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Abstract. In [2] Buczyńska and Wísniewski showed that the Hilbert polynomial of the algebraic
variety associated to the Jukes-Cantor binary model on a trivalent tree depends only on the number
of leaves of the tree and not on its shape. We ask if this can be generalized to other group-based
models. The Jukes-Cantor binary model has Z2 as the underlying group. We consider the Kimura
3-parameter model with Z2 × Z2 as the underlying group. We show that the generalization of the
statement about the Hilbert polynomials to the Kimura 3-parameter model is not possible as the
Hilbert polynomial depends on the shape of a trivalent tree.
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1. Introduction

Phylogenetic algebraic geometry studies complex algebraic varieties arising from evo-
lutionary models in biology (see [4] and [9] for introduction). Models invariant under an
Abelian group action are called group-based models. The Jukes-Cantor binary model is
the simplest group-based model with the underlying group Z2. Buczyńska and Wísniewski
showed in [2] that the Hilbert polynomial of the algebraic variety associated to the Jukes-
Cantor binary model on a trivalent tree T depends only on the number of leaves of T and
not on the shape. We ask if this property of the Hilbert polynomial can be generalized to
more complex models.

The most natural generalization would be the Kimura 3-parameter model, which is
a group-based model with the underlying group Z2 × Z2. However, we show that the
Hilbert polynomial of the algebraic variety associated to the Kimura 3-parameter model
depends on the shape of a trivalent tree. We do this by considering two different trees with
6 leaves – the caterpillar tree with 6 leaves and the snowflake tree (see Figure 1). This
is the smallest interesting case with more than one trivalent tree with the same number
of leaves. The Kimura 3-parameter model being the closest model to the Jukes-Cantor
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binary model, it is unlikely that the property about Hilbert polynomials would hold for
other models.

In Section 2 we recall the construction of the Kimura 3-parameter model. In Section 3
we show that the Hilbert polynomials of the algebraic varieties associated to the Kimura
3-parameter model on the caterpillar tree with 6 leaves and the snowflake tree have dif-
ferent values when evaluated at 3, and hence their Hilbert polynomials are different. The
main idea is to decompose the original trees to smaller trees and use toric fiber products
introduced by Sullivant in [11]. Finally we reduce the problem of evaluating the Hilbert
polynomials of toric varieties to evaluating the Ehrhart polynomials of the corresponding
polytopes. Computations are done with polymake [5], [6] and Normaliz [1].

2. Kimura 3-Parameter Model

First the toric ideals and the corresponding lattice polytopes of the Kimura 3-parameter
model will be defined following Section 3.4 in [11]. Then the toric fiber product structure
on these ideals will be explained following Section 1 and Section 3.4 in [11]. We will not
give the parametric construction of the Kimura 3-parameter model coming from biology as
it is not necessary for this article. For the parametric construction see [9]. The geometry
of the Kimura 3-parameter model is studied by Casanellas and Fernandez-Sanchez in [3].

Let T be a tree with n + 1 leaves labeled by 1, . . . , n + 1, let the root be at the leaf
n + 1, and direct the edges away from the root. A leaf denotes here a leaf edge. A leaf l
is a descendant of an edge e if there is a directed path from e to l. Denote by de(e) the
set of all descendants of the edge e.

For a sequence g1, . . . , gn in Z2 × Z2, we define

ge =
∑

i∈de(e)

gi,

where e is an edge of T and the subindices i denote simultaneously leaves and their labels.
Let

K[q] = K[qg1,...,gn |gi ∈ Z2 × Z2] and K[a] = K[a
(e)
h |e ∈ E(T ), h ∈ Z2 × Z2]

and consider the ring homomorphism

ϕT : K[q] → K[a]

qg1,...,gn 7→
∏

e∈E(T )

a(e)ge .

Definition 1. The ideal of the Kimura 3-parameter model on a tree T is IT = ker(ϕT ).

This is a projective toric ideal, and the corresponding lattice polytope can be defined.

Definition 2. The lattice polytope of the Kimura 3-parameter model on a tree T is

PT = conv({α ∈ ZE(T )×(Z2×Z2)|aα = ϕT (qg1,...,gn), qg1,...,gn ∈ K[q]}).
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Definition 3. Define the lattice LT ⊆ ZE(T )×(Z2×Z2) to be the lattice generated by the
vertices of PT .

Since T is an acyclic directed graph, there is an induced partial order on the edges of
T . Namely e < e′ if there is a directed path from e′ to e. Let T be a tree that contains an
interior edge e. Then e induces a decomposition of T as T+

e ∗ T−
e where T−

e is a subtree
of T consisting of all edges e′ ∈ T with e′ ≤ e and T+

e consists of all edges e′ ∈ T with
e′ ̸< e. Thus T+

e and T−
e overlap in the single edge e. We root T−

e by the tail of e, and
keep the root of T+

e at the original root n+ 1. Without loss of generality, we may assume
that the nonroot leaves of T+

e are {1, 2, . . . ,m} and of T−
e are {e,m + 1, . . . , n}.

Denote by IeT+ and IeT− the ideals of the Kimura 3-parameter model on trees T+
e and

T−
e , and by K[q]+ and K[q]− the ambient polynomial rings, respectively. For each variable

qg in K[q],K[q]+ and K[q]−, let deg(qg) = ege . Let

ϕIe
T+ ,Ie

T−
: K[q] → K[q]+/I

e
T+ ⊗K K[q]−/I

e
T−

be the ring homomorphism such that

qg1,...,gn 7→ qg1,...,gm ⊗ qge,gm+1,...,gn .

Note that

deg(qg1,...,gn) = deg(qg1,...,gm) = deg(qge,gm+1,...,gn) = ege ∈ {e(0,0), e(0,1), e(1,0), e(1,1)} =: A.

Definition 4. The toric fiber product of IeT+ and IeT−, denoted IeT+ ×A IeT−, is the kernel
of ϕIe

T+ ,Ie
T−

:

IeT+ ×A IeT− = ker(ϕIe
T+ ,Ie

T−
).

The following theorem about toric fiber products of ideals will be the basis for our
computations in the next section.

Theorem 1 (Sullivant, Theorem 3.10 in [11]). Let T be a tree with an interior edge e,
and resulting decomposition T = T+

e ∗ T−
e . For each variable qg in K[q],K[q]+ and K[q]−,

let deg(qg) = ege. Then
IT = IeT+ ×A IeT− .

3. Counting Lattice Points

Proposition 1. The Hilbert polynomials of the ideals of the Kimura 3-parameter model
on the caterpillar tree with 6 leaves and the snowflake tree are different.

Proof. Let T be a trivalent tree. In [7] Micha lek shows that the lattice polytope PT is
normal, hence its Ehrhart polynomial equals the Hilbert polynomial and the Hilbert func-
tion of IT (see Theorem 13.11 in [8]). This allows us to use these notions interchangeably.
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Figure 1: Decompositions of the caterpillar tree with 6 leaves and the snowflake tree

1. Since the polytopes of the caterpillar with 6 leaves and snowflake trees are too large
to compute their lattice points directly, we decompose them into smaller trees like
shown in Figure 1.

Henceforth we use the abbreviations c6, sn, 3l, 4l for the caterpillar with 6 leaves,
snowflake, 3-leaf and trivalent 4-leaf trees, respectively.

In the decomposition of the caterpillar tree with 6 leaves define deg(qg) = ege for qg
in K[q]c6 and K[q]4l. Then

Ic6 = Ie4l ×A Ie4l

with A = {e(0,0), e(0,1), e(1,0), e(1,1)}.

In the decomposition of the snowflake tree define deg(qg) = ege1 ,ge2 for qg in K[q]sn
and K[q]4l and define deg(qg) = egei with i ∈ {1, 2} for qg in K[q]3l. Then

Isn = (Ie1,e24l ×A Ie13l ) ×A Ie23l

with A = {e(0,0), e(0,1), e(1,0), e(1,1)}. Abusing the notation slightly, the first toric
fiber product corresponds to the decomposition of the 5-leaf tree into a 4-leaf tree
and a 3-leaf tree with respect to the edge e1 and the second toric fiber product
corresponds to the decomposition of the snowflake tree into the 5-leaf tree of the
first fiber product and a 3-leaf tree with respect to the edge e2.

2. Denote the multigraded Hilbert function of K[q]/I by h(K[q]/I;u), where u ∈
NZ2×Z2 . Corollary 2.12 in [11] gives a formula for computing multigraded Hilbert
functions of toric fiber products. Applying this to the decompositions of Step 1 gives
for u, v ∈ NZ2×Z2

h(K[q]c6/Ic6;u) = h(K[q]4l/I
e
4l;u)h(K[q]4l/I

e
4l;u),

h(K[q]sn/Isn;u, v) = (h(K[q]4l/I
e1,e2
4l ;u, v)h(K[q]3l/I

e1
3l ;u))h(K[q]3l/I

e2
3l ; v).

For the snowflake tree we apply the formula twice, and take into account that the
edge e2 in the 5-leaf tree belongs to the 4-leaf tree when decomposing the 5-leaf tree.

3. A monomial having multidegree u ∈ NZ2×Z2 has total degree
∑

h∈Z2×Z2
uh. Thus

single graded Hilbert functions can be computed using multigraded Hilbert functions

h(K[q]c6/Ic6; k) =
∑

u:
∑

uh=k

h(K[q]c6/Ic6;u),
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h(K[q]sn/Isn; k) =
∑

u,v:
∑

uh=k,
∑

vh=k

h(K[q]sn/Isn;u, v).

4. Because of normality, h(K[q]/IT ;u) counts lattice points in the lattice LT of the∑
h∈Z2×Z2

uh dilation of the polytope PT intersected with hyperplanes {xeh = uh}, h ∈
Z2 × Z2. Denote the Ehrhart polynomial of a lattice polytope P by ehrP (k), where
k ∈ N. Using Step 2 and Step 3 we get

ehrPc6(k) =
∑

u:
∑

uh=k

∣∣∣kP4l

∩
{xeh = uh}

∩
L4l||kP4l

∩
{xeh = uh}

∩
L4l

∣∣∣ ,
ehrPsn(k) =

∑
u,v:

∑
uh=k,

∑
vh=k

∣∣∣kP4l

∩
{xe1h = uh}

∩
{xe2h = vh}

∩
L4l

∣∣∣
·

∣∣∣kP3l

∩
{xe1h = uh}

∩
L3l

∣∣∣ ∣∣∣kP3l

∩
{xe2h = vh}

∩
L3l

∣∣∣ .
5. Using polymake and Normaliz we can compute |3PT ∩{xel = ul}∩LT | for 3-leaf and

4-leaf trees. It is important to do the basis transformation before counting lattice
points, since these programs assume that the lattice is the standard lattice. Using
formulas from Step 4 we get that in the 3rd dilation the polytope of the Kimura 3-
parameter model on the caterpillar tree with 6 leaves has 69324800 and the polytope
of the Kimura 3-parameter model on the snowflake tree has 69248000 lattice points.
Hence their Ehrhart (and thus Hilbert) polynomials are different.

Remark 1. Similar computations show that in the 2nd dilation the polytopes of the Kimura
3-parameter model on the caterpillar tree with 6 leaves and on the snowflake tree have both
396928 lattice points.

Proposition 1 does not directly imply that for n + 1 ≥ 7 there exist trivalent trees T ′

and T ′′ with n + 1 leaves such that the Hilbert polynomials of the ideals of the Kimura
3-parameter model on T ′ and T ′′ are different. However, from Proposition 1 follows that
the multigraded Hilbert function on K[q]4l/I4l, where the multigrading is induced by the
leaves of the 4-leaf tree, depends on the labelling of the leaves. For the Jukes-Cantor binary
model this multigraded Hilbert function is independent of the labelling of the leaves by
Corollary 7.12 in [10], which also explains the invariance of the Hilbert polynomial.
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