)

�
✓
�C(x`, t`)

◆

1� ⌘`C(x`, t`)

= C✓(t,x)
1

⌘`

✓
1� ⌘`C(x`, t`)� 1

◆

1� ⌘`C(x`, t`)

= C✓(t,x)
1

⌘`

✓
1�

1

1� ⌘`C(x`, t`)

◆

=
1

⌘`

dY

j=1


1� ⌘C(xj, tj)

�!

| {z }
C✓(t,x)

✓
1�

1

1� ⌘`C(x`, t`)

◆
.

Thus,

@

@⌘`
C✓(t,x) =

1

⌘`
C✓(t,x)

✓
1�

1

1� ⌘`C(x`, t`)

◆
.

Please note that the above derivatives do not depend on C(x, t) and most importantly

these computations are applicable to any product kernel of the form (3.12). The �̄i(`)

can be computed now using (3.8) with the computed kernel derivative, @

@⌘`
C✓.

3.5.2 Shape parameter search using steepest descent. Using the obtained

derivative of the eigenvalues, �̄i(`), one can easily compute the gradient of the objective

39

function (3.9) or (3.11). This can be further used to implement the steepest descent

search as introduced in Section 2.3.1

⌘
(j+1)
`

= ⌘
(j)
`
� ⌫

@

@⌘`
L(✓|y), j = 0, 1, · · · , ` = 1, · · · , d

where ⌫ is the step size for the gradient descent, j is the iteration index, and @

@⌘`
L(✓|y)

is either (3.9) or (3.11) depending on the choice of the hyperparameter search method.

The parameter ⌘` is usually searched in the whole R by using the simple domain

transformation as explained in Section 6.2.

40

CHAPTER 4

INTEGRATION LATTICES AND
SHIFT INVARIANT KERNELS

The preceding sections lay out an automatic Bayesian cubature algorithm

whose computational cost is drastically reduced. However, this algorithm relies on

covariance kernel functions, C✓ and node sets, {xi}
n

i=1 that satisfy assumptions (3.2).

In this chapter, we demonstrate such a covariance kernel and matching design. When

periodic shift-invariant kernels are combined with rank-1 lattice nodes, the resulting

Gram matrix is symmetric and circulant. This combination also satisfies assumption

(3.4). To conveniently facilitate the fast Bayesian transform, it is assumed in this

section and the next that n is power of 2.

4.1 Extensible Integration Lattice Node Sets

We choose set of nodes defined by a shifted extensible integration lattice node

sequence, which takes the form

xi = h�(i� 1) +� mod 1, i 2 N. (4.1)

Here, h is a d-dimensional generating vector of positive integers, � is some point in

[0, 1)d, often chosen at random, and {�(i)}n
i=0 is the van der Corput sequence, defined

by reflecting the binary digits of the integer about the decimal point, i.e.,

i 0 1 2 3 4 5 6 7 · · ·

i 02 12 102 112 1002 1012 1102 1112 · · ·

�(i) 2.0 2.1 2.01 2.11 2.001 2.101 2.011 2.111 · · ·

�(i) 0 0.5 0.25 0.75 0.125 0.625 0.375 0.875 · · ·

(4.2)

Note that

n� : {0, . . . , n� 1}! {0, . . . , n� 1} is one-to-one, (4.3)

41

assuming n is a power of 2.

These node sets are called shifted rank-1 lattice node sets. A random shift �

is added to h�(i� 1) to get {xi}
n

i=1 which is to avoid zero at the origin in the node

sets. However, this shift does not disturb the discrepancy properties of {xi}
n

i=1. The

rank-1 lattices with the modulo one addition have a very desirable group structure

that helps to satisfy fast Bayesian transform kernel assumptions.

An example of 64 nodes is given in Figure 4.1. The even coverage of the

unit cube is ensured by a well chosen generating vector h. The choice of generating

vector is typically done o✏ine by computer search. Please refer to [29, 32] for more

on extensible integration lattices. Lattice rules are designed to integrate the class of

certain sinusoidal functions without error.

Figure 4.1. Example of a shifted integration lattice node set in d = 2. This plot can
be reproduced using PlotPoints.m.

4.2 Shift Invariant Kernels

42

The covariance functions C✓ that match integration lattice node sets have the

form

C✓(t,x) = K✓(t� x mod 1). (4.4)

This is called a shift invariant kernel because shifting both arguments of the covari-

ance function by the same amount leaves the value unchanged. By a proper scaling

of the function K✓, the kernel satisfies the assumption (3.4). Here, K✓ is chosen such

that to ensure C✓ is symmetric and positive definite, as assumed in (2.1).

A family of shift invariant kernels is constructed via even degree Bernoulli

polynomials. Symmetric, periodic, positive definite kernels of this form appear in [29]

and [33]:

C✓(x, t) :=
X

k2Zd

↵k,✓e
2⇡
p
�1kTx

e
�2⇡

p
�1kT t

, ↵�k,✓ = ↵k,✓

where d is the number of dimensions and ↵k is a positive scalar. The Gram matrix

formed by this kernel is symmetric and positive definite. The shape parameter ⌘`

changes the kernel’s shape, so that the integrand is in the middle of the function

space spanned by the kernel. If the coe�cients are chosen as

↵k,✓ :=
dY

`=1,k` 6=0

⌘`

|k`|
r
, with ↵0,✓ = 1, r 2 N,

then there exists a simpler closed form expression.

K✓(x) =
dY

`=1


1� (�1)r⌘`B2r(x`)

�
,

8x 2 [0, 1]d,✓ := (r,⌘), r 2 N, ⌘` > 0. (4.5)

Larger r implies a greater degree of smoothness of the kernel. Larger ⌘` implies greater

fluctuations of the output with respect to the input x`. The Bernoulli polynomials

Br(x) are described in [34, Chapter 24]

Br(x) =
�r!

(2⇡
p
�1)r

1X

k 6=0,
k=�1

e
2⇡
p
�1kx

kr

8
>><

>>:

for r = 1, 0 < x < 1

for r = 2, 3, . . . 0  x  1

43

Figure 4.2. Shift invariant kernel in d = 1 shifted by 0.3 to show the discontinuity.
This plot can be reproduced using plot fourier kernel.m

Plots of C(·, 0.3) are given in Figure 4.2 for d = 1 and for various r and ⌘1 values.

Lattice cubature rules are known to have convergence rates that depend on

the smoothness of the integrands, but that are rather independent of the choice of the

integration lattice [29]. Thus, we expect integration lattice node sets to perform well

regardless of the smoothness of the covariance kernel. The bigger concern is whether

the derivatives of the integrand are as smooth as the covariance kernel implies. This

topic is touched upon again in Section 4.5.

4.2.1 Eigenvectors. For general shift-invariance covariance functions the Gram

44

matrix

C✓ =
�
C✓(xi,xj)

�n
i,j=1

(4.6)

can be shown that to have the eigenvector matrix

V =
⇣
e2⇡n

p
�1�(i�1)�(j�1)

⌘n
i=1

. (4.7)

One can interpret the sequence reordering from {�(i�1)}n
i=1 to (0, . . . , 1�1/n),

for n a power of 2, as a permutation. Let

P =
�
�n�(i�1),j�1

�n
i,j=1

(4.8)

be a permutation matrix, where �·,· is the Kronecker delta function. Then,

C✓ =
�
C✓(xi,xj)

�n
i,j=1

=
⇣
K✓

�
h(�(i� 1)� �(j � 1)

�
mod 1)

⌘n
i,j=1

by (4.1) and (4.4)

=

✓ nX

i0,j0=1

�n�(i�1),i0�1 K✓

�
h(i0 � j

0)/n mod 1
�
�j0�1,n�(j�1)

◆n

i,j=1

= PK✓P
T
, by (4.8) (4.9)

where

K✓ =
�
K✓

�
h(i� j)/n mod 1

��n
i,j=1

. (4.10)

Because K✓ is circulant, we know the form of it’s eigenvector-eigenvalue decomposi-

tion:

K✓ =
1

n
W⇤✓W

H
, where W =

⇣
e2⇡

p
�1(i�1)(j�1)/n

⌘n
i,j=1

(4.11)

where ⇤✓ is a diagonal matrix. By (4.9) we then have the eigenvector-eigenvalue

decomposition for C✓ assumed in (3.1), namely

C✓ = PK✓P
T

45

=
1

n
PW⇤✓W

H
P
T =

1

n
PWP

T

| {z }⇤✓ PW
H
P
T

| {z }

=
1

n
V⇤✓V

H
.

Thus

C✓ =
1

n
V⇤✓V

H
, V = PWP

T
, (4.12)

where the eigenvalues of C✓ and K✓ are identical. Note that the matrix multiplication

by V can be performed in O(n log n) operations using the FFT.

4.3 Continuous Valued Kernel Order

In the previous sections, we assumed that the shift-invariant kernel’s order is

an even valued integer and also fixed. It requires the practitioner to be aware of the

integrand’s smoothness to precisely handpick the kernel order to match the integrand’s

smoothness. However, it is not possible to know the integrand’s smoothness in most of

the practical applications. The constraint to have an integer-valued kernel order also

limits the ability to continuously vary the kernel’s smoothness to match the integrand

like the shape parameter is varied to match.

The integer kernel order is not suitable to optimally search by standard opti-

mization algorithm. As a consequence, one usually ends up choosing a higher kernel

order when the integrand is not smooth or lower kernel order when the integrand

is very smooth. Often it leads to longer computation time or poor accuracy in the

numerical integration. Here we explore two alternative forms of the kernel which al-

low the kernel order to be positive continuous value greater than one or a continuous

value in the range (0, 1). Let us recall the infinite series expression that was used to

construct the kernel (4.5):

C✓(x, t) :=
X

k2Zd

↵k,✓e
2⇡
p
�1kTx

e
�2⇡

p
�1kT t

, where ↵k,✓ =
dY

`=1

⌘`

|k`|
r

and ✓ = (r,⌘). This form is convenient for analytical derivations. To make the

46

derivations easier to follow, we fix the dimension d = 1,

C✓(x, t) =1 + ⌘

X

k2Z,k 6=0

1

|k|
r e

2⇡
p
�1kx

e
�2⇡

p
�1kt

.

4.3.1 Truncated series kernel. The following variation to the infinite series

kernel (4.5) has the kernel order in the interval (1,1). This kernel provides algebraic

decay but it is more robust in the hyperparameter search. We reuse the original

definition of the infinite kernel (4.5) but truncate to a finite length. This allows the

kernel order r continuous valued so that it does not have to be an even integer, which

was a constraint previously. For d = 1,

C✓(x, t) =1 + ⌘

X

k2Z,k 6=0

1

|k|
r e

2⇡
p
�1k(x�t)

,

where ✓ = (r, ⌘). Since the infinite sum cannot be used directly, we truncate to length

n,

C✓,n(x, t) =1 + ⌘

n/2�1X

k=�n/2

1

|k|
r e

2⇡
p
�1k(x�t)

.

The Gram matrix is written as

C✓,n =

✓
C✓,n(xi,xj)

◆n

i,j=1

,

where n is the number of samples. The reason for having the truncation length and

the number of samples equal will be obvious as we proceed further. The first column

of the Gram matrix is

C✓,n =

✓
C✓,n(xi,x1)

◆n

i=1

=

0

@
dY

`=1

2

41 + ⌘`

n/2�1X

k=�n/2,k 6=0

1

|kl|
r e

2⇡
p
�1kl(xi`�x1`)

3

5

1

A
n

i=1

,

where d is the number of dimensions. However the direct computation involves n
2

computations since we have chosen the truncation length to n. We can reduce the

47

computations to O(n log n) using the FFT. Define

Cr(t) :=
n/2�1X

k=�n/2,k 6=0

1

|k|
r e

2⇡
p
�1k t

.

Using the Cr, rewrite

C✓,n =

dY

l=1

[1 + ⌘Cr(|xil � x1l|)]

!n

i=1

. (4.13)

One can observe |xi` � x1`| 2 {0, 1
n
,
2
n
, . . .

n�1
n
} by using the definition of lattice points

from (4.1). This can be used to rewrite Cr in a much simpler form,

Cr

✓
j

n

◆
=

n/2�1X

k=�n/2,k 6=0

1

|k|
r e

2⇡
p
�1k(j

n)
, where j = 0, 1, . . . n� 1.

This notation is very convenient to show that eCr, the discrete Fourier transform of

Cr, can be computed analytically

eCr(m) =
n�1X

j=0

Cr(j/n)e
�2⇡

p
�1jm/n

=
n/2�1X

k=�n/2,k 6=0

n�1X

j=0

1

|k|
r e

2⇡
p
�1(k�m)j/n

, by (4.15)

=
n/2�1X

k=�n/2,k 6=0

n

|k|
r �k�m mod n,0 .

This is the reason we have chosen the truncation length to n. Based on the above

result, it is evident that eCr can be computed analytically,

eCr :=
⇣
eCr(m)

⌘n�1
m=0

, where eCr(m) =

8
>>>>>><

>>>>>>:

0, for m = 0

n

|m|r , for m = 1, . . . , n/2� 1

n

|n�m|r , for m = n/2, . . . , n� 1

(4.14)

where we used the fact,

n�1X

i=0

e
2⇡
p
�1ij/n =

8
>><

>>:

1�e2⇡
p
�1jn/n

1�e2⇡
p
�1j/n = 0, j 6= 0 mod n

n, j = 0 mod n.

(4.15)

48

Having these results, we can easily back-compute C using inverse discrete Fourier

transform. It can be shown that inverse DFT of eCr returns C,

1

n

n�1X

m=0

eCr(m)e2⇡
p
�1lm/n

=
1

n

n�1X

m=0

n�1X

j=0

Cr(j/n)e
�2⇡

p
�1jm/n

e
2⇡
p
�1lm/n

, by (4.15)

=
1

n

n�1X

j=0

Cr(j/n)n�(l�j) mod n,0

= Cr(l/n), for l = 0, . . . , n� 1

This implies that to compute n values of

✓
C✓,n(xi,x1)

◆n

i=1

, we need to have the num-

ber of samples and the truncation length the same. The above results are summarized

as an algorithm to compute C using FFT in Algorithm 2.

Algorithm 2 The kernel with continuous valued order
Require: Number of points to use, n;

1: Analytically compute eCr in (4.13), the discrete Fourier transform of Cr using

(4.14)

2: Take the inverse FFT of eCr to get Cr

3: Using Cr compute the truncated series of kernel of truncation length n using

(4.13)

In Algorithm 2, the computational cost of computing Cr is O(n log n) instead

of O(n2). Plugging-in the values of Cr in (4.13) gives the kernel. Another major

benefit is that the FFT approach in Algorithm 2 is the computations are numerically

more stable than the direct sum approach. Please note that these kernels evolve

with the truncation length n. The larger n value the closer the kernel resembles the

original infinite series kernel. One disadvantage is, the truncated series kernels obtain

algebraic order decay at best. The infinite series kernel with little modification can

be enhanced to obtain exponential decay as shown next.

49

4.3.2 Exponentially decaying kernel. We propose the following alternative

form of the kernel. This kernel can provide exponential decay,

C✓(x, t) =1 + ⌘

X

k2Z,k 6=0

q
|k|
e
2⇡
p
�1k(x�t)

, with 0 < q < 1

where q is used to denote the kernel order to distinguish it from the notation in (4.13).

This can be rewritten as

C✓(x, t) =1 + ⌘

X

k2Z,k 6=0

e
2⇡
p
�1k(x�t)+|k| log(q)

=1 + ⌘

 1X

k=1

e
2⇡
p
�1k(x�t)+|k| log(q) +

�1X

k=1

e
2⇡
p
�1k(x�t)+|k| log(q)

!

=1 + ⌘

 1X

k=1

e
2⇡
p
�1k(x�t)+|k| log(q) +

�1X

k=�1

e
2⇡
p
�1k(x�t)+|k| log(q)

!

=1 + ⌘

0

BBB@

1X

k=1

e
2⇡
p
�1k(x�t)+|k| log(q)

| {z }
⇤

+
1X

k=1

e
�2⇡

p
�1k(x�t)+|k| log(q)

1

CCCA
.

Let us focus on the first term (⇤) within the parenthesis in the previous equation,

1X

k=1

e
2⇡
p
�1k(x�t)+|k| log(q) =

1X

k=1

h
e
2⇡
p
�1(x�t)+log(q)

ik

=
e
2⇡
p
�1(x�t)+log(q)

1� e2⇡
p
�1(x�t)+log(q)

=
1

e�2⇡
p
�1(x�t)�log(q) � 1

=
1

q�1e�2⇡
p
�1(x�t) � 1

Using this result

C✓(x, t) = 1 + ⌘

✓
1

q�1e�2⇡
p
�1(x�t) � 1

+
1

q�1e2⇡
p
�1(x�t) � 1

◆

= 1 + ⌘

0

@
q
�1
⇣
e
2⇡
p
�1(x�t) + e

�2⇡
p
�1(x�t)

⌘
� 2

q�2 � q�1
�
e2⇡

p
�1(x�t) + e�2⇡

p
�1(x�t)

�
+ 1

1

A

= 1 + ⌘

✓
2q�1 cos(2⇡

p
�1(x� t))� 2

q�2 � 2q�1 cos(2⇡
p
�1(x� t)) + 1

◆

= 1 + 2⌘q

✓
cos(2⇡

p
�1(x� t))� q

q2 � 2q cos(2⇡
p
�1(x� t)) + 1

◆
.

50

Using the fact cos2(t) + sin2(t) = 1,

C✓(x, t) = 1 + 2⌘q

cos(2⇡

p
�1(x� t))� q

⇥
cos(2⇡

p
�1(x� t))� q

⇤2
+ sin2(2⇡

p
�1(x� t))

!
,

which shows that the kernel order q can be continuously varied while searching for the

optimal value. The hyperparameters need to be ⌘ > 0 and 0 < q < 1 while searching

for the optimum value, so we use the transformations demonstrated in Section 6.2

to map the values to or from R, where the search is usually done. One disadvantage

of this kernel is that it is very sensitive to the changes in kernel order q 2 (0, 1), for

even small values, which might cause the hyperparameter search to miss the global

minima.

4.4 Summary

We summarize the results of this and the previous chapter as a theorem below.

Theorem 4.4.1. Let C✓ be any symmetric, positive definite, shift-invariant covari-

ance kernel of the form (4.4), where K✓ has period one in every variable. Furthermore,

let K✓ be scaled to satisfy (3.4). When matched with rank-1 lattice data-sites, C✓ must

satisfy assumptions (3.2). The cubature, bµ, is just the sample mean. The fast Fourier

transform (FFT) can be used to expedite the estimates of ✓ in (6.1) and the credible

interval widths (6.2) in O(n log n) operations.

Although the third part of the computational cost has the largest dependence

on n, in practice it need not be the largest contributor to the computational cost.

If function values are the result of an expensive simulation, then the first part may

consume most of the computation time.

We have implemented the fast adaptive Bayesian cubature algorithm in MAT-

LAB as part of the Guaranteed Adaptive Integration Library (GAIL) [35] as

cubBayesLattice g. This algorithm uses the kernel defined in (4.5) with r = 1, 2 or

51

the continuous valued order kernel (4.13), and the periodizing variable transforms in

Section 4.5. The rank-1 lattice node generator is taken from [36] (exod2 base2 m20).

4.5 Periodizing Variable Transformations

The shift-invariant covariance kernels underlying our cubBayesLattice g

Bayesian cubature assume that the integrand has a degree of periodicity, with the

smoothness assumed depending on the smoothness of the kernel. In other-words, non-

periodic functions do not live in the space spanned by the shift-invariant covariance

kernels. While integrands arising in practice may be smooth, they might not be

periodic. Variable transformation or periodization transform techniques are typically

used to enforce the periodicity in multi-dimensional numerical integrations where

boundary conditions needs to be enforced. These transformations could be either

polynomial, exponential and also trigonometric in nature. Some of the most popular

transformation are provided here for reference.

Suppose that the original integral has been expressed as

µ :=

Z

[0,1]d
g(t) dt,

where g has su�cient smoothness, but lacks periodicity. The goal is to transform

the integral above to the form of (1.1), where the integrand f—and perhaps its

derivatives—are periodic.

The Baker’s transform, also called tent transform,

 : x 7! ((x1), . . . , (xd)), (x) = 1� 2 |x� 1/2| , (4.16)

allows us to write µ in the form of (1.1), where f(x) = g((x)). Since 0(x) is not

continuous, f does not have continuous derivatives.

A family of smoother variable transforms that can also preserve continuity of

52

derivatives from the original integrand g takes the form

 : x 7! ((x1), . . . , (xd)), : [0, 1] 7! [0, 1].

This allows us to write µ in the form of (1.1) with

f(x) = g((x))
dY

`=1

 0(xl).

For r 2 N0, if the following hold:

• 2 C
r+1[0, 1],

• limx#0 x
�r�1 0(x) = limx"1(1� x)�r�1 0(x) = 0, and

• g 2 C
(r,...,r)[0, 1]d,

then f has continuous, periodic mixed partial derivatives of up to order r in each

direction. Examples of this kind of transform include [7]:

C
0 : (x) = 3x2

� 2x3
, 0(x) = 6x(1� x),

C
1 : (x) = x

3(10� 15x+ 6x2),

 0(x) = 30x2(1� x)2

Sidi’s C1 : (x) = x�
sin(2⇡x)

2⇡
,

 0(x) = 1� cos(2⇡x),

Sidi’s C2 : (x) =
8� 9 cos(⇡x) + cos(3⇡x)

16
,

 0(x) =
3⇡[3 sin(⇡x)� sin(3⇡x)]

16
.

These transforms vary in terms of computational complexity and accuracy and

shall be chosen to match the covariance kernel and integrand accordingly. Choosing

an optimal periodizing is a topic of future research. Baker’s transform is the least

complex of all which is a tent map in each coordinate. It preserves only continuity but

53

it is easier to compute and it does not include product term up to the length dimension

of the integrand, making it more numerically stable. C0 is a polynomial transforma-

tion only and ensures periodicity of function. C1 is a polynomial transformation and

preserving the first derivative. Sidi’s C1, a transform which uses trigonometric Sine,

preserves the first derivative and is, in general, a better option than C
1. Sidi’s C

2,

also a transform which uses trigonometric Sine, preserves up to second derivative.

We use this when smoothness of Sidi’s C1 is not su�cient and need to preserve up to

second derivative.

Periodizing variable transforms are used in the numerical examples in Sec-

tion 7. In some cases, they can speed the convergence of the Bayesian cubature

because they allow one to take advantage of smoother covariance kernels. However,

there is a trade-o↵. Smoother periodizing transformations tend to give integrands f

with larger inferred s values and thus wider credible intervals.

54

CHAPTER 5

SOBOL’ NETS AND WALSH KERNELS

The previous section shows an automatic Bayesian cubature algorithm using

rank-1 lattice nodes and shift-invariant kernels. In this chapter, we demonstrate a

second approach to formulate fast Bayesian transform using matching kernel and point

sets. Scrambled Sobol’ nets and Walsh kernels are paired to achieve O(n�1+✏) order

error convergence where n is the sample size. Sobol’ nets [37] are low discrepancy

points, used extensively in numerical integration, simulation, and optimization. The

results of this chapter can be summarized as a theorem,

Theorem 5.0.1. Any symmetric, positive definite, digital shift-invariant covariance

kernel of the form (5.5) scaled to satisfy (3.4), when matched with digital net data-

sites, satisfies assumptions (3.2). The fast Walsh-Hadamard transform (FWHT) can

be used to expedite the estimates of ✓ in (6.1) and the credible interval widths (6.2)

in O(n log n) operations. The cubature, bµ, is just the sample mean.

We introduce the necessary concepts and prove this theorem in the remaining

of this chapter.

5.1 Sobol’ Nets

Nets were developed to provide deterministic sample points for quasi-Monte

Carlo rules [38]. Nets are defined geometrically using elementary intervals, which

are subintervals of the unit cube [0, 1)d. The (t,m, d)-nets in base b, introduced by

Niederreiter, whose quality is governed by t. Lower values of t correspond to (t,m, d)-

nets of higher quality [39].

Definition 1. Let A be the set of all elementary intervals A ⇢ [0, 1)d where A =
Q

d

`=1[↵`b
��` , (↵` + 1)b��`), with d, b, �` 2 N, b � 2 and b

�` > ↵` � 0. For m, t 2

55

N,m � t � 0, the point set Pm 2 [0, 1)d with n = b
m points is a (t,m, d) – net in base

b if every A with volume b
t�m contains b

t points of Pm.

Digital (t,m, d)-nets are a special case of (t,m, d)-nets, constructed using

matrix-vector multiplications over finite fields. Digital sequences are infinite length

digital nets, i.e., the first n = b
m points of a digital sequence comprise a digital net

for all integer m 2 N0.

Definition 2. For any non-negative integer i = . . . i3i2i1(base b), define the 1⇥ 1

vector ~ı as the vector of its digits, that is, ~ı = (i1, i2, . . .)T . For any point z =

0.z1z2 . . . (base b) 2 [0, 1), define the 1 ⇥ 1 vector of the digits of z, that is, ~z =

(z1, z2, . . .)T . Let G1, . . . ,Gd denote predetermined 1⇥1 generator matrices. The

digital sequence in base b is {z0, z1, z2, . . . }, where each zi = (zi1, . . . , zid)T 2 [0, 1)d

is defined by

~zi` = G`~ı, ` = 1, . . . , d, i = 0, 1,

The value of t as mentioned in Definition 1 depends on the choice of G`.

Digital nets have a group structure under digitwise addition, which is a very

useful property exploited in our algorithm, especially to develop a fast Bayesian trans-

form that speedups computations. Digitwise addition, �, and subtraction , are

defined in terms of b-ary expansions of points in [0, 1)d,

z � y =

 1X

j=1

[z`j + y`j mod b]b�j mod 1

!d

`=1

,

z y =

 1X

j=1

[z`j � y`j mod b]b�j mod 1

!d

`=1

,

where

z =

 1X

j=1

z`jb
�j

!d

`=1

, y =

 1X

j=1

y`jb
�j

!d

`=1

, z`j, y`j 2 {0, · · · , b� 1}.

56

Similarly for integer values in Nd

0, the digitwise addition, �, and subtraction

 , are defined in terms of their b-ary expansions,

k � l =

 1X

j=0

[k`j + l`j mod b]bj mod 1

!d

`=1

,

k l =

 1X

j=0

[k`j � l`j mod b]bj mod 1

!d

`=1

,

where

k =

 1X

j=0

k`jb
j

!d

`=1

, l =

 1X

j=0

l`jb
j

!d

`=1

, k`j, l`j 2 {0, · · · , b� 1}.

Let {zi}
b
m�1
i=0 be a digital net. Then

8i1, i2 2 {0, · · · , bm � 1}, zj1 � zi2 = zi3 , for some i3 2 {0, · · · , bm � 1}.

The following very useful result, which will be further used to obtain the fast

Bayesian transform, arises from the fundamental property of digital nets.

Lemma 5.1.1. Let {zi}
b
m�1
i=0 be the digital-net and the corresponding digitally shifted

net be {xi}
b
m�1
i=0 , i.e.,

~xi` = ~zi` + ~�l mod 1,

where ~xi` is the `th component of ith digital net and ~�` is the digital shift for the `th

component. Then,

xi xj = zi zj = zi j, 8i, j 2 N0. (5.1)

Also the digital subtraction is symmetric,

xi xi = 0, xi xj = xj xi, 8i, j 2 N0. (5.2)

57

Proof. The proof can be obtained from the definition of digital nets which stated that

the digital nets are obtained using generator matrices, ~zi` = G`~ı mod b. Rewriting

the subtraction using the generating matrix provides the result,

~zi` � ~zj` mod b = (G ~̀ı mod b)� (G`~| mod b)

= (G ~̀ı� G`~|) mod b

= G`(~ı� ~|) mod b

= G`(
��!
i j) mod b

= ~zi j `.

The rest of the lemma is obvious from the definition of digital nets.

We chose digitally shifted and scrambled nets [40] for our Bayesian cubature

algorithm. Digital shifts help to avoid having nodes at the origin, similar to the ran-

dom shift used with lattice nodes. Scrambling helps to eliminate bias while retaining

the low-discrepancy properties. A proof that a scrambled net preserves the property

of (t,m, d)-net almost surely can be found in Owen [41]. The scrambling method

proposed by Matoušek [42] is preferred since it is more e�cient than the Owen’s

scrambling.

Sobol’ nets [43] are a special case of (t,m, d)-nets when base b = 2. An example

of 64 Sobol’ nets in d = 2 is given in Figure 5.1. The even coverage of the unit cube

is ensured by a well chosen generating matrix. The choice of generating vector is

typically done o✏ine by computer search. See [44] and [45] for more on generating

matrices. We use randomly scrambled and digitally shifted Sobol’ sequences in this

research [46].

5.2 Walsh Kernels

Walsh kernels are product kernels based on the Walsh functions. We introduce

58

Figure 5.1. Example of a scrambled Sobol’ node set in d = 2. This plot can be
reproduced using PlotPoints.m.

the necessary concepts in this section.

5.2.1 Walsh functions. Like the Fourier transform used with lattice points (Sec-

tion 4.2), the Walsh-Hadamard transform, which we will simply call Walsh transform,

is used for the digital nets. The Walsh transform is defined using Walsh functions.

Recall N0 := {0, 1, 2, · · · }. The one-dimensional Walsh functions in base b are defined

as

walb,k(x) := e
2⇡
p
�1(x1k0+x2k1+···)/b = e

2⇡
p
�1~kT ~x/b

, (5.3)

for x 2 [0, 1) and k 2 N0 and the unique base b expansions x =
P

j�1 xjb
�i =

(0.x1x2 · · ·)b, ~x = (x1, x2, · · ·)T k =
P

j�0 kjb
j = (· · · k1k0)b, ~k = (k0, k1, · · ·)T , and

~k
T
~x = x1k0 + x2k1 + · · · where the number of digits used in (5.3) are limited to the

length required to represent x or k, i.e., max (d� log
b
xe, dlog

b
ke). Multivariate Walsh

59

functions are defined as the product of the one-dimensional Walsh functions,

walb,k(x) :=
dY

`=1

walb,k`(x`)

As shown in (5.3), for the case of b = 2, the Walsh functions only take the values in

{1,�1}, i.e., walb,k : [0, 1)d ! {�1, 1}, k 2 Nd

0. Walsh functions form an orthonormal

basis of the Hilbert space L
2[0, 1)d,

Z

[0,1)d
walb,l(x)walb,k(x)dx = �l,k, 8l,k 2 Nd

0

Digital nets are designed to integrate certain Walsh functions without error. Thus our

Bayesian cubature algorithm integrates linear combinations of certain Walsh functions

without error. Functions that are well approximated by such linear combinations are

then integrated with small errors.

In this research we use Sobol’ nodes which are digital nets with base b = 2.

So here afterwards base b = 2 is assumed. In this case, the Walsh function is simply

wal2,k(x) = (�1)
~k
T
~x
.

5.2.2 Walsh kernels. Consider the covariance kernels of the form,

C✓(x, t) = K✓(x t) (5.4)

where is bitwise subtraction. This is called a digitally shift invariant kernel because

shifting both arguments of the covariance function by the same amount leaves the

value unchanged. By a proper scaling of the function K✓, it follows that assumption

(3.4) is satisfied. The function K✓ must be of the form that ensures that C✓ is

symmetric and positive definite, as assumed in (2.1). We drop the ✓ sometimes to

make the notation simpler. The Walsh kernels are of the form,

K✓(x t) =
dY

`=1

1 + ⌘`!r(x` t`), ⌘ = (⌘1, · · · , ⌘d), ✓ = (r,⌘) (5.5)

60

Figure 5.2. Walsh kernel of order r = 1 in dimension d = 1. This figure can be
reproduced using plot walsh kernel.m.

where r is the kernel order, ⌘ is the kernel shape parameter, and

!r(x) =
1X

k=1

wal2,k(x)

22rblog2 kc
.

Explicit expression is available for !r in the case of order r = 1 [47],

!1(x) = 6

✓
1

6
� 2blog2 xc�1

◆
. (5.6)

The Figure 5.2 shows the Walsh kernel (5.5) of order r = 1 in the interval

[0, 1). Unlike the shift-invariant kernels used with lattice nodes, low order Walsh

kernels are discontinuous and are only piecewise constant. Smaller ⌘` implies lesser

variation in the amplitude of the kernel. Also, the Walsh kernels are digitally shift

invariant but not periodic.

61

5.3 Eigenvectors

We show the eigenvectors V in (3.1) of the Gram matrix formed by the covari-

ance kernel (5.5) and Sobol’ nets are the columns of the Walsh-Hadamard matrix.

First we introduce the necessary concepts.

5.3.1 Walsh transform. The Walsh-Hadamard transform (WHT) is a generalized

class of discrete Fourier transform (DFT) and is much simpler to compute than the

DFT. The WHT matrices are comprised of only ±1 values, so the computation usually

involves only ordinary additions and subtractions. Hence, the WHT is also sometimes

called the integer transform. In comparison, the DFT that was used with lattice

nodes, uses complex exponential functions and the computation involves complex,

non-integer multiplications.

The WHT involves multiplications by 2m ⇥ 2m Walsh-Hadamard matrices,

which is constructed recursively, starting with H
(0) = 1,

H
(1) =

0

BB@
1 1

1 �1

1

CCA ,

H
(2) =

0

BBBBBBBBBBB@

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

1

CCCCCCCCCCCA

,

...

H
(m) =

0

BB@
H

(m�1)
H

(m�1)

H
(m�1)

�H
(m�1)

1

CCA = H
(1)
O

· · ·

O
H

(1)

| {z }
m times

= H
(1)
O

H
(m�1) (5.7)

where
N

is Kronecker product. Alternatively for base b = 2, these matrices can be

62

directly obtained by,

H
(m) =

✓
(�1)(~ı

T
~|)

◆2m�1

i,j=0

,

where the notation ~ıT~| indicates the bitwise dot product.

5.3.2 Eigenvectors of C are columns of Walsh-Hadamard matrix. The

Gram matrix C✓ formed by Walsh kernels and Sobol’ nodes have a special structure

called block-Toeplitz, which can be used to construct the fast Bayesian transform.

A Toeplitz matrix is a diagonal-constant matrix in which each descending diagonal

from left to right is constant. A block Toeplitz matrix is a special block matrix, which

contains blocks that are repeated down the diagonals of the matrix. We prove that

the eigenvectors of C✓ are columns of a Walsh-Hadamard matrix in two theorems.

Theorem 5.3.1. Let (xi)
n�1
i=0 be digitally shifted Sobol’ nodes and K be any function,

then the Gram matrix,

C✓ =
�
C(xi,xj)

�n�1
i,j=0

=
�
K(xi xj)

�n�1
i,j=0

,

where n = 2m, C(x, t) = K(x t), x, t 2 [0, 1)d,

is a 2 ⇥ 2 block-Toeplitz matrix and all the sub-blocks and their sub-sub-blocks, etc.

are also 2⇥ 2 block-Toeplitz.

Proof. We prove this theorem by induction. Let C
(m)
✓ denote the Gram matrix of

size 2m ⇥ 2m. The relation between sub-block matrices can be deciphered using the

properties of digital nets. To help with the proof of block-Toeplitz structure, consider

the digital net properties (5.1), (5.2), and notations,

K
(m) :=

✓
K(zi zj)

◆2m�1

i,j=0

=

✓
K(zi j)

◆2m�1

i,j=0

, m = 1, 2, · · · ,

K
(m,q) :=

✓
K(zi j+q2m)

◆2m�1

i,j=0

, q = 0, 1, · · · .

63

These two notations are related by K
(m) = K

(m,0). Please note that C(m)
✓ = K

(m,0). We

will prove K
(m,q) is a 2⇥ 2 block-toeplitz matrix for all m 2 N, q 2 N.

As the first step, we verify the property holds for m = 1,

K
(1,q) =

0

BB@
K(z0 0+q21) K(z1 0+q21)

K(z0 1+q21) K(z1 1+q21)

1

CCA =

0

BB@
K(z2q) K(z1+2q)

K(z1+2q) K(z2q)

1

CCA , by (5.1)

has diagonal elements repeated. Thus by definition, it is a 2⇥ 2 block-Toeplitz.

Now assume that K(m,q) is block-Toeplitz. We need to prove K
(m+1,q) is also a

2⇥ 2 block-Toeplitz. Let n = 2m,

K
(m+1) =

0

BBBBBBBBBBBBBBBBBBBB@

K(z0 0) . . . K(z0 n�1) K(z0 n) . . . K(z0 2n�1)

...
...

...
...

...
...

K(zn�1 0) . . . K(zn�1 n�1) K(zn�1 n) . . . K(zn�1 2n�1)

K(zn 0) . . . K(zn n�1) K(zn n) . . . K(zn 2n�1)

...
...

...
...

...
...

K(z2n�1 0) . . . K(z2n�1 n�1) K(z2n�1 n) . . . K(z2n�1 2n�1)

1

CCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBB@

0

BBBBBBB@

K(z0) . . . K(zn�1)

...
...

...

K(zn�1) . . . K(z0)

1

CCCCCCCA

0

BBBBBBB@

K(zn) . . . K(z2n�1)

...
...

...

K(z2n�1) . . . K(zn)

1

CCCCCCCA

0

BBBBBBB@

K(zn) . . . K(z2n�1)

...
...

...

K(z2n�1) . . . K(zn)

1

CCCCCCCA

0

BBBBBBB@

K(z0) . . . K(zn�1)

...
...

...

K(zn�1) . . . K(z0)

1

CCCCCCCA

1

CCCCCCCCCCCCCCCCCCCCA

64

=

0

BB@
K

(m)
K

(m,1)

K
(m,1)

K
(m)

1

CCA

is a 2⇥2 block-Toeplitz, where we used the properties (5.1), (5.2) and facts 2n�1 n =

n�1, 2n�1 n�1 = n, and n n�1 = 2n�1. Thus K(m+1) is a 2⇥2 block-Toeplitz.

Similarly

K
(m+1,q) =

0

BB@
K

(m,q)
K

(m,q+1)

K
(m,q+1)

K
(m,q)

1

CCA

is a 2 ⇥ 2 block-Toeplitz. Thus C
(m)
✓ of size 2m ⇥ 2m, for m 2 N, is a 2 ⇥ 2 block-

Toeplitz and every block and it’s sub-blocks of size 2p, p 2 N, p  m are also 2 ⇥ 2

block-Toeplitz.

Theorem 5.3.2. The Walsh-Hadamard matrix H
(m) factorizes C

(m)
✓ , so that the

columns of Walsh-Hadamard matrix are the eigenvectors of C(m)
✓ , i.e.,

H
(m)

C
(m)
✓ = ⇤

(m)
H

(m)
, m 2 N.

Proof. Again, we use the proof-by-induction technique to show that the Walsh-

Hadamard matrix factorizes K
(m,q). We can easily see the Hadamard matrix H

(1)

diagonalizes K(1,q),

H
(1)
K

(1,q) =

0

BB@
1 1

1 �1

1

CCA

0

BB@
K(z0+q21) K(z1+q21)

K(z1+q21) K(z0+q21)

1

CCA , by Theorem 5.3.1

=

0

BB@
K(z2q) +K(z2q+1) K(z2q) +K(z2q+1)

K(z2q)�K(z2q+1) K(z2q+1)�K(z2q)

1

CCA

=

0

BB@
K(z2q) +K(z2q+1) 0

0 K(z2q)�K(z2q+1)

1

CCA

0

BB@
1 1

1 �1

1

CCA

65

= ⇤
(1,q)

H
(1)
,

where ⇤
(1,q) is a diagonal matrix, thus H(1) factorizes K(1,q).

Now assume H
(m) factorizes K(m,q), so H

(m)
K

(m,q) = ⇤
(m,q)

H
(m) where ⇤

(m,q) is

diagonal. We need to prove H
(m+1) factorizes K(m+1,q),

H
(m+1)

K
(m+1,q) =

0

BB@
H

(m)
H

(m)

H
(m)

�H
(m)

1

CCA

0

BB@
K

(m,q)
K

(m,q+1)

K
(m,q+1)

K
(m,q)

1

CCA , by Theorem 5.3.1

=

0

BB@
H

(m)(K(m,q) + K
(m,q+1)) H

(m)(K(m,q) + K
(m,q+1))

H
(m)(K(m,q)

� K
(m,q+1)) H

(m)(K(m,q+1)
� K

(m,q))

1

CCA

=

0

BB@
(⇤(m,q) + ⇤

(m,q+1))H(m) (⇤(m,q) + ⇤
(m,q+1))H(m)

(⇤(m,q)
� ⇤

(m,q+1))H(m) (⇤(m,q+1)
� ⇤

(m,q))H(m)

1

CCA

=

0

BB@
⇤
(m,q) + ⇤

(m,q+1) 0

0 ⇤
(m,q)

� ⇤
(m,q+1)

1

CCA

0

BB@
H

(m)
H

(m)

H
(m)

�H
(m)

1

CCA

= ⇤
(m+1,q)

H
(m+1)

.

Thus, H
(m+1) factorizes K

(m+1,q) to a diagonal matrix ⇤
(m+1,q). This implies H

(p)

factorizes C(p)
✓ for p 2 N. Please recall C(p)

✓ = K
(p,0). Here we used the fact that both

H and K are symmetric positive definite.

5.3.3 Fast Bayesian transform. We can easily show that the Walsh-Hadamard

matrices satisfy the assumptions of fast Bayesian transform (3.2). As shown in Sec-

tion 5.3.2 the columns of H(m) are the eigenvectors. Since the Gram matrix C is

symmetric, the columns/rows of Walsh-Hadamard matrices are mutually orthogonal.

66

Thus the Gram matrix can be written as

C
(m) =

1

n
H

(m)
⇤
(m)

H
(m)

, where H
(m) = H

(1)
O

· · ·

O
H

(1)

| {z }
m times

. (5.8)

Assumption (3.2b) follows automatically by the fact that Walsh-Hadamard matri-

ces can be constructed analytically. Assumption (3.2a) can also be verified as the

first row/column are one vectors. Finally, assumption (3.2c) is satisfied due to the

fact that fast Walsh transform can be computed in O(n log n) operations using fast

Walsh-Hadamard transform. Thus the Walsh-Hadamard transform is a fast Bayesian

transform, V := H, as per (3.2).

We have implemented a fast adaptive Bayesian cubature algorithm using the

kernel (5.5) with r = 1 and Sobol’ points [48] in MATLAB as part of the Guaran-

teed Adaptive Integration Library (GAIL) [35] as cubBayesNet g. The Sobol’ points

used in this algorithm are generated using MATLAB’s builtin function sobolset

and scrambled using MATLAB function scramble [46]. The fast Walsh-Hadamard

transform (5.8) is computed using MATLAB’s builtin function fwht with hadamard

ordering.

5.3.4 Iterative Computation of Walsh Transform. In every iteration of our

algorithm, we double the number of function values. Using the technique described

here, we have to only compute the Walsh transform for the newly added function

values. Similar to the lattice points, Sobol’ points are extensible by definition. This

property is used in our algorithm to improve the integration accuracy till the required

error tolerance is met. Sobol’ nodes can be combined with Hadamard matrices as

demonstrated here for iterative computation. Let ey = H
(m+1)y for some arbitrary

67

y 2 R2n, n = 2m. Define,

y =

0

BBBBB@

y1

...

y2n

1

CCCCCA
, y(1) =

0

BBBBB@

y1

...

yn

1

CCCCCA
, y(2) =

0

BBBBB@

yn+1

...

y2n

1

CCCCCA
,

ey(1) = H
(m)y(1) =

0

BBBBBBB@

ey(1)1

ey(1)2

...

ey(1)n

1

CCCCCCCA

, ey(2) = H
(m)y(2) =

0

BBBBBBB@

ey(2)1

ey(2)2

...

ey(2)n

1

CCCCCCCA

.

Then,

ey = H
(m+1)y

=

0

BB@
H

(m)
H

(m)

H
(m)

�H
(m)

1

CCA

0

BB@
y(1)

y(2)

1

CCA , by (5.7)

=

0

BB@
H

(m)y(1) + H
(m)y(2)

H
(m)y(1)

� H
(m)y(2)

1

CCA

=

0

BB@
ey(1) + ey(2)

ey(1)
� ey(2)

1

CCA =: ey .

As before with the lattice nodes, the computational cost to compute V
(m+1)Hy is

twice the cost of computing V
(m)Hy(1) plus 2n additions, where n = 2m. An inductive

argument shows that for any m 2 N, V(m)Hy requires only O(n log n) operations.

Usually the multiplications in V
(m)Hy(1) are multiplications by �1 which are simply

accomplished using sign change or negation, requiring no multiplications at all.

5.4 Higher Order Nets

Higher order digital nets are an extension of (t,m, d)-nets, introduced in [49].

68

They can be used to numerically integrate smoother functions which are not neces-

sarily periodic, but have square integrable mixed partial derivatives of order ↵, at a

rate of O(n�↵) multiplied by a power of a log n factor using rules corresponding to the

modified (t,m, d)-nets. We want to emphasize that quasi-Monte Carlo rules based

on these point sets can achieve convergence rates faster than O(n�1). Higher order

digital nets are constructed using matrix-vector multiplications over finite fields.

One could develop matching digitally shift invariant kernels to formulate the

fast Bayesian cubature. Bayesian cubatures using higher order digital nets are a topic

for future research.

69

CHAPTER 6

NUMERICAL IMPLEMENTATION

6.1 Overcoming Cancellation Error

We now refer back to general setting for the fast automatic Bayesian cubature

in Section 3. For the covariance kernels used in our computation, it often happens

that n/�1 is close to 1, especially for larger n. Thus, the term 1 � n/�1, which

appears in the credible interval widths, errEB, errfull, and errGCV (3.7), may su↵er

from cancellation error. We can avoid this cancellation error by modifying how we

compute the Gram matrix and its eigenvalues.

Any shift-invariant or digital shift-invariant covariance kernel satisfying (3.4)

can be written as C✓ = 1+ C̊✓, where C̊✓ is also symmetric and positive definite. The

associated Gram matrix for C̊✓ is then C̊✓ = C✓ � 11T , and the eigenvalues of C̊✓ are

�̊1 = �1 � n,�2, . . . ,�n, which follows because 1 is the first eigenvector of both C✓

and C̊✓. Note that C̊✓ inherits the shift-invariant properties of C✓. Then,

1�
n

�1
=

�1 � n

�1
=

�̊1

�̊1 + n
,

where now the right hand side is free of cancellation error.

We show how to compute C̊✓ without introducing round-o↵ error. The covari-

ance functions that we use in both Chapter 4 and 5 are of product form, namely,

C✓(t,x) =
dY

`=1

h
1 + C̊

✓ ,`
(t`, x`)

i
, C̊

✓ ,`
: [0, 1]⇥ [0, 1]! R.

Direct computation of C̊✓(t,x) = C✓(t,x)� 1 introduces cancellation error if the C̊`

are small. So, we employ the iteration,

C̊
(1)
✓ (t,x) = C̊

✓ ,1(t1, x1),

C̊
(`)
✓ (t,x) = C̊

(`�1)
✓ [1 + C̊✓,`(t`, x`)] + C̊✓,`(t`, x`), ` = 2, . . . , d,

70

C̊✓(t,x) = C̊
(d)
✓ (t,x).

In this way, the Gram matrix C̊✓, whose i, j-element is C̊✓(xi,xj) can be constructed

with minimal round-o↵ error because we avoid subtraction.

Computing the eigenvalues of C̊✓ via the procedure given in (3.3) yields �̊1 =

�1�n,�2, . . . ,�n. The estimates of ✓ are computed in terms of the eigenvalues of C̊✓.

So (3.5a) and (3.5b) become

✓EB = argmin
✓

"
log

nX

i=2

|eyi|2

�i

!
+

1

n

nX

i=1

log(�i)

#
, (6.1a)

✓GCV = argmin
✓

"
log

nX

i=2

|eyi|2

�2
i

!
� 2 log

nX

i=1

1

�i

!#
, (6.1b)

where �1 = n + �̊1. The widths of the credible intervals in (3.7a), (3.7b), and (3.7c)

become,

errEB =
2.58

n

vuut �̊1

�1

nX

i=2

|eyi|2

�i

, (6.2a)

errfull =
tn�1,0.995

n

vuut �̊1

n� 1

nX

i=2

|eyi|2

�i

, (6.2b)

errGCV =
2.58

n

vuut �̊1

�1

nX

i=2

|eyi|2

�2
i

"
1

n

nX

i=1

1

�i

#�1
. (6.2c)

Since �̊1 = �1 � n and �1 ⇠ n it follows �̊1/�1 ⇡ �̊1/(n � 1) and is small for large

n. Moreover, for large n, the credible intervals via empirical Bayes and full Bayes are

similar, since tn�1,0.995 is approximately 2.58.

The computational steps for the improved, faster, automatic Bayesian cuba-

ture are detailed in Algorithm 3. In comparison to Algorithm 1, the second and third

components of the computational cost of Algorithm 3 are substantially reduced. The

Algorithm 3 has a computational cost which is the sum of the following:

71

Algorithm 3 Fast Automatic Bayesian Cubature
Require: A choice of generator for the point set x1,x2, . . . and a matching kernel

C✓ from, 1) rank-1 Lattice points and a matching shift-invariant kernel, 2) Sobol’

sequence and a matching digital shift-invariant kernel; a black-box function, f ;

an absolute error tolerance, " > 0; the positive initial sample size, n0, that is a

power of 2; the maximum sample size nmax

1: n n0, n
0
 0, errCI 1

2: while errCI > " and n  nmax do

3: Generate {xi}
n

i=n0+1 and sample {f(xi)}ni=n0+1

4: Compute ✓ by (3.5a) or (3.5b) by using the techniques from Chapter 4 or 5

5: Compute errCI according to (6.2a), (6.2b), or (6.2c) by using the techniques

from Chapter 4 or 5

6: n
0
 n, n 2n0

7: end while

8: Update sample size to compute bµ, n n
0

9: Compute bµ, the approximate integral, according to (3.6)

10: return bµ, n and errCI

72

• O
�
n$(f)

�
for the integrand data, where $(f) is the computational cost of a

single f(x)

• O
�
Noptn$(C✓)

�
for the evaluations of the vector C1, where Nopt is the number

of optimization steps required, and $(C✓) is the computational cost of a single

C✓(t,x)

• O
�
Noptn log(n)

�
for the FFT calculations; there is no d dependence in these

calculations

6.2 Kernel Hyperparameters Search

The various hyperparameters introduced and used by our algorithms need to

be optimally chosen. The parameter search can be done in two major ways. Bounded

minima search, if the search interval is known, else unbounded search. Most of the

scenarios, the search interval is unknown. So the natural choice is to use unbounded

search over the unbound domain such as fminsearch provided by MATLAB. However

hyperparameters need to live in a domain that is bounded or semi-bounded. There

are some simple domain transformations available to achieve this.

6.2.1 Positive kernel shape parameter. The following parameter map is used

to ensure that the shape parameter values are positive real numbers. For ⌘ > 0 as

introduced in Section 3.5.1, let

⌘(t1) = e
t1 , ⌘ : (�1,1)! (0,1).

Instead of searching for ⌘ 2 (0,1), we may search for the optimal t1 = log(⌘) over

the whole real line R. The optimal value t1,opt can be transformed back to the (0,1)

interval using

⌘opt = e
t1,opt .

73

6.2.2 Kernel order 1 < r < 1. The following map is used to ensure that the

kernel order values are positive real number and greater than one, i.e., in the (1,1)

interval as required in Section 4.3.1,

r(t2) = 1 + e
t2 , r : (�1,1)! (1,1).

So one may search for the optimal t2 = � log(r � 1) in the whole real line R. The

optimal value t2,opt can be transformed back to the desired interval (0, 1) using

ropt = 1 + e
t2,opt .

6.2.3 Kernel order 0 < q < 1. The following multivariate map is used to ensure

that the kernel order values are positive real and less than one, i.e., in the (0, 1)

interval to use with exponentially decaying kernel, as introduced in Section 4.3.2,

q(t3) =
1

1 + et3
, q : (�1,1)! (0, 1).

So one may search for the optimal t3 = log(q�1 � 1) in the whole real line R. The

optimal value t3,opt can be transformed back to the desired interval (0, 1) by using

qopt =
1

1 + et3,opt
.

6.2.4 Combined searching of kernel order r and shape parameter ⌘. Instead

of searching ⌘ and r separately one would prefer to search them together so that the

most optimal values can be obtained, where ⌘ = (⌘1, · · · , ⌘d) such that ⌘l 6= ⌘k, for

l 6= k. We can combine the parameter maps used above to ensure that the kernel

order values in (1,1) and shape parameter ⌘ in (0,1)d as required in Section 4.3.1,

✓(t) =

0

BBBBBBB@

r(t1)

⌘(t2)

...

⌘(td+1)

1

CCCCCCCA

=

0

BBBBBBB@

1 + e
t1

e
t2

...

e
td+1

1

CCCCCCCA

, ✓ : Rd+1
! (1,1)⇥ (0,1)d.

74

So instead of searching for ✓opt in (1,1)⇥ (0,1)d, one may search for the optimal

t = t�1(✓) =

0

BBBBBBB@

log(r � 1)

log(⌘1)

...

log(⌘d)

1

CCCCCCCA

in the whole real line Rd+1. The optimal value topt can be transformed back to the

desired interval (1,1)⇥ (0,1)d using

✓opt =

0

BBBBBBB@

1 + e
t1,opt

e
t2,opt

...

e
td+1,opt

1

CCCCCCCA

.

Similarly one can map the kernel order q 2 (0, 1) Section 4.3.2, and ⌘ in to a multi-

variate hyperparameter search.

75

CHAPTER 7

NUMERICAL RESULTS AND OBSERVATIONS

Fast Bayesian cubature algorithms developed in this research are demonstrated

using three commonly used integration examples. These integrals were evaluated us-

ing both the algorithms cubBayesLattice g and cubBayesNet g. The first example

shows evaluating a multivariate Gaussian probability given the interval. The sec-

ond example shows integrating the Keister’s function, and the final example shows

computing an Asian arithmetic option pricing.

7.1 Testing Methodology

Four hundred di↵erent error tolerances, ", were randomly chosen from a fixed

interval for each example. The intervals for error tolerance were chosen depend-

ing on the di�culty of the problem. The nodes used in cubBayesLattice g were

the randomly shifted lattice points supplied by GAIL, whereas the nodes used in

cubBayesNet g were the randomly scrambled and shifted Sobol’ points supplied by

MATLAB’s Sobol’ sequence generator.

For each integral example, and each stopping criteria—empirical Bayes, full

Bayes, and generalized cross-validation—our algorithm is run with each randomly

chosen error tolerance as mentioned above. For each test, the execution time is

plotted against |µ� bµ| /". We expect |µ� bµ| /" to be no greater than one, but hope

that it is not too much smaller than one, which would indicate a stopping criterion

that is too conservative.

Periodization variable transforms are used in the examples with

cubBayesLattice g, which assumes the integrands to be periodic in [0, 1]d. But the

cubBayesNet g does not need this additional requirement, so the integrands are used

directly.

76

7.2 Multivariate Gaussian Probability

This example is introduced in Section 2.8, where we use the Matérn covariance

kernel. We reuse fGenz (2.26) and apply a periodization transform to obtain fGenzP

when required.

7.2.1 Using cubBayesLattice g. As required by the algorithm, we apply Sidi’s

C
2 periodization to fGenz (2.26), and chose d = 3 and r = 2. The simulation results

for this example integrand are summarized in Figures 7.1, 7.2, and 7.3. In all cases,

cubBayesLattice g returns an approximation within the prescribed error tolerance.

We used the same setting as before with generic slow Bayesian cubature in Section 2.8

for comparision. For error threshold " = 10�5 with empirical stopping criterion, our

fast algorithm takes 0.001 seconds as shown in Figure 7.1 whereas the basic algorithm

takes 30 seconds as shown in Figure 2.4. Amongst the three stopping criteria, GCV

achieved the results faster than others but it is less conservative. One can also observe

from the figures that the credible intervals are wider, causing true error much smaller

than requested. This could be due to the periodization transformed integrand, fGenzP,

being smoother than the r = 2 kernel approximation. Using a kernel of matching

smoothness could produce right credible intervals.

7.2.2 Using cubBayesNet g. Here we use fGenz (2.26) without any periodization,

and chose d = 3 and r = 1. The simulation results for this example integrand are

summarized in Figures 7.4, 7.5, and 7.6. In all cases, cubBayesNet g returns an

approximation within the prescribed error tolerance. We used the same setting as

before with generic slow Bayesian cubature in Section 2.8 for comparision. For error

threshold " = 10�5 with empirical stopping criterion, our fast algorithm takes about

2 seconds as shown in Figure 7.1 whereas the basic algorithm takes 30 seconds as

shown in Figure 2.4. cubBayesNet g uses fast Walsh transform which is slower in

MATLAB due to the way it was implemented. This is reason it takes more longer the

77

Figure 7.1. cubBayesLattice g: Multivariate normal probability example using the
empirical Bayes stopping criterion.

Figure 7.2. cubBayesLattice g: Multivariate normal probability example using the
full Bayes stopping criterion.

78

Figure 7.3. cubBayesLattice g: Multivariate normal probability example using the
GCV stopping criterion.

cubBayesLattice g. But comparing the number of samples, n, used for integration

provides more insight which directly relates to alogrithm’s computational cost. The

cubBayesLattice g used n = 16384 samples whereas cubBayesNet g used n = 32768

samples even with r = 1 order kernel.

Amongst the three stopping criteria, GCV achieved the results faster than

others but it is less conservative. One can also observe from the figures that the

credible intervals are narrower than in Figure 7.1. This shows that cubBayesNet g

with r = 1 kernel more accurately approximates the integrand.

7.3 Keister’s Example

This multidimensional integral function comes from [50] and is inspired by a

physics application:

µ =

Z

Rd

cos(ktk) exp(�ktk2) dt (7.1)

=

Z

[0,1]d
fKeister(x) dx,

79

Figure 7.4. cubBayesNet g: Multivariate normal probability example with empirical
Bayes stopping criterion.

Figure 7.5. cubBayesNet g: Multivariate normal probability example with the full-
Bayes stopping criterion.

80

Figure 7.6. cubBayesNet g: Multivariate normal probability example with the GCV
stopping criterion.

where

fKeister(x) = ⇡
d/2 cos

�����1(x)/2
��� ,

and � is the standard normal distribution. The true value of µ can be calculated

iteratively in terms of a quadrature as follows:

µ =
2⇡d/2

Ic(d)

�(d/2)
, d = 1, 2, . . .

where � denotes the gamma function, and

Ic(1) =

p
⇡

2 exp(1/4)
,

Is(1) =

Z 1

x=0

exp(�xTx) sin(x) dx

= 0.4244363835020225,

Ic(2) =
1� Is(1)

2
, Is(2) =

Ic(1)

2

Ic(j) =
(j � 2)Ic(j � 2)� Is(j � 1)

2
, j = 3, 4, . . .

Is(j) =
(j � 2)Is(j � 2)� Ic(j � 1)

2
, j = 3, 4,

81

Figure 7.7. cubBayesLattice g: Keister example using the empirical Bayes stopping
criterion.

7.3.1 Using cubBayesLattice g. Figures 7.7, 7.8 and 7.9 summarize the

numerical tests for this integral. We used the Sidi’s C
1 periodization, dimension

d = 4, and r = 2. As we can see the GCV stopping criterion achieved the results

faster than the others but it is less conservative similar to the multivariate Gaussian

case.

7.3.2 Using cubBayesNet g. Figures 7.10, 7.11 and 7.12 summarize the numerical

tests for this case. We used dimension d = 4, and r = 1. No periodization transform

was used as the integrand need not be periodic. In this example, we use r = 1

order kernel whereas in Section 7.3.1, r = 2 kernel was used. This necessitates

cubBayesNet g to use more samples for integration. As observed from the figures,

the GCV stopping criterion achieved the results faster than the others but it is less

conservative which is also the case with the multivariate Gaussian example.

7.4 Option Pricing

The price of financial derivatives can often be modeled by high dimensional

82

Figure 7.8. cubBayesLattice g: Keister example using the full Bayes stopping cri-
terion.

Figure 7.9. cubBayesLattice g: Keister example using the GCV stopping criterion.

83

Figure 7.10. cubBayesNet g: Keister example using the empirical Bayes stopping
criterion.

Figure 7.11. cubBayesNet g: Keister example using the full-Bayes stopping criterion.

84

Figure 7.12. cubBayesNet g: Keister example using the GCV stopping criterion.

integrals. If the underlying asset is described in terms of a discretized geometric

Brownian motion, then the fair price of the option is:

µ =

Z

Rd

payo↵(z)
exp(12z

T
⌃
�1z)

p
(2⇡)d det(⌃)

dz =

Z

[0,1]d
f(x) dx,

where payo↵(·) defines the discounted payo↵ of the option,

⌃ = (T/d)
�
min(j, k)

�d
j,k=1

= LL
T
,

f(x) = payo↵

0

BBBBBBB@

L

0

BBBBBBB@

��1(x1)

...

��1(xd)

1

CCCCCCCA

1

CCCCCCCA

.

The Asian arithmetic mean call option has a payo↵ of the form

payo↵(z) = max

1

d

dX

j=1

Sj(z)�K, 0

!
e�rT ,

Sj(z) = S0 exp
�
(r � �

2
/2)jT/d+ �

p
T/dzj

�
.

85

Figure 7.13. cubBayesLattice g: Option pricing using the empirical Bayes stopping
criterion. The hollow stars indicate the algorithm has not met the error threshold
✏ even with using maximum n.

Here, T denotes the time to maturity of the option, d the number of time steps, S0

the initial price of the stock, r the interest rate, � the volatility, and K the strike

price.

7.4.1 Using cubBayesLattice g. The Figures 7.13, 7.14 and 7.15 summarize the

numerical results for this example using T = 1/4, d = 13, S0 = 100, r = 0.05, � =

0.5, K = 100. Moreover, L is chosen to be the matrix of eigenvectors of ⌃ times the

square root of the diagonal matrix of eigenvalues of ⌃. Because the integrand has a

kink caused by the max function, it does not help to use a periodizing transform that

is very smooth. We chose the baker’s transform (4.16) and r = 1.

7.4.2 Using cubBayesNet g. The Figures 7.16, 7.17 and 7.18 summarize the nu-

merical results for the option pricing example using the same values for, T, d, S0,

r, �, K, as in Section 7.4.1. As mentioned before, this integrand has a kink caused

by the max function, so, cubBayesNet g could be more e�cient than cubBayesLat-

86

Figure 7.14. cubBayesLattice g: Option pricing using the full Bayes stopping cri-
terion. The hollow stars indicate the algorithm has not met the error threshold ✏

even with using maximum n.

Figure 7.15. cubBayesLattice g: Option pricing using the GCV stopping criterion.
The hollow stars indicate the algorithm has not met the error threshold ✏ even with
using maximum n.

87

Figure 7.16. cubBayesNet g: Option pricing using the empirical Bayes stopping
criterion. The hollow stars indicate the algorithm has not met the error threshold
✏ even with using maximum n.

tice g, as no periodization transform is required. This can be observed from the

number of samples used for intgration to meet the same error threshold. For the

error tolerance, " = 10�3, cubBayesLattice g used n = 220 samples, whereas cub-

BayesNet g used n = 217 samples.

7.5 Discussion

As shown in Figures 7.1 to 7.18, both the algorithms computed the integral

within user specified threshold most of the time except on a few occasions. This

is especially the case with option pricing example due to the complexity and high

dimension of the integrand. Also notice that the cubBayesLattice g algorithm fin-

ished within 10 seconds for Keister and multivariate Gaussian. Option pricing took

closer to 70 seconds due to the complexity of the integrand.

Another noticeable aspect from the plots of cubBayesLattice g is how much

the error bounds di↵er from the true error. For option pricing example, the error

88

Figure 7.17. cubBayesNet g: Option pricing using the full-Bayes stopping criterion.
The hollow stars indicate the algorithm has not met the error threshold ✏ even with
using maximum n.

Figure 7.18. cubBayesNet g: Option pricing using the GCV stopping criterion. The
hollow stars indicate the algorithm has not met the error threshold ✏ even with
using maximum n.

89

bound is not as conservative as it is for the multivariate Gaussian and Keister exam-

ples. A possible reason is that the latter integrands are significantly smoother than

the covariance kernel. This is a matter for further investigation.

Most noticeable aspect from the plots of cubBayesNet g is how closer the er-

ror bounds are to the true error. This shows that the cubBayesNet g’s estimation of

expected error in the stopping criterion is very accurate. Similar to cubBayesLat-

tice g, it missed meeting the given error threshold for the option pricing example,

as marked by the hollow stars, for " = 10�4. The algorithm reached max allowed

number of samples, n = 220 due to the complexity of the integrand.

7.6 Comparison with cubMC g, cubLattice g and cubSobol g

GAIL library provides variety of numerical integration algorithms based on

di↵erent theoretical foundations, We would like to compare how our algorithms per-

form relatively to these. We consider three GAIL algorithms 1) cubMC g, a simple

Monte-Carlo method for multi-dimensional integration, 2) cubLattice g, a quasi-

Monte-Carlo method using Lattice points, and 3) cubSobol g, a quasi-Monte-Carlo

method using Sobol points.

7.6.1 Keister integral. The Table 7.1 summarizes the performance of the methods

MC, Lattice, Sobol, BayesLat, and BayesSob—which refer to the GAIL cubatures,

cubMC g, cubLattice g, cubSobol g, cubBayesLattice g, cubBayesNet g, respec-

tively for estimating Keister integral defined in (7.1). We conducted two simulations

with d = 3 and 8. In the case of d = 3, all five methods succeeded completely,

meaning, the absolute error is less than given tolerance, i.e., |µ � µ̂|  ", where µ̂ is

a cubature’s approximated value. The fastest method was cubBayesLattice g. In

the case of d = 8, cubSobol g achieved 100% success rate and was the fastest. But

cubBayesLattice g was competitive and had the smallest average absolute error.

90

cubBayesNet g used lowest number of samples but was slower than cubSobol g.

Table 7.1. Comparison of average performance of cubatures for estimating the Keis-
ter integral (7.1) for 1000 independent runs. These results can be conditionally
reproduced with the script, KeisterCubatureExampleBayes.m, in GAIL.

d = 3, " = 0.005

Method MC Lattice Sobol BayesLat BayesSobol

Absolute Error 0.001 100 0.000 510 0.000 520 0.000 430 0.000 560

Tolerance Met 100% 100% 100% 100% 100%

n 2 500 000 4100 3900 1000 1900

Time (seconds) 0.1800 0.0069 0.0054 0.0029 0.0700

d = 8, " = 0.050

Method MC Lattice Sobol BayesLat BayesSobol

Absolute Error 0.012 000 0.015 000 0.007 300 0.001 800 0.008 300

Tolerance Met 100% 99% 100% 100% 100%

n 7 400 000 15 000 16 000 66 000 8200

Time (seconds) 1.2000 0.0220 0.0160 0.2100 0.3500

7.6.2 Multivariate Gaussian. The Table 7.2 summarizes the performance of

the methods MC, Lattice, Sobol, BayesLat, and BayesSob for estimating the multi-

dimensional Gaussian probability X ⇠ N(µ,⌃). This experiment demonstrates our

algorithm’s ability to handle high-dimensional integral.

We conducted two simulations with di↵erent ⌃ and estimation intervals (a,b)

but fixed µ = 0 and required error threshold, " = 10�3. In the first case, all five

methods succeeded completely. The fastest method was cubBayesLattice g but

cubBayesNet g used the lowest number of samples. In the second case also, all five

methods succeeded, but cubLattice g was the fastest. The cubBayesNet g was com-

petitive and had the smallest average absolute error using lowest number of samples.

91

The cubBayesLattice g achieved the next lowest average error but was slower than

cubSobol g.

Table 7.2. Comparison of average performance of cubatures for estimating the d = 20
Multivariate Normal (2.26) for 1000 independent runs with " = 10�3. These results
can be conditionally reproduced with the script, MVNCubatureExampleBayes.m, in
GAIL.

⌃ = Id, b = �a = (3.5, · · · , 3.5)

Method MC Lattice Sobol BayesLat BayesSobol

Absolute Error 2.20E�16 2.70E�14 2.70E�14 2.20E�16 2.20E�16

Tolerance Met 100% 100% 100% 100% 100%

n 10 000 1000 1000 1000 260

Time (seconds) 0.0410 0.0820 0.0710 0.0650 0.0790

⌃ = 0.4 Id + 0.6 11T
, a = (�1, · · · ,�1), b =

p
d(U1, · · · , Ud)

Method MC Lattice Sobol BayesLat BayesSobol

Absolute Error 2.30E�4 2.10E�4 4.40E�4 1.00E�4 4.80E�5

Tolerance Met 100% 100% 100% 100% 100%

n 10 000 1000 1000 1000 260

Time (seconds) 0.0350 0.0120 0.0140 0.0150 0.0300

92

7.7 Shape Parameter Fine-tuning

Allowing the kernel shape parameter to vary for each dimension could improve

the accuracy of numerical integration when the integrand under consideration has only

very low e↵ective dimension as in the Option Pricing example we demonstrated. We

demonstrate this advantage by integrating a function that is not symmetric across

dimensions,

f(x) =
dX

j=1

�j sin(2⇡x
2
j
) (7.2)

which has known integral

Z

[0,1)d
f(x) =

1

2
fresnels(d)

dX

j=1

�j

where fresnels is the Fresnel Sine integral,

fresnels(z) =

Z
z

0

sin

✓
⇡t

2

2

◆
dt.

Table 7.3. Comparison of average performance of Bayesian Cubature with common
shape parameter vs dimension specific shape parameter for estimating the d = 3
Fresnel Sine integral. These results can be conditionally reproduced with the script,
demoMultiTheta.m, in GAIL.

Fresnel Sine Integral in d = 3

Method OneTheta MultiTheta

Absolute Error 0.000 23 0.063 00

n 4100 260

Time (seconds) 0.0270 0.0230

The results are summarized from the two di↵erent approaches in Table 7.3.

The first method, called OneTheta, uses common shape parameter across all the

dimensions, whereas the second method, called MultiTheta, allows the shape pa-

rameters to vary across the dimensions. In the MultiTheta method, the shape pa-

rameter search is multivariate, so the magnitude of shape parameter depends on

93

the integrand’s magnitude in each dimension. We have chosen an integrand par-

ticularly to demonstrate this aspect (7.2) where we used d = 3 and the constants

� = (10�4, 1, 104). The choice of magnitude variations in constants � allows to make

the integrand varies significantly across dimensions.

We ran this test for 1000 times. In comparison, both the methods successfully

computed the integral all the time but MultiTheta was slightly faster. The Multi-

Theta method used less number of samples but the integration error was bigger than

the OneTheta. For the same number of samples, the OneTheta method will be much

faster since the shape parameter search is faster. The MultiTheta method is useful in

scenarios where we want to use smaller size, n, and the integrand varies significantly

across dimensions.

94

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

We have developed a fast, automatic Bayesian cubature that estimates the

high dimensional integral within a user defined error tolerance that occur in many

scientific computing such as finance, machine learning, imaging, etc. The stopping

criteria arise from assuming the integrand to be a Gaussian process. In Section 2.2, we

developed three criteria: empirical Bayes, full Bayes, and generalized cross-validation.

Empirical-Bayes uses maximum-likelihood to optimally choose the parameters, where

posterior of the parameters given the integrand values is maximized. Alternatively,

full-Bayes assumes non-informative prior on the parameters and then computes pos-

terior distribution of the integral µ, which leads to a t-distribution to obtain the

parameters. Generalized cross-validation extends the concept of cross-validation to

construct an objective which in turn is maximized.

The computational cost of the automatic Bayesian cubature can be dramati-

cally reduced if the covariance kernel matches the nodes. We have demonstrated two

such matches in practice. The first algorithm was based on rank-1 lattice nodes and

shift-invariant kernels where the matrix-vector multiplications can be accomplished

using the fast Fourier Transform. The second algorithm was based on Sobol’ points

with first order Walsh kernel where the matrix-vector multiplications can be accom-

plished using the fast Walsh transform. Three integration problems illustrate the

performance of our automatic Bayesian cubature algorithms.

For faster computations one could use fixed order kernels in cubBayesLat-

tice g, but for more advanced usage, we have added a kernel variation in Section 4.3

that allows one to optimally choose the kernel order without the constraint of being

95

an even integer.

During the numerical experiments, we noticed a computation step that causes

inaccuracy due to a cancellation error in the estimation of stopping criterion. We

have developed a novel technique in Section 6.1 to overcome this cancellation error

using the inherent structure of the shift-invariant kernel used in our algorithm.

In Section 3.5.1, we have analytically computed the gradient of the objective

function and the shift invariant kernel to use with steepest descent in kernel pa-

rameters search. Quasi-Monte Carlo cubature methods are e�cient [51] even if the

dimension is high given that the e↵ective dimension is low. To take advantage of low

e↵ective dimension, one should not fix the kernel shape parameter across all the di-

mensions. In this situation, steepest descent methods come in handy as one searches

for parameters in multi-dimensions.

8.2 Future Work

We demonstrated the capability of our new Bayesian cubature algorithms to

successfully compute the integrals faster within the user defined error tolerances. But

there are possibilities for improvements and new areas of applications. Some of the

improvement ideas are listed here:

• Higher order digital sequences and digital shift invariant kernels [47] [52]: We

could improve the computation speed of cubBayesNet g for smoother inte-

grands using higher order digital sequences and matching kernels, which have

the potential of being another match that satisfies the conditions in Section 3.

The fast Bayesian transform would correspond to a fast Walsh transform similar

to the second algorithm we demonstrated. For such kernels and the first order

Walsh kernel we demonstrated, periodicity is not assumed, however, special

structure of both the sequences and the kernels are required to take advantage

96

of integrand smoothness.

• Control variates: Hickernell et.al [19] [53] adapted control variates for Quasi-

Monte Carlo. Control variates are commonly used to improve the e�ciency

of IID Monte Carlo integration. One should be able to adapt our Bayesian

cubature to control variates, i.e., assuming

f = GP
�
�0 + �1 g1 + · · ·+ �p gp, s

2
C
�
,

for some choice of vector of functions g = {g1, . . . , gp}, where g : [0, 1)d ! Rp

whose integrals are known µg :=
R
[0,1)d g(x)dx, and some parameters �0, . . . , �p

in addition to the s and C, then

µ :=

Z

[0,1)d
f(x)dx =

Z

[0,1)d
h�(x)dx, where h�(x) := f(x) + �T (µg � g(x)).

Here g are the functions on which the QMC method does a good job of inte-

grating it without error. The goal is to choose an optimal � to make

bµ�,n :=
1

n

n�1X

i=0

h�(xi)

su�ciently close to µ with the least expense, n, possible. The e�cacy of this

approach has not yet been explored.

• Steepest descent: The kernels’s optimal shape parameter searched using steep-

est descent with kernels gradient could sometime get into local minima. This

needs more understanding and enhancements.

• Gaussian diagnosis: We assumed the integrand to be an instance of a Gaussian

process. One could attempt to prove if this is a good assumption using statistical

diagnosis for goodness of fit.

• Parallel Algorithm: For more demanding high performance computing appli-

cations, where the precision requirements are high, our algorithms will try to

97

use large number samples leading to longer computation time. One approach

to overcome this constraint is to use Parallel computing techniques to speed up

the algorithm. Most time consuming parts of our algorithm are shape param-

eter search and fast Bayesian transform computation. Fast Fourier transform

(FFT) and Fast Walsh transform are easily amenable to parallelization. There

exist plenty of prior work that can be adapted to work with our algorithms. We

use radix-2 FFT. One could use a higher radix FFT to make the computations

faster.

Another area of improvement is the parameter search. We explored the steep-

est descent algorithm but the speedup was not significant. One could explore

higher order algorithms such as Newton method, which could find the minima

faster. Fast Bayesian transforms are repeatedly computed in every step of the

parameter search if it can be avoided by interpolation or other techniques, this

could significantly speedup the algorithm.

One could also use GPU to run the whole code of our Bayesian Cubature algo-

rithms or just the FFT/FWHT part to get a easier speedup.

98

BIBLIOGRAPHY

[1] R. Jagadeeswaran and F. J. Hickernell, “Fast automatic Bayesian cubature using
lattice sampling,” Statist. Comp., vol. 29, pp. 1215–1229.

[2] F. J. Hickernell and R. Jagadeeswaran, “Comment on “Probabilistic integration:
A role in statistical computation?”,” Statist. Sci, vol. 34, pp. 23–28, 2019.

[3] P. Glasserman, Monte Carlo Methods in Financial Engineering, ser. Applications
of Mathematics. New York: Springer-Verlag, 2004, vol. 53.

[4] A. Keller, “Quasi-Monte Carlo image synthesis in a nutshell,” in Monte Carlo
and Quasi-Monte Carlo Methods 2012, ser. Springer Proceedings in Mathematics
and Statistics, J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, Eds., vol. 65.
Springer Berlin Heidelberg, 2013, pp. 213–249.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[6] M. Beckers and A. Haegemans, “Transformation of integrands for lattice rules,”
in Numerical Integration: Recent Developments, Software and Applications,
T. O. Espelid and A. C. Genz, Eds. Kluwer Academic Publishers, Dordrecht,
1992, pp. 329–340.

[7] A. Sidi, “Further extension of a class of periodizing variable transformations for
numerical integration,” J. Comput. Appl. Math., vol. 221, pp. 132–149, 2008.

[8] ——, “A new variable transformation for numerical integration,” in Numerical
Integration IV, ser. International Series of Numerical Mathematics, H. Brass and
G. Hämmerlin, Eds., no. 112. Birkhäuser, Basel, 1993, pp. 359–373.

[9] D. Laurie, “Periodizing transformations for numerical integration,” J. Comput.
Appl. Math., vol. 66, pp. 337—344, 1996.

[10] L. L. Cristea, J. Dick, G. Leobacher, and F. Pillichshammer, “The tent transfor-
mation can improve the convergence rate of quasi-Monte Carlo algorithms using
digital nets,” Numer. Math., vol. 105, pp. 413–455, 2007.

[11] F.-X. Briol, C. J. Oates, M. Girolami, M. A. Osborne, and D. Sejdinovic, “Prob-
abilistic integration: A role in statistical computation?” Statist. Sci., 2019, to
appear.

[12] P. Diaconis, “Bayesian numerical analysis,” in Statistical Decision Theory and
Related Topics IV, Papers from the 4th Purdue Symp., West Lafayette, Indiana
1986, S. S. Gupta and J. O. Berger, Eds. Springer-Verlag, New York, 1988,
vol. 1, pp. 163–175.

[13] A. O’Hagan, “Bayes-Hermite quadrature,” J. Statist. Plann. Inference, vol. 29,
pp. 245–260, 1991.

[14] K. Ritter, Average-Case Analysis of Numerical Problems, ser. Lecture Notes in
Mathematics. Berlin: Springer-Verlag, 2000, vol. 1733.

[15] C. E. Rasmussen and C. Williams, “Bayesian Monte Carlo,” in Advances in
Neural Information Processing Systems, S. Thrun, L. K. Saul, and K. Obermayer,
Eds. MIT Press, vol. 15, pp. 489 – 496.

99

[16] F. J. Hickernell, “The trio identity for quasi-Monte Carlo error analysis,” in
Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Stanford, USA, August
2016, ser. Springer Proceedings in Mathematics and Statistics, P. Glynn and
A. Owen, Eds. Springer-Verlag, Berlin, 2018, pp. 13–37, arXiv:1702.01487.

[17] F. J. Hickernell and Ll. A. Jiménez Rugama, “Reliable adaptive cubature using
digital sequences,” in Monte Carlo and Quasi-Monte Carlo Methods: MCQMC,
Leuven, Belgium, April 2014, ser. Springer Proceedings in Mathematics and
Statistics, R. Cools and D. Nuyens, Eds., vol. 163. Springer-Verlag, Berlin,
2016, pp. 367–383, arXiv:1410.8615 [math.NA].

[18] Ll. A. Jiménez Rugama and F. J. Hickernell, “Adaptive multidimensional integra-
tion based on rank-1 lattices,” in Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC, Leuven, Belgium, April 2014, ser. Springer Proceedings in Mathemat-
ics and Statistics, R. Cools and D. Nuyens, Eds., vol. 163. Springer-Verlag,
Berlin, 2016, pp. 407–422, arXiv:1411.1966.

[19] F. J. Hickernell, Ll. A. Jiménez Rugama, and D. Li, “Adaptive quasi-Monte
Carlo methods for cubature,” in Contemporary Computational Mathematics
— a celebration of the 80th birthday of Ian Sloan, J. Dick, F. Y. Kuo, and
H. Woźniakowski, Eds. Springer-Verlag, 2018, pp. 597–619.

[20] A. OHagan, “Bayes-hermite quadrature,” Journal of Statistical Planning and
Inference, vol. 29(3), p. 245260, 1991.

[21] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing. Cambridge, Massachusetts: MIT Press, 2006, (online version available
at http://www.gaussianprocess.org/gpml/).

[22] R. Brent, Algorithms for Minimization Without Derivatives. Prentice-Hall,
1973.

[23] G. Forsythe, M. Malcolm, and C. Moler, Computer methods for mathematical
computations. Prentice-Hall, 1976.

[24] K. Dong, D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson, “Scalable log
determinants for gaussian process kernel learning,” NIPS, 2017, in press.

[25] P. Craven and G. Wahba, “Smoothing noisy data with spline functions: Es-
timating the correct degree of smoothing by the method of generalized cross-
validation,” Numer. Math., vol. 31, pp. 307–403, 1979.

[26] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a
method for choosing a good ridge parameter,” Technometrics, vol. 21, pp. 215–
223, 1979.

[27] G. Wahba, Spline Models for Observational Data, ser. CBMS-NSF Regional Con-
ference Series in Applied Mathematics. Philadelphia: SIAM, 1990, vol. 59.

[28] A. Genz, “Comparison of methods for the computation of multivariate normal
probabilities,” Computing Science and Statistics, vol. 25, pp. 400–405, 1993.

[29] J. Dick, F. Kuo, and I. H. Sloan, “High dimensional integration — the Quasi-
Monte Carlo way,” Acta Numer., vol. 22, pp. 133–288, 2013.

100

[30] J. Dick and F. Pillichshammer, Digital Nets and Sequences: Discrepancy Theory
and Quasi-Monte Carlo Integration. Cambridge: Cambridge University Press,
2010.

[31] N. J. Higham, Functions of matrices: theory and computation. SIAM, 2008.

[32] F. J. Hickernell and H. Niederreiter, “The existence of good extensible rank-1
lattices,” J. Complexity, vol. 19, pp. 286–300, 2003.

[33] F. J. Hickernell, “Quadrature error bounds with applications to lattice rules,”
SIAM J. Numer. Anal., vol. 33, pp. 1995–2016, 1996, corrected printing of Sec-
tions 3-6 in ibid., 34 (1997), 853–866.

[34] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, and A. B. O.
Dalhuis, “Digital library of mathematical functions,” 2018. [Online]. Available:
http://dlmf.nist.gov/

[35] S.-C. T. Choi, Y. Ding, F. J. Hickernell, L. Jiang, Ll. A. Jiménez
Rugama, D. Li, R. Jagadeeswaran, X. Tong, K. Zhang, Y. Zhang, and
X. Zhou, “GAIL: Guaranteed Automatic Integration Library (versions 1.0–2.3),”
MATLAB software, 2013–2019. [Online]. Available: http://gailgithub.github.
io/GAIL Dev/

[36] D. Nuyens. [Online]. Available: https://people.cs.kuleuven.be/⇠dirk.nuyens/
qmc-generators/

[37] I. M. Sobol’, “The distribution of points in a cube and the approximate evaluation
of integrals,” U.S.S.R. Comput. Math. and Math. Phys., vol. 7, pp. 86–112, 1967.

[38] H. Niederreiter, “Constructions of (t,m, s)-nets and (t, s)-sequences,” Finite
Fields Appl., vol. 11, pp. 578–600, 2005.

[39] J. F. Baldeaux, “Higher order nets and sequences,” Ph.D. dissertation, The
School of Mathematics and Statistics at The University of New South Wales,
June 2010.

[40] F. J. Hickernell and R. X. Yue, “The mean square discrepancy of scrambled
(t, s)-sequences,” SIAM J. Numer. Anal., vol. 38, pp. 1089–1112, 2000.

[41] A. B. Owen, “Randomly permuted (t,m, s)-nets and (t, s)-sequences,” pp. 299–
317.

[42] J. Matoušek, “On the L2-discrepancy for anchored boxes,” J. Complexity, vol. 14,
pp. 527–556, 1998.

[43] I. M. Sobol’, “Uniformly distributed sequences with an additional uniformity
property,” Zh. Vychisl. Mat. i Mat. Fiz., vol. 16, pp. 1332–1337, 1976.

[44] F. Y. Kuo and D. Nuyens, “Application of quasi-Monte Carlo methods to ellip-
tic pdes with random di↵usion coe�cients a survey of analysis and implemen-
tation,” Foundations of Computational Mathematics, vol. 16(6), pp. 1631–1696,
2016.

[45] D. Nuyens. [Online]. Available: https://people.cs.kuleuven.be/⇠dirk.nuyens/

[46] H. S. Hong and F. J. Hickernell, “Algorithm 823: Implementing scrambled digital
nets,” ACM Trans. Math. Software, vol. 29, pp. 95–109, 2003.

101

[47] D. Nuyens, “The construction of good lattice rules and polynomial lattice rules,”
Aug 2013.

[48] P. Bratley and B. L. Fox, “Algorithm 659: Implementing Sobol’s quasirandom
sequence generator,” ACM Trans. Math. Software, vol. 14, pp. 88–100, 1988.

[49] J. Dick, “Walsh spaces containing smooth functions an quasi-Monte Carlo rules
of arbitrary high order,” SIAM J. Numer. Anal., vol. 46, no. 1519–1553, 2008.

[50] B. D. Keister, “Multidimensional quadrature algorithms,” Computers in Physics,
vol. 10, pp. 119–122, 1996.

[51] I. H. Sloan and H. Woźniakowski, “When are quasi-Monte Carlo algorithms
e�cient for high dimensional integrals?” J. Complexity, vol. 14, pp. 1–33, 1998.

[52] J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens, and F. Pillichshammer, “Ef-
ficient calculation of the worst-case error and (fast) component-by-component
construction of higher order polynomial lattice rules,” Numerical Algorithms,
vol. 59, pp. 403–431, Mar. 2012.

[53] D. Li, “Reliable quasi-Monte Carlo with control variates,” Master’s thesis, Illinois
Institute of Technology, 2016.

[54] R. Cools and D. Nuyens, Eds., Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC, Leuven, Belgium, April 2014, ser. Springer Proceedings in Mathemat-
ics and Statistics, vol. 163. Springer-Verlag, Berlin, 2016.

