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One example of general unidentifiable tensors
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Abstract. The identifiability of parameters in a probabilistic model is a crucial notion in statistical
inference. We prove that a general tensor of rank 8 in C3⊗C6⊗C6 has at least 6 decompositions
as sum of simple tensors, so it is not 8-identifiable. This is the highest known example of balanced
tensors of dimension 3, which are not k-identifiable, when k is smaller than the generic rank.
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1. Introduction

The decomposition of tensors T ∈ Ca1+1 ⊗ · · · ⊗Caq+1 as a sum of simple tensors (i.e.
tensors of rank 1) is a central problem for many applications of Multilinar Algebra to
Algebraic Statistics, signal theory, coding theory and others.

For statistical inference, it is meaningful to know if a probability distribution, arising
from a model, uniquely determines the parameters that produced it. When this happens,
the parameters are called identifiable. The notion of generic identifiability for parametric
models has been considered in [2] and in [16] §2.2. Indeed, conditions which guarantee the
uniqueness of this decomposition, for generic tensors in the model, are quite important in
the applications. When generic identifiability holds, the set of non-identifiable parameters
has measure zero, thus parameter inference is still meaningful. Notice that many decom-
position algorithms converge to one decomposition, hence a uniqueness result guarantees
that the decomposition found is the chased one. We refer to [10] and its huge reference
list, for more details.

Even from a purely theoretical point of view, the study of the decomposition shows
some beautiful link between Multilinear Algebra and Projective Geometry.
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The present paper is devoted to study one intriguing special case, which shows an
exceptional behavior.

Among tensors T ∈ Ca1+1 ⊗ · · · ⊗ Caq+1 whose rank has the generic value, only one
example is known when we have identifiability, that is q = 3, a1 = 1, a2 = a3 = a. In
this case we have the Kronecker-Weierstrass canonical form, see (10.3.1) in [12]. On the
contrary, general tensors whose rank is smaller than the generic value, often have a unique
decomposition.

Excluding the cases of matrices (tensors of order q = 2), identifiability is known to
hold when the rank k is small. An evidence is given for q = 3 by the celebrated Kruskal’s
bound [11], which, for general tensors of given rank, is refined and extended in a series of
papers (see Strassen’s paper [15], the recent paper [7]).

Let’s order the ai’s so that a1 ≤ · · · ≤ aq. In [5] Corollary 8.4 it was proved that, with

the assumption aq ≥
∏q−1

i=1 (ai +1)−
(∑q−1

i=1 ai

)
, the variety Pa1× . . .×Paq is k-identifiable

if and only if

k ≤
q−1∏
i=1

(ai + 1)−

(
1 +

q−1∑
i=1

ai

)
.

The general tensor of rank k >
∏q−1

i=1 (ai+1)−
(

1 +
∑q−1

i=1 ai

)
has not a unique decomposi-

tion. After this result, we say that a tensor is unbalanced if aq ≥
∏q−1

i=1 (ai+1)−
(∑q−1

i=1 ai

)
. It turns out that this range is one unity larger than the corresponding unbalanced range
considered in [1] while studying the dimension of secant varieties of Segre varieties (see §8
of [5] where these two notions were compared). This phenomenon is quite common. The
size of the tensors where we have not generic identifiability is often at the border of the
range where we have defectivity for the corresponding secant varieties.

In the case aq ≤
∏q−1

i=1 (ai + 1) −
(

1 +
∑q−1

i=1 ai

)
the corresponding tensors are called

balanced.
Only few examples of balanced tensors, whose rank is smaller than the generic value,

are known to be not generically identifiable. We mention the case of tensors of rank 5 in
(C2)⊗5 ([4]) and, in dimension 3, tensors of rank 3 in (C3)⊗3 (classical, see [15] §4) and
tensors of rank 6 in (C4)⊗3 ([7], Theorem 1.3).

A computer aided analysis (see [5] Theor. 7.5) shows that when the numbers ai’s
grow, sporadic examples disappear, and we expect that a general balanced tensor, of rank
smaller than the generic value, is identifiable.

The present paper is devoted to illustrate one sporadic example, which we believe
should be the last one, for balanced tensors of dimension q = 3. Namely, we use a
geometric approach to show that general tensors of rank 8 in C3⊗C6⊗C6 are not uniquely
decomposable. Notice that tensors of the mentioned type have generic rank equal to 9.

The proof of the non-uniqueness is based on the weak-defectivity principle, classically
introduced by Terracini ([17]). We refer to [6, 13] and the introduction of [4] for an account
of the geometric reduction of the problem.

In details, we prove that through 8 general points of the Segre variety P2 × P5 × P5,
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which corresponds to simple tensors in C3 ⊗ C6 ⊗ C6, one can find a special fourfold Y
which is the Segre-Veronese image of P2 × P1 × P1, embedded by forms of type (3, 1, 1).
Since through a general point of the span P39 of Y one can find many linear 7-spaces which
are 8-secant to Y , then by [6] Theorem 2.9, it follows the weak defectivity and the non
identifiability of our tensors.

The example is interesting also because the subvariety Y , which produces the non-
identifiability of tensors of rank 8 in C3 ⊗ C6 ⊗ C6, is quite complicate. In particular, we
are unable to estimate how many 8-secant spaces to Y are there through a general point of
the span P39. Consequently, we are unable to determine how many different decomposition
are there, for a general tensor T as above. We simply know that the number is finite, and
at least 6.

Let us mention that, from the geometrical point of view, the existence of the subvariety
Y through 8 general points of P2 × P5 × P5 is proved by some ”ad hoc” argument. A
complete theory of special subvarieties that one can find through general points of Segre
varieties, seems actually far beyond our reach.

2. Preliminaries

For basic facts about the geometric point of view on tensors we follow [12].
Given any irreducible projective variety X, we denote by Sk(X) the k-th secant variety

of X, that is the Zariski closure of the set
⋃

x1,...,xk∈X < x1, . . . , xk >. Sk(X) is indeed
the Zariski closure of the set of elements having X-rank equal to k.

In the space PN = P(Ca1+1⊗ · · · ⊗Caq+1), where N = −1 +
∏q

i=1(ai + 1), the (projec-
tification of the) cone X of simple tensors corresponds to the embedding of Pa1×· · ·×Paq ,
via the Segre map. The (projectification of the) cone of tensors of rank k is an open dense
subset of the secant variety Sk(X).

We recall from [7] def. 2.1 the following

Definition 1. X is called k-identifiable if the general element of Sk(X) has a unique
expression as the sum of k elements of X.

In our notation, we say that Pa1 × · · · × Paq is k-identifiable if the general tensors in
Ca1+1 ⊗ · · · ⊗ Caq+1 of rank k has a unique decomposition as a sum of simple tensors.

A complete list of known Segre varieties X = P(Ca1+1) × P(Ca2+1) × P(Ca3+1), with
1 ≤ a1 ≤ a2 ≤ a3 ≤ 6, for which a computer based algorithm does not prove the k-
identifiability, is provided in [7], §5, see also [5] §7. The list corresponds to the case
of tensors of dimension 3, for which the algorithm cannot prove the uniqueness of the
decomposition.

In all the examples, except for two of them, it is indeed well known that general tensors
of rank k have infinitely many decompositions.

The two remaining cases are listed below:



L. Chiantini, M. Mella, G. Ottaviani / J. Alg. Stat., 5 (2014), 64-71 67

(a1, a2, a3) k

(3, 3, 3) 6

(2, 5, 5) 8

In the first case, the effective proof that X is not 6-identifiable (and the general tensor
of rank 6 has exactly 2 decompositions) is contained in [7], Theorem 1.3.

The latter case needs an ”ad hoc” analysis which is the target of the present note.

Our main tool is to prove the existence of particular, very degenerate subvarieties Y ,
through k general points of the Segre variety X = P(Ca1+1)× P(Ca2+1)× P(Ca3+1).

Indeed, we recall the following:

Theorem 1. Let X be a projective, irreducible non–degenerate variety of dimension n in
Pr, r > nk + k − 1. Suppose that for any general k-tuples of points x1, . . . , xk ∈ X one
can find a subvariety Y of pure dimension m > 0 containing the points x1, . . . , xk, whose
span has dimension

dim(〈Y 〉) = km+ k − 1.

Assume that Sk(Y ) = 〈W 〉 and moreover assume that through a general point of 〈Y 〉 one
finds µk > 1 k-secant (k − 1)-linear spaces.

Then X is not k-identifiable. Indeed through a general point of Sk(X) one finds at
least µk k-secant (k − 1)-linear spaces.

Proof. It is essentially Theorem 2.9 of [6].

3. Verifying the unidentifiability

From this point on, we focus our attention to the vector space V of tensors of type
C3⊗C6⊗C6, which has dimension 108. From the projective point of view, simple tensors in
V corresponds to points of the Segre embedding of X = P2×P5×P5 into P(C3⊗C6⊗C6) =
P107.

We also fix the rank k = 8, i.e. we consider the eighth secant variety S8(X). We know
that X is not 8-defective, so that S8(X) has projective dimension 103 (see [7], §5). This
means that the subvariety (cone) of tensors of rank 8 in V has the expected dimension
104.

By a computer-based calculation, using the M2 files available through the arXiv sub-
mission of [7], the guess is that X is 8-weakly defective, with a contact variety of dimension
4 and degree 108.

In order to verify the guess, we need a series of lemmas.
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Lemma 1. Fix eight general points P1, . . . , P8 of P5 and fix eight general points Q1, . . . , Q8

of P2. Then there exists a Segre embedding s : P2×P1 → P5 for which the line s({Qi}×P1)
contains Pi for all i. In other words, each Pi lies in s(P2 × P1) and π ◦ s−1(Pi) = Qi,
where π is the projection P2 × P1 → P2.

Proof. The embeddings P2 × P1 → P5 are parametrized by the quotient group G =
Aut(P5)/(Aut(P2) × Aut(P1)), which has dimension 24. Since the eight points Pi are
general, we have an 8-dimensional family S of embeddings s for which P1, . . . , P8 ∈ s(P2×
P1). Since the unique automorphism of P2 which fixes four general points is the identity,
as s varies in S, the family of 4-tuples (π◦s−1(P1), . . . , π◦s−1(P4)) dominates (P2)4. Since
the group Aut(P2) acts transitively on the points π ◦ s−1(P5), . . . , π ◦ s−1(P8), it follows
that the orbit of the set {π ◦ s−1(P5), . . . , π ◦ s−1(P8)}, under G × Aut(P2), dominates
(P2)8. The claim follows.

Lemma 2. Through 8 general points x1, . . . , x8 of X one can find a fourfold Y which
corresponds to the embedding of P2 × P1 × P1 into P39, mapped by divisors of multidegree
(3, 1, 1).

Proof. We send P2 × P1 × P1 to the three factors P2, P5 and P5, by using the identity
on P2 and divisors D = (1, 1, 0) and D′ = (1, 0, 1) respectively. Thus, we need to prove
that we can arrange this map ζ so that the image passes through 8 general points of X.

The choice of eight general points in P2 × P5 × P5 corresponds to the choice of 8
general points in each factor. By the previous Lemma, for a general choice of points
Q1, . . . , Q8 ∈ P2, P1, . . . , P8 ∈ P5 and P ′1, . . . , P

′
8 ∈ P5, we can find divisors D,D′, which

define Segre embeddings s, s′ of P2 × P1 into P5, for which each Pi (resp. each P ′i ) lies in
the line s({Qi} × P1) (resp. s′({Qi} × P1)).

It follows that Y = ζ(P2 × P1 × P1) passes through each point xi, i = 1, . . . , 8.

The following Lemma would be easy, provided one knows a table of 4-dimensional
varieties in P39, whose 8-th secant order is different from 1. Since the table is missing, we
need to compute directly what happens for the Segre product P2 × P1 × P1.

Lemma 3. Let Y be an embedding of P2 × P1 × P1 into P39, through a divisor of type
(3, 1, 1). Then through a general point y ∈ P39 one can draw at least 6 spaces of dimension
7, which are 8-secant to Y .

Proof. We consider the tangential projection from the tangent spaces at 7 general
points {y1, . . . , y7} of Y , which is a rational map τy1,...,y7 99K Y → P4. By the Theorem
4.2 (vi) of [8] we have that the number of seven dimensional spaces which are 8-secant
to Y and contain a general point y ∈ P39 is ≥ deg τy1,...,y7 , for a general choice of points
{y1, . . . , y7}. So it is enough to show that deg τy1,...,y7 = 6.

A computer based algorithm, implemented in M2 [9], which is available in the ancillary
files of the arXiv submission of this paper, shows that there exists a 7-uple {y1, . . . , y7}
and a point p ∈ P4 such that the fiber τ−1y1,...,y7

(p) consists of 6 reduced points.
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Consider the rational map

τ : (Y )7 × P39 99K (Y )7 × P4

induced by the tangential projection. That is

τ(y1, . . . , y7, p) = (y1, . . . , y7, τy1,...,y7(p)).

Then, after resolving the indeterminacy of the map τ , we get, from the Stein factorization,
that the general fiber of τ consists of six points, so that deg τy1,...,y7 = 6.

Remark 1. Computer experiments, performed with the M2 file quoted in the above proof,
show that the base locus of τY,s consists of 2s lines for s ≤ 6 (each tangent space at a point
y ∈ Y meets Y in two lines) and consists of 14 lines plus 4 extra points for s = 7. We do
not know how to prove theoretically the existence of these 4 points in the base locus.

Now we can use the approach of [6] to prove that X is not 8-identifiable.

Theorem 2. X is not 8-identifiable. Through a general point Q ∈ P107 one can draw at
least 6 spaces of dimension 7, which are 8-secant to X.

Proof. Fix 8 general points P1, . . . , P8 ∈ X and a general point Q ∈ 〈P1, . . . , P8〉, so
that Q is a general point of the 8-th secant variety of X. By Lemma 2, the eight points
are contained in the image Y ⊂ X of a Segre-Veronese embedding of P2×P1×P1 through
a divisor of type (3, 1, 1). Y spans a P39, which clearly contains Q, and Q is a general
point of P39. By Lemma 3, one finds 6 linear spaces of (projective) dimension 7, which are
8-secant to Y and contain Q. Since these spaces are also 8-secant to X, the claim follows.

From a geometric point of view, Theorem 2.4 of [6] implies the following.

Corollary 1. X is 8-weakly defective. A general hyperplane which is tangent to X at 8
general points, is also tangent along a subvariety Y of dimension 4, described above.

Remark 2. One would like to conclude that through a general point of the 8-secant variety
of X one can find exactly 6 spaces of dimension 7, which are 8-secant to X.

In other words, one would like to conclude that a general tensor of type (3, 6, 6) and
rank 8 can be written as a sum of 8 decomposable tensors in exactly 6 ways.

Unfortunately, we can only conclude that there are at least 6 decompositions. One
reason is that the lower bound with deg τy1,...,y7 considered in the proof of Lemma 3 can be
a strict inequality. For example, if Y is the 8-Veronese embedding of P2, then Ranestad
and Schreyer prove (see Theorem 1.7 (iv) of [14]) that a general polynomial of degree 8
has exactly 16 decompositions as the sum of 15 powers of linear forms. On the other hand,
the tangential projection from 14 points has base locus given by the 14 points themselves
and so its degree is 82 − 14 · 4 = 8 < 16.

Moreover, there could be more than one Segre-Veronese variety like Y , passing through
8 general points of X.
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Using Terracini’s interpretation of the secant varieties of Segre varieties ([17]), as ex-
plained in section 4 of [3], we can translate the main Theorem into a theorem on linear
systems of matrices.

Corollary 2. Let M be a linear system of 5 × 5 matrices, with (affine) dimension 3.
Assume that M has rank 8, i.e. there are 8 matrices of rank 1 which generate all the
elements of M. Then there are at least 6 sets of 8 rank 1 matrices, whose spans contain
M.

Proof. It is a straightforward consequence of the main Theorem of [3], see Remark 4.2
iii) there.
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