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Connectivity for 3 x 3 x K contingency tables

Toshio Sumi'!"*, Toshio Sakata'
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Abstract. We consider an exact sequential conditional test for three-way conditional test of no
interaction. At each time 7, the test uses as the conditional inference frame the set F(H;) of all
tables with the same three two-way marginal tables as the obtained table H,. For 3 x 3 x K tables,
we propose a method to construct F(H;) from F(H,;_1). This enables us to perform efficiently
the sequential exact conditional test. The subset S, of F(H,) consisting of s + H, — H,_, for
s € F(H,—1) contains H,, where the operations + and — are defined elementwise. Our argument
is based on the minimal Markov basis for 3 x 3 x K contingency tables and we give a minimal
subset M of some Markov basis which has the property that F(H,) ={s—m|s € S;,m € M}.
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1. Introduction

An I x J x K contingency table is denoted by
(tijh)1<i<I, 1<j<J, 1<k<K

where t;; is a nonnegative integer which is the count of events at the (i, 7, k) level of
considered three factors. The object of the statistical analysis of contingency tables is to
understand the factor effects and their interaction effects. For such an analysis, the condi-
tional inference is often applied where the set of contingency tables with fixed marginals
is used as the frame of conditional inference.

Now we define some terminology. We denote by Q(7,J, K) the set of all I x J x K
contingency tables. The marginal of I-direction is a J x K matrix

I
>tk :
i=1 1<5<J, 1<k<K

The marginals of J-direction and K-direction are similarly defined. For an I x J x K
contingency table t, let F(t) be the set of I x J x K contingency tables with the same
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marginals as those of t. A table with all zero marginals is called a move. A Markov
basis is defined as a set of moves connecting all elements of F(t) for any contingency
table t. Diaconis and Sturmfels [12, 6] studied an algebraic algorithm for sampling from
conditional distributions by using the concept of Markov basis.

In the sequential conditional test, we consider the sequence of conditional frames

F(Hy) —» F(H) — - — F(Hr—1) > F(Hy) = -+,

where H is a contingency table obtained from H._; by adding one data point.

The Markov chain Monte Carlo (MCMC) method is often used to perform the exact
conditional test of no three-way interaction [1], which is based on Markov bases. Markov
bases are known for Q(7, J,2) and (3, 3, K) [12, 3], however, determining a Markov basis
is NP hard in general [7].

The object of this paper is to propose a method to obtain F(H,) from F(H,_1) and to
prove several neighborhood theorems which are foundations for performing the sequential
conditional test. The sequential conditional test proceeds as follows. For a given table
H._; at the stage 7 — 1, we perform the conditional test by calculating the p-value of
the table H,_i. If the p-value is small enough we reject the null hypothesis and stop the
sequential test. Otherwise we take one more data point with a new table H, and repeat
the process up to the predetermined stage. The difference of our method and the MCMC
method is how to get the p-value. Our method calculates the p-value exactly by generating
all tables of F(H;) by using the previous frame F(H,_1) in Q(I, J, K) (see Theorem 1).
On the other hand, the MCMC method estimates the p-value by a random sample of
size n from the null distribution over the set F(H), without using any information about
F(H;—1). To take one random sample from the null distribution we run a Markov chain of
length ¢ by Metropolis-Hastings’ trick [8, 9] which converges to the null distribution in the
limit. Note that for convergence to the null distribution, a length ¢ of Markov chain must
be large (for example, [6, 5]). Therefore for cases that |F(H;)|, the cardinality of F(H,),
is moderate, it is expected that our exact calculation method has better performance than
the MCMC method. Moreover note that our method performs the exact calculation of
the p-value though the MCMC method only estimate the p-value.

We describe the simulation result in Table 1, whose entries are the average of 5000
trials of our method of the sequential conditional test for €(3,3,3) with 50 data points
by the software R on a personal computer (Linux 2.6, Intel Xeon CPU E5420 2.5GHz, R
version 2.11.1). The significance level at each stage was set as 5% and then r denotes the
rejected stage. The simulation of the MCMC method spends longer than one month in
the same environment. Therefore we only estimated the spending time from the result on
£ =100. That is, since the time to estimate the p-value by Metropolis-Hastings’ algorithm
grows linearly with respect to each of n, £ and r, we estimated that the spending time is
12549 seconds on average for n = 10000 and ¢ = 1000. It is much longer than 0.95034
seconds with our method. The time in our method depends on |F(t)| and is spent mainly
to remove duplications.

This article is organized as follows. We summarize our methods and main results
in Section 2. We define a set DM(io, jo, ko) of contingency tables obtained from a set of
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Table 1: Sequential conditional test by our method
Ave. times Max. Ave. Max. Rejection
stages r (sec.) times |F(H,)| |\ F(H,)| rate
29.2154 0.95034 39.29 132.5364 5682 0.905
moves. The set determines whether F(¢) has a contingency table ¢' with ¢ ., > 0 for

a 3 x 3 x K contingency table t with t; j,k, = 0 (see Theorem 2). In Sections 3-6, we
study 3 x 3 x K contingency tables of (4o, jo, ko) for K = 2,3,4,5, respectively, which
are minimal among contingency tables t with ¢;,;,x, = 0 such that F(¢) has a contingency
table ¢’ with t;O Joko > 0. In the last section, we prove the main theorems.

2. A method and main results

In this section, we fix integers ig, jo and kg. For two I x J x K tables s = (sijk) and
t = (tijr), we define the elementwise addition and subtraction by (s 4+ t);jx = sijr + tijk
and (s —t)ijx = Sijk — tijk, respectively. We call an element of a Markov basis a basis
move. A Markov basis has the property that for any contingency table ¢, two distinct
tables s1 and s9 of F(t) are connected, that is, there are an integer » > 1 and basis moves

mi, Mo, ..., m, such that all of

s1+my1, S1+mi+mo, ..., S1+mi+---+m,

are elements of F(t) and s2 = s1 +my1 + - -- + m,. The sequence my,ma, ..., m, is called
a path connecting from s; to sg of length .

For two matrices M and N with the same size, if all elements of M — N are nonnegative,
we say that M is larger than or equal to IV elementwise, and denote the relation as M > N.
Similarly for two tables ¢ and s, if all elements of ¢ — s are nonnegative, we say t > s.

Suppose that an I x Jx K contingency table H; is obtained from H,_; simply by adding
one at (ig,jo, ko). Let ¢: F(H,—1) — F(H;) be an injective map given by increasing
(40, jo, ko) by one. Then, ¢(s) = s+ H; — H;_1 and in particular, ¢(H,_1) = H,.
We want to obtain every element of F(H;). The subset o(F(Hr_1)) of F(H;) is a set
consisting of all tables t = (t;;,) of F(H;) with t;,;o5, > 0. To obtain every table t of
F(Hy) with t o6, = 0, we need to consider a sequence of basis moves from ¢ to some
table t' = (t};;) with ¢; ,, > 0. Fixing a Markov basis, for a table ¢, a table s € F(t) is
called in an r-neighbourhood of ¢ if there is a path of length less than or equal to r» which
connects from ¢ to s in F(¢). Since a Markov basis connects between any two elements of
F(t), all elements of F(¢) are in an m-neighbourhood of ¢ for a sufficiently large integer
m. In [11], we studied the minimal integer n such that all elements of F(H;) are in an
n-neighbourhood of ¢ for some t € ¢(F(H,_1)) and proved mathematically that n = 1 for
I x J x 2 contingency tables, and computationally that n = 2 for 3 x 3 x 3 contingency
tables with respect to the minimal Markov basis given by Aoki and Takemura [3, 2]. In
this paper we show n = 3 mathematically for any 3 x 3 x K contingency table with K > 4
with respect to the minimal Markov basis [3, 2].
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In the case when K = 1, Sakata and Sawae [10] developed the sequential conditional
test for contingency two-way tables. In the case when H, is an I x J X 2 contingency
table, the set F(H;) ~ p(F(H;_1)) is covered by the set consisting of tables s + m for
all s € p(F(Hr—1)) with 54,0k, = 1 and all basis moves m with m; ok, = —1 [see 11, in
detail]. In the case when H, is a 3 x 3 x 3 contingency table, the set F(H,) \ p(F(H;-1))
is covered by the set consisting of tables s + mgo and s+ my +my for all s € o(F(H,—1))
with s;,j05, = 1 and all basis moves my with (m1);yjor, = 0 and mg with (m2)igjor, = —1.
There are duplications. Hence, all m; and ms are not needed and then we obtained some
pairs (my, mg).

We denote by ®(1, J, K; i, jo, ko) the set of I x J x K contingency tables ¢ such that
tiojoko = 0 and t can be transformed to a contingency table s with sk, > 0 by a
sequence of basis moves. In other words, ®(I,J, K;ig, jo, ko) is the set of I x J x K
contingency tables ¢ with ¢; jr, = 0 such that F(¢) has a table s with s; ok, > 0.
If a sequence of moves mq,ms,...,m, transforms ¢ to s, then the sequence of moves
—My, —My_1,...,—mq inversely transforms s to ¢. To obtain F(H,) from F(H,_1), we
prove that there exists a unique minimal set S of contingency tables having the property
that for t € ®(3, 3, K io, jo, ko) there is s € S with ¢ > s. Note that hereafter we describe
a 3 x 3 x K table (t;;,) as follows.

t111 121 t131 t112 t122 t132 ik tiek tisk
to11 To21 toz1  to12 f922 toza oo+ lo1k took toszk
t311 t321 t331 312 €322 1332 t31Kx t32K 33K

For I >1I',J>J and K > K', an I' x J' x K’ contingency table t = (t;;;,) is regarded
as an I x J x K contingency table ¢’ = (t;;;) given by

t

1

e ifi<T,j<J,and k <K',
o otherwise.

We introduce elements of the unique minimal Markov basis given by [3] for 3 x 3 x K
contingency tables. 2224(iyi2, j1j2, k1k2) is a table whose elements at (i1, j1, k1), (2, j2, k1),
(i17j27 kZ)v (i2aj17 kQ) have a value 1, elements at (ilana k1)7 (iQajlv kl)a (i17j1> k?)a (i2>j27 k2)
have a value —1, and the other elements have a value 0, and 332¢(i172i3, 17273, k1k2) is a
table whose elements at (il,jl, k‘l), (’iQ,jQ, ]{31), (ig,jg, k‘l), (il,jz, k‘z), (’ig,jg, ]{22), (ig,jl, k‘g)
have a value 17 elements at (i17j27 kl)? (i27j3a kl)? (i3aj17 kl)a (i17j17 k?)a (i27j27 k2)7 (i37j37 k?)
have a value —1, and the other elements have a value 0. They are denoted respectively by
M4(i1’i2,j1j2, klkg) and Mé((iligig,jljgj:g, klkg) in [3] Both are illustrated in Table 2.

Table 2: Markov moves with size 2 x 2 x 2 or 3 x 3 x 2

1-1 0 -1 1 0

11 1 0 1-1 0-1 1
101 1 0-1
2224(12,12,12) 3326(123, 123, 12)

The basis moves 233¢(i112, j1j273, k1keks) and 323¢(i1i213, j1J2, k1koks) are defined simi-
larly as 332¢(i14213, j1J2J3, k1k2). They are denoted respectively by Mé (1112, j172J3, k1koks)
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and Mg(ilizig,jljg, k1k2k3) in [3] The basis move m = 334(ili2i3,j1j2j3, k1k2k3k4) which
is denoted by Mg(iligig,jljgjg, k1k2k3k4) in [3] is defined as

Miyjrky = Miyjoke = Miggiks = Migjoks = Migjaks = Migjiky = Migjoky = Migjsks = L,

My j1ko = Miyjoks = Miggiky = Miggoks = Miggsks = Migjiks = Migjoky = Migjsks = -1,

and all the other elements are zero, and m = 335(i1i213, j1j273, k1kakskaks) which is de-
noted by Mlo(iligig,jljgjg, k1k2k3k4k5) in [3] is defined as

My g1k = Miygjoks = Miyjoks = Miygsks = Miggiks = Migjak:
= Miygjsks = Migjiky = Migjaks = Mizjaks = 1,
My j1ke = Mhiyjoky = Miyjoks = Miygsks = Miggikr = Migjaks

= Migjsks = Migjiks = Migjoky = Migjghy = —1;

and all the other elements are zero.

Furthermore, we denote by 9t (i, jo, ko) the set of all the following moves whose element
at (4o, jo, ko) has a value 1, where all moves are sums of elements of the minimal Markov
basis, integers io and i3 are all positive, distinct and different from 7, and for the integers
Ir, T =2,3and k., r = 2,...,5 we assume the same convention.

2224 (ioi2, joj2, kok2), 3326(i0i3i2, joj2J3, koka), 2336(ioi2, jojzjz, kokaks),

3236(i07312, jojo, kokaks), 334s(ioiai3, jojajs, kokakaks), 334s(iz2iois, jajoss, kokaksks),
334s(i3ioi2, jojsj2, kakakoks), 334s(izioia, j3jajo, k3kakako),

2224(i2i3, jajs, kaks) + 2224(iot2, joj2, koka), 2224(iois, jojs, kska) + 2224(ioiz, joj2, koks),
2224 (013, joJs, ksko) + 2224 (i072, jojs, kok2), 2224(i2i3, jojs, ksko) + 2224(i0i3, jojz2, koka),
2224(ioi3, joJs, kaka) + 3326 (ioi2is, jajojs, ksko),

2224(io13, joJ2, k3k2) + 2336 (i072, jojs 2, kokska),

2224 (i2i3, joj2, kaks) + 2336 (i0i2, jojsjz, kokaks),

2224(i213, joJs, kako) + 2336 (1073, jojsJ2, kokaks),

2336(i073, JjoJ2J3, kakako) + 2224(ioi2, joj3, kokz),

2224 (013, joJ3, kska) + 2224 (1213, j2j3, k3ka) + 2224(iot2, jojz, koks),

2224 (ioi2, j2J3, ksko) + 2224(1213, joj2, kako) + 2224(i0i3, jojs, kokz),

33510 (i0i2i3, j3joj2, kekaksksko), 33510(ioi2is, joj2Js, kokaksksks),

33510 (i2i0i3, j2j0j3, kokskskakz), 33510(i2i0?s, j3j2jo, kakskakako),

33510 (i3i0i2, joj3jz, kakskokiks)

Then, we establish the following theorems.

Theorem 1. Let ¢: (3,3, K) — (3,3, K) be a map given by increasing (ir,jr, kr) by
one and let Hr_1 and H; be 3 x 3 x K contingency tables such that o(H;—1) = H,. Then

F(H,) = o(F(H,_1))U{s —m | s € o(F(Hr_1)),m € M(ir, jr, kr)} N Q(3,3, K).
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For an integer n, we put n* := max(n,0) and n~ := max(—n,0). It is clear that
n=n"—n" and n= = (—n)*. Further we put m* = (t:;k) and m~ = (t;;;) for a table
(tijlc) and

N(io, jo, ko) = {m™ | m € M(io, jo, ko) }-

Lemma 1. Let m be an I x J x K move. For an I x J x K contingency table t, ift > m™,
then t +m is a contingency table.

Proof. This is obvious. O

Note that a minimal Markov basis for 3 x 3 x K contingency tables consists of in-
dispensable moves, where a move m with m;, ok, > 0 is said to be indispensable if
_ - — - - + _
F(m*) = F(m~) = {m*,m~} [3, 4]. For a contingency table ¢, we put F;',, (t) =
{s € F(t) | siyjoko > 0} and ‘Fz%jok:o (t) = {s € F(t) | Sigjoko = 0}. In this paper, we use the
same terminology in a slightly different way. We call a contingency table ¢ an indispens-
able table for the (io, jo, ko)-element, if t; ok, = O, 'Fi—:)_joko (t) # 0 and ‘Fi—gjoko (') = 0 for
any contingency table ¢’ such that ¢’ <t and ' # t.

Lemma 2. Let S be a set of contingency tables s of ®(1,J, K;io, jo, ko) with siyjor, = 0
having the property that for s' € Q(I, J, K) with S;ojoko =0, s € ®(I,J, K;io, jo, ko) if and
only if there is s € S with s’ > s. Then any indispensable table for the (ig, jo, ko)-element
lies in S. Furthermore, if there exists a unique minimal Markov basis B, then for any
m € B with m;yjor, > 0, m~ is an indispensable table for the (io, jo, ko)-element and in

particular m™ € S.

Proof. 1t follows from the definition that an indispensable table for the (i, jo, ko)-
element lies in §. Let m € B with m;yjk, > 0. Since m~ € ®(I, J, Ko, jo, ko), take a
table s € S(ig, jo, ko) with m™ > s. Note that s € ®(1, J, K, 19, jo, ko). Take a sequence of

basis moves my,...,m, such that s; := s+mq, s2 := s1 +ma, ..., Sy := S,—1 +m, belong
to Q(I,J, K) and (s;)iyjok, > 0. Suppose to the contrary that s # m™. Then the sum of
all entries of s is less than one for m™. Since the sums of all entries of s, fora=1,...,r
are same, s, 7 m~ for any @ = 1,...,r. Thus the basis move m is removable from the
Markov basis. However it contradicts to the minimality of the Markov basis. Therefore,
s=m~ and m~ € S(ig, jo, ko)- O

For any indispensable move m with mjgj,k, > 0, m™ is an indispensable table for the
(%0, jo, ko)-element.

Theorem 2. Let t € (3,3, K). Thent € ®(3,3, K;io, jo, ko) if and only if there exists a
table s € N(io, jo, ko) N Q2(3,3, K) such that t > s.

Theorem 3. The set N(ig, jo, ko) N 23,3, K) is a minimal and unique set for 3 x 3 x K
contingency tables having the properties as Theorems 1 and 2.

For an I x J x K table t = (;;,), we denote by t..;, the k-th K-face of ¢ and write ¢ as
(t.1;t.0;- - ;t.k). Foran I xJx K contingency table t and an I x J x K’ contingency table
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t', t is said to be K-subordinate to t" if ¢.j, < t{_ko, and there is a number ¢ (1 < ¢ < K')
such that t., </, for each k with 1 <k < K and k # ko.

Let S,, be the set of permutations on 1,2,...,n and put S,(m) = {oc € S,, | o(1) = m}
for 1 < m < n. Let o5 € Si(ip), o5 € S;(jo), and o € Sk(ko). For an I x J x K
contingency table t = (t;;x), we have a new I x J x K contingency table (o7,07,0K) -t =
(tiix) given by tiy = t5 ()0, (j)ox (k). The bijection map (o7,0,,0k) from Q(I, J, K) to

1

itself induces a bijection from ®(I,J, K;1,1,1) to ®(1, J, K; o, jo, ko).

Theorem 4. Let t € Q(3,3,K) and uw = max; j,tijr. If t ¢ (3,3, K;1o,jo, ko) then
23:1 tijoko = 0, Z?:l tigjko = 0, Zle tiojok = 0, ort is K-subordinate to (o7,07,0K) - h
for some o1 € Sy(io), 05 € Sj(jo), ok € Sk (ko) and some table h of the following tables.

Oul0 wuuu Ouu wuu Ouu uuu Ou0 wuu
vuy  uwlu wuu w00 | vuw w00 | wuu  ulu
Oul0 wuu uur  u00 Ouu uuu uuy  ulu
Ou0 wuu wul O0u0 wuu Ouu Ouv wuuu 00w

vuy ulu w00 , www uOu 00w , wuu w00 wulu ,

Ouu O00u wuuu uul u00 wuwu Ou0 wul wuuu

Ou0 wuu Ouu Ouu wuu Oul

uu0 v00 wuw , wuu w00 wul

uuu  ulu 00w 00u ulu wuu

Proofs of the above theorems are based on the mathematical proof for 3 x 3 x 3
contingency tables in [13].

3. 3 X 3 X 2 contingency tables

The minimal Markov basis for 3 x 3 x 2 contingency tables is the set consisting of
2224 (iviz, j1j2, k1ke) and 3326 (ivizis, j1J2J3, k1k2).

Theorem 5. A contingency table t € ®(3,3,2;10, jo, ko) can be transformed to a contin-
gency table t' with t;lojoko =1 by 2224(i0i2,j0j2, ]{0/{2) or 3326(i0i3i2,j0j2j3, k‘okﬁz).

Proof. Every tables t € ®(I,J,2;i0,jo, ko) can be moved to some table ¢ with

/

tijoko = 1 by one basis move [11]. Thus ¢ is moved to ' by 2224(ioi2, joj2, kok2) or
332 (i0iais, jajogs, koks) if I = J = 3. 0
We put
cta(ioiz, joj2, koka) = 2224(ioi2, joja, k2ko) ™
and

ct& (igizis, jojajs, koka) = 3326 (ioisia, jojais, koka) ™.

Then cty(igiz, jojo, koke) is a table of ®(3, 3, K; io, jo, ko) whose four elements at (i, j2, ko),
(0, 72, ko), (0, Jo, k2), and (i2, j2, ko) have a value 1 and the other elements have a value
0, and ct& (igizis, jojajs, koks) is a table of ®(3,3, K;io, jo, ko) whose six elements at
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Table 3: Contingency 3 X 3 x 2 tables

010 100 010 100
100 010 100 001
000 000 001 010

ct4(12,12,12)  ct&(123,123,12)

(iOaj%kO)v (iZajO,kO)a (i3vj3a kO)) (Z.Ovj()a kZ)a (i2aj3ak2)v and (i37j2a k2) have a value 1 and
the other elements have a value 0.
Further, we put

Na(io, jo, ko) = {ctaliviz, joja, kokz), ct§ (ioizis, jojojs, koka) | iz, ds, ja, j3, ka}-
The set Ma(io, jo, ko) N (3,3, K) consists of 6(K — 1) tables. Thus, Theorem 5 and
Lemma 2 imply the following proposition.

Proposition 1. Theorems 2—4 hold for K = 2.

A contingency table ¢ is called isolated if there exists no basis move transforming ¢. It
is easy to see directly that 3 x 2 x 2 tables

0% sk 0%  *x
*x %0 and *x %0
0% % *x  x0

are isolated. Then Proposition 1 implies the following corollary.

Corollary 1. The following 3 x 3 x 2 contingency tables can not be transformed to a
contingency table t with t111 = 1. The former two tables are isolated.

0x0  *xx Ok skoksk Ok skokk 0%0  *kxx

sk k0% sk %00, sekx %00, kkx x0x

00 s *xx %00 Ok *%x xxx k0*
(2a) (2b) (2¢) (2d)

Theorem 6. Let t be a 3 X 3 X 2 contingency table with t121,t211,t112 > 0 and t111 = 0.
The table t belongs to ®(3,3,2;1,1,1) if and only if it is not K-subordinate to any table
in Corollary 1.

Proof. If t is K-subordinate to a table A in Corollary 1, then ¢ ¢ ®(3,3,2;1,1,1) since
h ¢ ®(3,3,2;1,1,1) by Corollary 1. Suppose that ¢ is not K-subordinate to any table
in Corollary 1. If tg20 > 0, then t € ®(3,3,2;1,1,1) by ct4(12,12,12) and so suppose
that t999 = 0. Now suppose that t137 = 0. Then #3992 > 0 since ¢ is not K-subordinate
to a table of type (2d). If 311 > 0 then ¢t € ®(3,3,2;1,1,1) by ct4(13,12,12) and so let
suppose t3;; = 0. Then tg32 > 0 since ¢ is not K-subordinate to a table of type (2c). It
holds that t331 > 0 since ¢ is not K-subordinate to a table of type (2a). Then we have
t€ ®(3,3,2;1,1,1) by ctf(123,123,12). Similarly we obtain the assertion if t3;; = 0. So,
finally suppose that t131,%311 > 0. Since t is not K-subordinate to a table of type (2b)
there are integers a and b such that t,, > 0 and 2 < a,b < 3. Thust € ¢(3,3,2;1,1,1) by
cts(la,1b,12). O
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4. 3 x 3 x 3 contingency tables

The minimal Markov basis of 3 x 3 x 3 contingency tables consists of moves of four
types:

2224 (112, j172, k1k2), 3326(i1i213, j1j273, k1k2), 233¢(i1i2, j1j273, k1kaks), and
3236 (112, j1J2, k1kaks).

We put

cti(ioia, jojajs, kokaks) = 2336 (ioi2, jojsja. kokaks)™ and

ct{ (ioizis, jojo, kokaks) = 323¢(ioisia, joj2, kokaks) ™.

ctg(ioiz, jojajs, kokaks) has 1 at (io, j2, ko), (i2,Jo, ko), (io,Jo, ka), (i2,j3,k2), (io,Js, k3),
(iQ,jQ,k‘:g) and 0 at the other (’i,j, k‘), and Cté(ioiﬂ;g,jojg,kok&k‘g) has 1 at (io,jg,k‘o),
(ig,jo, ko), (io,j(), kg), (ig,jg, ]{72), (ig,jg, kg), (ig,jo, kg) and 0 at the other (i,j, k) More-
over, we put
Ctz(i;) (i0i213, Joj2]3, kokaks) = (2224(i2i3, jojs, koks) 4 2224 (ioi2, joj2, kok2)) ™,
5;%1)(10732i3,j0j2j3,k0k2k3 = (2224(ioi3, joJs, kaka) + 2224(iod2, joj2, koks)) ™,
3)(Zoi2i3,j0j2j3,kok2k3 = (2224(2013 J2Jss ksko) + 2224(ioiz, joJs, kokz)) ™,
Ct4 (10i2i3,j0j2j3,k0k32k3 = (2224(i213, jogs, kako) + 2224(i03, joje, kokz)) ™,
ctis (ioiais, jojajs, kokaks) = (2224(iois, jojs, kskz) + 332¢(ioizis, jajoss, k37<70))

e — — ~—
~— — — ~—

Table 4: Contingency 3 x 3 x 3 tables

010 100 001 010 100 000 010 100 000 010 100 001
100 001 010 100 000 010 100 001 010 100 000 010
000 000 000 000 010 100 000 010 001 000 001 100

cth(12,123,123)  ct{(123,12,123) ot} (123,123,123) ct'?)(123,123,123)

010 100 001 010 100 000 010 100 001
100 001 000 100 000 001 100 000 001
001 000 010 001 010 100 001 001 110

ct(¥(123,123,123)  t{)(123,123,123) ¢tk (123,123,123)

Then every contingency table described above as (mj +mg)~ is transformed to a table
h = (m1 + mao)™ with h;, o5, = 1 by a transformation by the sequence my, my. Therefore
all these tables belong to ®(3, 3, 3; 4, jo, ko). Let MN3(io, jo, ko) be the set of all these tables.
N3 (0, Jo, ko) N 2(3,3, K) consists of 14(K — 1)(K — 2) tables.

Theorem 7 ([13, Theorem C]). Theorem 2 is true for K = 3.

We define the K-transposed table of t as a J x I x K table (t1};t1,;--- ;¢1}) where
tTk is transposed of t..; as a matrix.
We have the following lemma whose proof is straightforward.
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Lemma 3. The following contingency tables are isolated. In particular they do not belong
to ®(3,3,3;1,1,1).

0%0  *xx  *x0 0%0 s,xkx  Oxx Oxx  xxx Q0%
sokk k0% %00, ek k0% 00% ,  kxx %00 *0x
Oxx  00% k% #%0 %00 %% 0x0  *x0  *xx
(3a) (3b) (3c)
0%x0  *kx  Oxx Oxx **xx 0x0
%0 %00 sk wekx %00 %0
sk k0% 00 00% 0% sk
(3d) (3e)

Proof. (3a) is isolated, since any 3 x 3 x 2 basis move can not be applied. (3e) is
obtained by exchanging 2 and 3 columns in (3c), (3d) is obtained by exchanging 2 and 3
rows in (3b), (3c) is a K-transposed table of (3b), and (3b) is obtained by exchanging 1
and 3 columns in (3a). Therefore (3b)—(3e) are also isolated. O

5. 3 X 3 x 4 contingency tables
The minimal Markov basis of 3 x 3 x 4 contingency tables consists of moves
3343 (i1iais, J1J2J3, k1kakska)
in addition to the minimal Markov basis of 3 x 3 x 3 contingency tables. We put

101213, JoJ2J3, kokakzky 101213, JoJ2J3, kokakaks) ™

)

101213, JoJ2J3, kokakzky s(13t0t2, Jjojzje, kekskoks)™

)

oty ) = 334s( )

et (igizis, jojajs, kokakska) = 334s(iziois, jajojs, kokakskz) ™,

é( ) = 334( )
O ) = 334s( )

101213, J0J2J3, kokaksky 131012, J3J2J0, k3kakako) ™

Table 5: Contingency 3 x 3 x 4 tables |

010 100 000 000 010 100 001 000 010 100 001 000
100 000 010 001 100 000 000 010 100 000 010 001
000 010 001 100 000 001 010 100 000 001 000 100

cty)(123,123,1234)  ct()(123,123,1234) () (123,123,1234)
010 100 001 000

100 001 000 010
000 000 010 001

ct{M(123,123,1234)
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Furthermore, we put

ety (ioiais, jojais, kokakska) = (2224 (iois, jojo, kaks) + 2336 (ioiz, jojajz, koksks)) ™,
et (ioizia, jojads, kokakaka) = (2224 (iais, jojz, kaks) + 2336 (ioia, jojadas kokaks)) ™
oty (ininis, jojas, kokakska) = (2224(inis, jojs, kako) + 2336(iois, jojsja, kokaks)) ™,
ctea(ioizis, jojas, kokekska) = (2336 (i07s, joj2js, kaksko) + 2224(ioi2, joJs, koka)) ™,
ctii)zl(ioiﬂ&jojzj?), kokakska) = (2224(iots, joJs, ksk2) + 2224(i2i3, j2]3, kska)

+2224(ioi2, joja, koks)) ™, and
ctﬁ)zl(iozéisajojzj:%, kokakska) = (2224(ioi2, j2js, ksko) + 2224(i2is, jojz, kako)

+2224 (4013, jojs, koka)) .

Then every contingency table described above as (mj +ma)™ (resp. (m1+ma+m3)”) is
transformed to a table h = (my +ma)™ (resp. h = (m1 +mg +m3)™) with h ok, =1 by
a transformation by the sequence my,mg (resp. mi, ma, ms).

Table 6: Contingency 3 x 3 x 4 tables Il

010 100 010 001
100 000 001 010
000 010 100 000

ct()(123,123,1234)
010 100 100 001

100 001 000 000
001 000 010 100

010 100 001 000
100 001 100 010
000 000 010 100

ot (123,123, 1234)
010 100 001 000

100 000 001 010
000 001 110 001

010 100 001 000
100 000 000 001
001 001 010 100

ct(¥(123,123,1234)

010 100 001 000
101 000 010 010
010 001 000 100

ctes(123,123,1234)  ct()(123,123,1234) ¢t (123,123,1234)

Therefore all these tables belong to ®(3, 3, 4; 0, jo, ko). Let M4 (o, jo, ko) be the set of
all these tables. 94 (io, jo, ko) N (3,3, K) consists of 20(K — 1)(K — 2)(K — 3)/3 tables.
Note that

2224(i0i3, joj2, kaka) + 2336 (7072, jojajz, kokska)

= 2224 (o2, j2j3, kaks) + 323¢(i0i2is, j2jo, kakoks),
2224(i213, joja, kaks) + 2336 (ioiz, jojsjz, kokaks)

= 2224(loi2, jojs, kska) + 3236(i0izi2, joj2, Kokska),
2224(i2i3, jojs, kako) + 2336(iois, jojsjz, kokaks)

= 2224 (ioi3, j2J3, kako) + 3236(i0i372, joJjs, kok2ks), and
2336(i073, Jjoj2J3, kaksko) + 2224(io2, joJs, kokz)

= 323¢(ioi213, joJ3, kakako) + 2224 (i0i3, joj2, koks).

6. 3 X 3 x 5 contingency tables
The minimal Markov basis of 3 x 3 x 5 contingency tables consists of moves

33510(t19213, J1J2J3, k1kakskaks)
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in addition to the minimal Markov basis of 3 x 3 x 4 contingency tables. We put

101213, joJ2J3, kokaksksks (707213, j3joj2, kakaksksko)™

)

101213, JoJ2J3, kokoksksks 10(%0%213, Joj2J3, kokaksksks)™

)

101213, JoJ2J3, kokoksksks 10(%2%0%3, J3J2J0, k3kskokako)™

)

ety ( ) = 33510 )
et ) = 33510 )
% (01213, jojoJs, kokakskaks) = 33510 (i2i0i3, j2j0J3, kokskskaka) ™,
etio ( ) = 33510 )
% (01213, JojoJs, kokakskaks) = 33510 (i3i0ia, jojsjo, kakskokaks)™

Table 7: Contingency 3 X 3 x 5 tables

010 100 100 001 000
100 001 000 000 010
000 000 010 100 001

ct{l) (123,123, 12345)
010 100 001 000 000

100 001 000 100 010
000 000 010 001 100

ct?) (123,123, 12345)

010 100 010 001 000
100 000 000 010 001
000 010 001 000 100

ct{?) (123,123, 12345)
010 100 001 000 000

100 000 010 010 001
000 001 000 100 010

ct$) (123,123, 12345)

010 100 001 000 000
100 000 000 010 001
000 001 010 001 100

ct{¥) (123,123, 12345)

All these tables belong to ®(3, 3, 5; 40, jo, ko). Let N5 (4o, jo, ko) be the set of all these
tables. M5 (io, jo, ko) N3, 3, K) consists of 5(K —1)(K —2)(K —3)(K —4)/6 tables. Then

N(io, jo, ko) = Na(40, jo, ko) U N3 (o, Jo, ko) U N4(io, jo, ko) U Ns (o, jo, ko)-

7. Proof of main theorems

In this section we give a proof for Theorems 1-4 respectively. We prepare lemmas.

Lemma 4. Lett and t’ be I x J x K contingency tables with t;y ok, = t, =0. Ift' >t

i0jok
and t € B(I,J, K io, jo, ko) then ' € ®(1, J, K io, jo, ko). e

Proof. A sequence of basis moves which connects ¢ with a contingency table h with

Rigjoko > 0 connects also ¢’ with a contingency table h' = h+ (' —t) with A , , >0. O

We denote a positive element by +. The next two lemmas apply to 3 x3 x4 contingency
tables.
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Lemma 5. Let

0+0 +-- +-0
+-- -0+ -00

0-+ 00- -+-

be a 3 x 3 x 3 contingency table and M a 3 x 3 matriz. Putt = (t'; M) which is a 3x 3 x4
contingency table. If there is no table N € M(1,1,1) such that t > N then the 3 x 3 x 4

table t is K-subordinate to a table of type (3a).

t =

Proof. We show the claim by dividing into two cases whether some element is pos-
itive or 0 step by step. If t134 > 0 then t314 = to24 = t324 = 0 by ctga(123,123,1234)
ct(12,123,124) and ctﬁ)(123, 123,124), and thus the table is K-subordinate to a table of
type (3a). Therefore t134 = 0. If t294 > 0 it holds that t314 = t114 = 0 by ct(123,12,134)
and ct4(12,12,14), and then the table is K-subordinate to a table of type (3a). Therefore
toog = 0. If ta34 = 0 the table is K-subordinate to a table of type (3a). Then ta34 > 0.
ctﬁ)(l%, 123,134) implies t314 = 0. If t114 = 0 the table is K-subordinate to a table of
type (3a) and otherwise, t304 = 0 by ct& (123,123, 14) and then the table is K-subordinate
to a table of type (3a). O

Lemma 6. Let
00"

04+0 +--
+-- 04+ 00-
+-0 -00 -4-
be a 3 x 3 x 3 contingency table and M a 3 x 3 matriz. For the 3 x 3 x 4 table t = (t'; M),
if there is no table N € M(1,1,1) such that t > N, then t is K-subordinate to a table of
type (3b).

Proof. If t114 > 0 it holds that t9o4 = t304 = t334 = 0 by Ct4(12, 12, 14), Ct4(13, 12, 14)
and ct}(13,123,143), and then ¢ is K-subordinate to a table of type (3b) since ¢ has of
form

t =

Therefore t134 = 0. If typy > 0 then fs34 = t13 = 0 by cti?(123,123,1234) and
ct(12,123,124) and thus t is K-subordinate to a table of type (3b). Therefore tagq =
0. If t14 = 0 then t is K-subordinate to a table of type (3b). Thus let to14 > 0.

ct{¥(132,123,1234) implies ¢354 = 0. Now the table # is of form
0+0 +-- 0-+ O0--
+-- -0+ 00- +0- .
+.0 -00 +- -0

If t134 = 0 then ¢ is K-subordinate to a table of type (3b), and otherwise t324 = 0 by
ctﬁ)(132, 123,124) and thus ¢ is K-subordinate to a table of type (3b). O

The next three lemmas apply to 3 x 3 x 5 contingency tables.
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Lemma 7. Let
0+0 +- +-0 0-0
0 -00 -+
O 0 00. - +- 0-+
be a 3 x 3 x 4 contingency table and M a 3 x 3 matriz. For the 3 x 3 X5 table t = (t'; M),
if there is no table N € M(1,1,1) such that t > N, then t is K-subordinate to a table of

type (3a).

= +

Proof. Tf t135 > 0 then t315 = tag5 = tso5 = 0 by ct{b)(123,123,12354), ct}(12,123,125)
and cté )(123, 123,1254), and thus ¢ is K-subordinate to a table of type (3a). Therefore
t135 = 0. If t225 > 0 then t315 = t115 =0 by Ctg(123, 12,135) and Ct4(12, 12,15), and
hence t is K-subordinate to a table of type (3a). Therefore toa5 = 0. If o35 = 0 then
t is K-subordinate to a table of type (3a). Thus ta35 > 0. 075;1)(1237 123,1345) implies
ts15 = 0. If t135 = 0 then ¢ is K-subordinate to a table of type (3a), and otherwise t325 = 0
by ctii)(123, 123, 154), which implies that ¢ is K-subordinate to a table of type (3a). [

Lemma 8. Let
, 0+0 +- 0-+ 0-0
t = 0+ 00 -4
0 0 -00 + +-0
be a 3 x 3 x 4 contingency table and M a 3 x 3 matriz. For the 3 x 3 X5 table t = (t'; M),
if there is no table N € M(1,1,1) such that t > N, then t is K-subordinate to a table of

type (3b).

PT’OOf. Ctg(123, 12,134) implies t113 =0. If t115 > 0 then t225 = t335 = t325 =0
by cts(12,12,15), et (123,123,1534) and ctf(123,12,154), and thus ¢ is K-subordinate
to a table of type (3b). Therefore t115 = 0. If too5 > 0 then t335 = t135 = 0 by
ct{M(123,123,1235) and ct}(12,123,125), and thus ¢ is K-subordinate to a table of type
(3b). Therefore too5 = 0. It holds that t915 > 0 since, if not, ¢t is K-subordinate to a
table of type (3b). Then ct%)(123 123,12354) implies t335 = 0. If t135 = 0 then ¢ is K-
subordinate to a table of type (3b) and otherwise t325 = 0 by ct(Q)(123, 123, 1254), which
implies that ¢ is K-subordinate to a table of type (3b). O

Lemma 9. Let
0—1—0 +- 0- —|— 0-0
= +- 00 - 40
0-0 -0+ 00 + -
be a 3 x 3 x 4 contingency table and M a 3 x 3 matriz. For the 3 x 3 x5 table t = (t'; M),
if there is no table N € M(1,1,1) such that t > N, then t is K-subordinate to a table of
type (3d) or (3e). Furthermore, if tso1 > 0 then t is K-subordinate to a table of type (3d),
if tag1 > 0 then t is K-subordinate to a table of type (3e), and if togy = tzo1 = 0 then t is

K -subordinate to a table of both type (3d) and (3e).

Proof. 1f ta3; > 0 then ¢ is not subordinate to any table of type (3d) and if 327 > 0
then ¢ is not subordinate to any table of type (3e). Furthermore, if to3; = t321 = 0 and ¢
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is subordinate to a table of type (3d) or (3e), then t is subordinate to both of a table of
type (3d) and a table of type (3e). Therefore, it suffices to show that if t231 = 0 (resp.
ts21 = 0) then ¢ is not subordinate to any table of type (3d) (resp. (3e)).

First we divide into two cases when t115 > 0 and t115 = 0. Suppose t115 > 0. It
hOldS that t225 = t235 = t325 =0 by Ct4(12, 12, 15), Cté(lQ, 123, 153) and Ct6‘](123, 12, 154).
If ta31 = 0 then t is K-subordinate to a table of type (3d) and otherwise t32;7 = 0 by

5131)11(123 123,1234), which implies that ¢ is K-subordinate to a table of type (3e). Suppose
t115 = 0. Now ¢ has the following type.
0+0 +-- 0-4+ 0-0 O--
Y. 00 4+- 40 ---
0-0 -0+ 00- +--
We divide into two cases when t935 > 0 and to35 = 0.

Suppose tags > 0. ctiy)(123,123,12345) implies 35 = 0 and ct{¥(123,123,1235) im-
plies t315 = 0. If t931 = 0 then ¢ is K-subordinate to a table of type (3d), and otherwise
tso1 = 0 by ctfﬁ&(l%, 123,1234) and thus ¢ is K-subordinate to a table of type (3e). We
are done in the case when t935 > 0.

Next suppose tog5 = 0. We divide into two cases when t135 = 0 and ¢135 > 0. Suppose
tiss = 0. If ta31 = O then t is K-subordinate to a table of type (3d) and otherwise
t3o1 = 0 by ctzﬁ)zl(123, 123,1234), which implies that ¢ is K-subordinate to a table of type

(3e). Next suppose ti35 > 0. Then cté2)(123, 123,1254) implies t325 = 0. If to95 = 0 and
tog1 = 0, then t is K-subordinate to a table of type (3d). If t995 = 0 and t931 > 0 then

212(123 123,1234) implies t32; = 0 and thus ¢ is K-subordinate to a table of type (3e).
Therefore we suppose toos > 0. Then ctfl4)(123, 123,125) implies t315 = 0. If 937 = 0 then
t is K-subordinate to a table of type (3d), and otherwise ¢32; = 0 by ctﬁl(lQB, 123,1234),
which implies that ¢ is K-subordinate to a table of type (3e). O

Let ¢t be a 3 x 3 x K table. Put So = {k | t11x = 0} and Sy = {k | t11x > 0}. It is clear
that if S is empty then t ¢ ®(3,3, K;1,1,1).

Theorem 8. Let K > 2 and t € Q(3,3,K). Suppose that t111 = 0, t121,t211 > 0 and
St # 0. If there is no table N € M(1,1,1) such that t > N, then t is K-subordinate to a
table of type (2a)—(3e).

+ ..
Proof. Suppose that there is no table N € 9(1,1,1) such that ¢t > N. If t.,, = - 88
for all k € S, then t is K-subordinate to a table of type (2b). So, assume that there is
+ ..
ko € S4 such that t.,, # - 00 .

00
We divide into five cases:

O++ 040 O++ 0+0 0+0
ta= +--, +--, -, +- T
+- 4+ 0+ 0- —I— 0-0
0-++ +-
(1) Ift.q = i - then t.p = 88 for any k € Sy, which is a contradiction, since

(t 1,t k) \Z Ct4(17,2, ljg, 12) fOI’ Zg,jg = 2 3.
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0+0
(2) Second, suppose that t.; = i < (testg) € 9(3,3,2;1,1,1) for each k € S

implies that t., = - 8+ or - 8+ . If Sy = {1} then ¢ is K-subordinate to a table of

type (2d). If toor > 0 or t3gr > 0 implies t13; = 0 for each k € Sy, then t is K-subordinate
to a table of type (2d). So, we are done when K = 2 and we may assume that K > 3 and

0-+
that there is k3 € Sy such that t.,, = -- - and oo, > 0 or 3o, > 0. We may assume
that

0+0 +-- 0-+
(Faitgitons) = £ 04 -

since if not we can apply this by exchanging 2 and 3 in the I-coordinate. It holds that
tooks = 0 by cth(12,123, 1koks) and then tzor, > 0. Thus t331 = t33p, = toig, = 0 by
ct(¥ (123,123, 1koks), cth(13,123, Lkoks) and ct(? (132,123, 1kyks) respectively. Therefore,
(t.15t. ky;t.ky) is & table of type (3b) and not K-subordinate to a table of the other types.

Therefore, we are done when K = 3, and if K > 4 then since (t.1;t.ky;t kg3t k) &
®(3,3,4;1,1,1), it is K-subordinate to a table of type (3b) by Lemma 6, which means

that ¢ is also K-subordinate to a table of type (3b).

0++
(3) The third case when t..; = —(i)— - - is similar as the second case by K-transposing

of t.
040
(4) Fourth, suppose that t.; = 6— - . Note that too, = 0 for any k € S, by

ct4(12,12,1k). We divide into four cases (4.1)—(4.4).
(4.1) Suppose that there are k3, ks € Sy such that t.p; = -0+ and t.,, = - —(I)- .
Since (t.1;t.k,) ¢ ®(3,3,2;1,1,1), it holds that ks # ky by ctf (123,123, 1k3).

(baitoitn) = 400 Tob 1o
titg) = 4+ -
1 Dok Bk 0-4+ - 4.
It holds that 31, = 3ok, = tosk, = t1sk, = 0 by ct\y (123,123, 1ksks), ctl (123,123, 1ks),
ct& (123,123, 1ky) and ctﬁ)(123, 123, 1k3ky4) respectively. Then the type of (t.1;t.ky;t.k,)
is uniquely (3a). Thus ¢ is K-subordinate to a table of type (3a) by Lemma 5.

(4.2) Suppose that there is k3 € Sy such that tosg, > 0 and that tsgr = 0 for each
k € Sy with k # k3. Then t3or, = 0 by ctf(123,123,1k3) and thus tog, = t3o = 0
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for any k € Sy. For each k € Sy such that t13; > 0 we see that toor = t39r, = 0 by
cté(lZ, 123, 1k3k) and ctfli)(123, 123, 1ksk) respectively. Therefore t is K-subordinate to a
table of type (2d).

(4.3) Suppose that there is k3 € S such that 3o, > 0 and to3; = 0 for each k € S4
with k # k3. This case is similar as (4.2) by K-transposing of ¢.

(4.4) Suppose that togr, = t3or = 0 for each k € S,:

_|_..
ty= 00, keS,.

If t13x = 0 or tgoor = t3or, = 0 for each k € Sy then t is K-subordinate to a table of type
(2d). If t31x = 0 or togr = togr, = 0 for each k € Sy then ¢ is K-subordinate to a table of

0-+
type (2c). Now suppose that there are k3, kg € S such that t.p; = -+ - and tagg, > 0or

0-.
3ok, > 0, and t.p, = + - and tgg, > 0 or tagr, > 0. First show that ks # k4. Assume
that k3 = ky.

+0 +-- 0+

-00

(tastopyitog,) §+0
ilokgitikg) = 1
SRR N

It holds that #aa5, = 0 by ct'2) (123,123, 1kyks) and then #a3p,, t32, > 0. Thus the contin-
gency table (t.1;t.ky;t.ks) € ©(3,3,3;1,1,1) by ¢tk (123,123, 1koks), which is a contra-
diction. Thus k3 # k4. We show that t31x, = t13k, = 0. Let t315, > 0. Then t99r, = 0 by

ct(P (123,123, 1koks) and thus t50r, > 0. It contradicts to (t1;tx,itr,) & ®(3,3,3;1,1,1)
by ctk(123,123, 1koks). Therefore, t31x, = 0. Similarly we see that t135, = 0.

Now, we show that toon,,toor, > 0. First suppose that toor, = toor, = 0. By
assumption, 3ok, ta3k, > 0 and then the contingency table (t.1;%.,;t ky;t.k,) lies in
®(3,3,4;1,1,1) by cté(lgﬁ)(123, 123, 1koksky), which is a contradiction. Next, suppose that
took, > 0 and toor, = 0 Noting that togg, > 0, (£.15¢. ky; b ks tok,) lies in @(3,3,4;1,1,1)
by cté?’)(123 123, 1koksky), which is a contradiction. Similarly, if togr, > 0 and toog, = 0
then (£.1;topy: foy ity ) lies in ©(3,3,4;1,1,1) by et{?) (123,123, 1kokyks), which is a con-
tradiction. Therefore we conclude that toog,, toor, > 0. It holds that t3o1, = t23r, = 0 by
ctéz)(123, 123, 1koksky) and cté3)(123, 123, 1kgksky). Furthermore, it holds that t931 = 0 or
tsor = 0, by ct'2), (123,123, 1kyksky), and thus

et 2+0+000+0+8
1y ko Uikss Uik ) — 0 - .0+ 00 - + .. '

is K-subordinate to a table of type (3d) or (3e). By Lemma 9, the table ¢ is also K-
subordinate to a table of type (3d) or (3e).
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(5) Fifth, suppose that t.; = —(1)—0 . Note that togr = 0 for any k € S;. If t13; =
ts1x = t3sr = 0 for any k € Sy then ¢ is K-subordinate to a table of type (2a). Suppose
that there is k5 € Sp such that fg9r, > 0 and at least one of ty34,, 31k, and t33x, is
nonzero. We divide into four cases.
(5.1) In the first case, suppose that there are numbers k3, ks € S; such that ¢, =

+-. - +
-0+ and t., = 9_ . First we show that k3 # k4. If k3 = ks then t13;,, =

tsiks = tszes = O by cth(12,123, 1ksks), ctf(12,123,1ksks) and ct'}) (123,123, 1ksks),
since (t.1;3t.kq;toks) ¢ ©(3,3,3;1,1,1), which is a contradiction. Thus k3 # k4. We
see the table (t.1;t. kgt kit ks). We have tisg, = t314, = 0 by ctf(12,123, 1ksks) and
ct{ (123,12, 1kyks) and then £33, > 0. Furthermore, t34, = 0 by ct$” (123,123, 1ksksks),
tise, = 0 by ct$V(123,123, lksksks), and tsp, = toze, = O by ct\)(123,123, lksks),
ctfél)(123, 123, 1k4ks). The table (t.1;¢. kgt k5t k) is K-subordinate to a table of type
(3a) uniquely and thus t is K-subordinate to a table of type (3a) by Lemma 7.

(5.2) As the second case, suppose that there is k3 € S; such that tagr, > 0 and that
tzor, = 0 for all k£ € Sy. If there is no k € Sy such that t13; > 0 then t is K-subordinate to
a table of type (2d). Suppose that there is k4 € Sp such that ¢;35, > 0. Further suppose
that taor, > 0 or t3ax, > 0, since if there is no such a k4 then ¢ is K-subordinate to a table
of type (2d). (t.1;t.ksit.ky) & ©(3,3,4;1,1,1) implies that taor, = 0 by ctf (12,123, 1ksky)
and then t395, > 0. We consider the following table

0+0 +.. 0.+
(t..l, t~k3a [ t..ks) —(i)— 0 0-!—

°L ¢ ©(3,3,4;1,1,1).
It holds that t13, = ts3r, = 0 by ct§(12,123, 1ksks) and cté4)(123, 123, 1kskyqks) respec-
tively. Then t31, > 0 by assumption on t.p,. Furthermore, it holds that tssz, =
tork, = 0 by ct$? (123,123, 1ksksks) and ct(2) (123,123, 1kskyks) respectively. Thus, the
table (t..1;t..k4; . k,;t..ks) is K-subordinate to a table of type (3b), which implies that ¢ is
also K-subordinate to a table of type (3b) by Lemma 8.

(5.3) The third case is one that there is k4 € S4 such that t3or, > 0 and teg; = 0 for
all k € S;. This case is similar as the second case (5.2).

(5.4) The fourth case is one that tog;, = t3or = 0 for all £ € S;. That is, it holds that
tp = +80 for each k € S. In particular, t., = j-LOO .

-0+
If t13;, = 0 or tggy, = t39r, = O for each k € Sy then ¢ is K-subordinate to a table of

type (2d). If t31x = 0 or togp = togr = 0 for each k € Sy then ¢ is K-subordinate to a table
of type (2¢). Thus we may suppose that there are k3, ks € Sy such that ti3g,, took, > 0
or t13ks,t32ks > 0 and t31g,,t22x, > 0 or t31,,%23k, > 0. Suppose to the contrary that

ks = ky. Tt holds that tao,, = 0 by ct'2) (123,123, 1kyks) and then tosp,, tsor, > 0.

0+0 +-- 0-+ O0--
(t..l;t..k2;t..k3;t..k5): —6—0 8_?_ ++—|—
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It holds that 33, = 0 by ct\y, (123,123, 1koksks), tise, = 0 by ct$ (123,123, 1koksks),
and t315, = 0 by ctg)(123, 123, 1koksks). This is a contradiction. Therefore ks # ky.

Now we show that took,, taor, > 0. Suppose that toor, = toor, = 0. Then ks # k3, ks
and by assumption, t3ak,, tagk, > 0.

040 +-- 0+ 0-- 0--
(t..l;t..k2;t..k3;t..k4;t..k5): —(l)— -00 -0- .

0+ -+ .
0O -0+ -+ H+-- ---

It holds that tsip, = tise, = tasks = 0 by ct$? (123,123, Lkoksks), ct$) (123,123, 1koksky),
and ct%%)(123, 123, 1koksksks), which is a contradiction. Next, suppose that tgox, > 0 and
took, = 0. Then tog, > 0, which implies that ¢ > cté3)(123, 123, 1koksky), a contradiction.
Similarly, if tyop, = 0 and foo, > 0 then taop, = 0 by ct{” (123,123, 1kokyks), tssr, > 0, and
t > cté(f)(123, 123, 1koksky), a contradiction. Therefore we conclude that toog,, taor, > 0.
By ct{? (123,123, 1koks) and ct(? (123,123, 1koky) we have tsin, = tize, = 0. Further-
more, we have tsp, = tagr, = 0 by ct$? (123,123, lkoksky) and ct$) (123,123, 1koksky).

Therefore, by ct'2, (123,123, 1koksky), tas1 = 0 or tsp1 = 0 and thus

40 +-- 0-4+ 0-0
.o 00 4. 40 .

0
t1;t ki tokastiky) = +
R Y A

is K-subordinate to a table of type (3d) or (3e). By Lemma 9, the table ¢ is also K-
subordinate to a table of type (3d) or (3e). O

Theorems 2 and 4 come directly as corollaries of the following theorem.

Theorem 9. Let ig = jo = ko = 1. Lett be a 3 x 3 x K table with t;,,r, = 0. Suppose
that ta11,t121,t112 > 0. Then the following conditions are equivalent.

1. t is not K-subordinate to a table of type (2a)—(3e).
2. t > N for some N € N(ip, jo, ko)-
3. te (I)(3, 3, K; 10, jo, kio)

Proof. 1t is easy to see that (2) = (3) by Lemma 4. It follows from Theorem 8
that (1) = (2). Hence, we show that (3) = (1). Suppose that t is K-subordinate to a
3 x 3 x K’ table t’ of type (2a)—(3e). Let f: {1,2,..., K} — {1,2,..., K’} be a map such
that f(1) = 1 and for 1 < k < K, t. < tf_f(k). For a 3 x 3 x K table m, we take a
3 x 3 x K’ table

gm)=| > muas Y megiccr Y. me |,

kef—1(1) kef—1(2) kef-1(K')
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where we assume that Zkef*l(k’) m..;, is the zero matrix if f~'(k’) is empty. Suppose to
the contrary that there is a sequence mi,ms, ..., m, of basis moves which connects from
ttot" :=t+mq+---+m, € F(t) with t{;; > 0. Then the sequence g(my),...,g(m,)
of moves is a path connecting from g(t) to g(t") € F(g(t)) with g(t")111 > 0 and hence
g(t) € (3,3,K’;1,1,1). It is a contradiction by Corollary 1 and Lemma 3, since ¢(t) is a
table of type (2a)—(3e). Therefore, ¢ ¢ ®(3,3,K;1,1,1). O

Proof of Theorem 3. The set M(ig, jo, ko) is obtained from 91(1, 1,1), if necessary, by
exchanging 1 < ig, 1 <> jo, and 1 <> kg. Then it suffices to show the claim for 91(1,1,1).
Let N € 91(1,1,1). If N = m~ for a move m of a minimal Markov basis, then N is
an indispensable table for the (1,1, 1)-element by Lemma 2. Suppose that N is the other
type. Let t = t(i,7,k) be a table made from N by changing the value of one positive
(p,q,r)-element of N to 0. We straightforwardly see that Z§:1 ti11 = 0, Z?Zl tij1 =0,

Zle t11r; = 0, or t is K-subordinate to a table of type (2a)—(3e). Thus if N > ¢ and
N #tthent ¢ (3,3, K;1,1,1) and so N is an indispensable table for the (1,1, 1)-element.
Therefore 91(1,1, 1) is minimal.

We show the uniqueness. Suppose there is another minimal set 91(1,1,1). Take a
table t € 9(1,1,1) ~9'(1,1,1). Since t € (3,3, K;1,1,1), there is a table t’ € M (1,1,1)
such that ¢ > /. Noting ¢t # ¢/, ¢ ¢ ®(3,3,K;1,1,1) by minimality of 91(1,1, 1), which is
a contradiction. Therefore 91(1,1,1) is unique. O

Since every element of any table of ®(3, 3, Ko, jo, ko) has 0 or 1, we get the following
theorem.

Theorem 10. Lett € (3,3, K). Lett' be a contingency table made by t;jk =1 iftj >0
and t;jk = 0 otherwise. Thent € ®(3,3, K;ig, jo, ko) if and only if t' € ®(3,3, K io, jo, ko)-

We generalize Theorem 1 as follows.

Theorem 11. Let K > 2 and let s = (s;j,) and t = (t;;5) be 3 x 3 x K contingency
tables. Suppose that t is obtained from s simply by adding one at (ig, jo, ko). Then,
F(t) ={u—s+t|uec F(s)}U{u—s+t—m | u € F(s) with u;yjor, = 0,m € M(ig, jo, ko)}-

Proof. Let p: F(s) — F(t) be a map defined as p(u) = u — s +t. Then, ¢(F(s)) is
a subset of F(t). It suffices to see that there exist u € F(s) and m € 9M(io, jo, ko) such
that u;, ok, = 0 and @(u) —m = v for each v € F(t) \ ¢(F(s)). Let v € F(t) \ ¢(F(s)).
Then, v € ®(3,3, K; o, jo, ko) and in particular, v;,;ox, = 0. By Theorem 2 or Theorem 9,
there exists a move m € M(ig, jo, ko) such that v > m~. Thenv+m = (v—m~)+m' €
(3,3, K) and v+m € p(F(s)) since (v+m);yjok, = 1. Therefore, putting v = v+m+s—t,
we have p(u) = v +m and u;yjok, = 0 follows from (v + m)igjor, = 1. O
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