
JOURNAL OF ALGEBRAIC STATISTICS
Vol. 1, No. 1, 2010, 13-26
ISSN 1309-3452 – www.jalgstat.com

Open Problems on Connectivity of Fibers with Positive
Margins in Multi-dimensional Contingency Tables

Ruriko Yoshida

Department of Statistics, University of Kentucky, Kentucky, USA

Abstract. Diaconis-Sturmfels developed an algorithm for sampling from conditional distributions
for a statistical model of discrete exponential families, based on the algebraic theory of toric
ideals. This algorithm is applied to categorical data analysis through the notion of Markov bases.
Initiated with its application to Markov chain Monte Carlo approach for testing statistical fitting
of the given model, many researchers have extensively studied the structure of Markov bases for
models in computational algebraic statistics. In the Markov chain Monte Carlo approach for
testing statistical fitting of the given model, a Markov basis is a set of moves connecting all
contingency tables satisfying the given margins. Despite the computational advances, there are
applied problems where one may never be able to compute a Markov basis. In general, the number
of elements in a minimal Markov basis for a model can be exponentially many. Thus, it is important
to compute a reduced number of moves which connect all tables instead of computing a Markov
basis. In some cases, such as logistic regression, positive margins are shown to allow a set of
Markov connecting moves that are much simpler than the full Markov basis. Such a set is called
a Markov subbasis with assumption of positive margins.
In this paper we summarize some computations of and open problems on Markov subbases for
contingency tables with assumption of positive margins under specific models as well as develop
algebraic methods for studying connectivity of Markov moves with margin positivity to develop
Markov sampling methods for exact conditional inference in statistical models where the Markov
basis is hard to compute.
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1. Introduction

Algebraic Statistics is the field focused on the applications of algebraic geometry and
its computational tools in the study of statistical models.

Usually we test a goodness of fit for statistical models of discrete exponential fam-
ilies based on the large sample approximation to the null distribution of test statistics.
However, the large sample approximation may be poor when the sample sizes, i.e., the
expected cell frequencies, are small [23]. In that case we apply the Markov chain Monte
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Carlo (MCMC) approach for testing statistical fitting of the given model. Sturmfels [33]
and Diaconis-Sturmfels [15] developed an algebraic algorithm for sampling from condi-
tional distributions for a statistical model of discrete exponential families, based on the
algebraic theory of toric ideals and it is applied to categorical data analysis through the
notion of Markov bases. Initiated with its application to MCMC approach for testing
statistical fitting of the given model, many researchers have extensively studied the struc-
ture of Markov bases for models in computational algebraic statistics [17]. In the MCMC
approach for testing statistical fitting of the given model, a Markov basis is defined as a
set of moves connecting all contingency tables satisfying the given margins and Diaconis-
Sturmfels showed that in fact the Markov basis for the given model with linear sufficient
statistics is a set of generators of a toric ideal associate with its design matrix [15]. This
theory, then, motivated for obtaining Markov chain moves, such as the genotype sampling
method of [22], extensions to graphical models [19] and beyond [26].

There have been several algorithms and software developed for computing generators
of a toric ideal such as [33], [28] and the software 4ti2 [1] which is very fast and user friendly
[25]. However, despite these significant computational advances, there exist applied prob-
lems where one may never be able to compute a Markov basis. In general, computing a
Markov basis for a model is NP-hard [14] and for some cases there are exponentially many
elements in a Markov basis (e.g., models of no-3-way interaction in [14]). Thus, it is use-
ful to compute a smaller set of moves which connect tables with given constraints rather
than all constraints. This problem was already discussed in Section 3 of [15] on “corner
minors”. In [2] the case of two-way incomplete tables was studied. Connectivity of a set
of Markov moves is traditionally studied through primary decomposition [16]. However,
as a practical tool, this is problematic because the primary decomposition is very difficult
to compute.

Therefore in this paper we will summarize some results and open problems on com-
puting sets of Markov moves that connect tables with positive margins, because sets of
Markov moves that work with certain margins may be much simpler than a full Markov
basis.

Chen et. al. discussed that in some cases, such as logistic regression, positive margins
are shown to allow a set of Markov connecting moves that are much simpler than the full
Markov basis [10]. One such example is shown in [24] where a Markov basis for a multiple
logistic regression is computed by the Lawrence lifting of this basis.

2. Preliminary

A contingency table is a table which records counts of events at combinations of factors,
and it is used to study the relationship/correlations between the factors. All possible
combinations of factor labels make cells in an array, and the count in each cell may be
viewed as the outcome of a multinomial probability distribution.

Let n be a contingency table with k cells. In order to simplify the notation, we denote
by X = {1, . . . , k}, the sample space of the contingency table. In the special case of two-
way contingency tables with I rows and J columns, we also denote the sample space with
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X = {1, . . . , I} × {1, . . . , J} = {(i, j) : i = 1, 2, . . . , I, j = 1, 2, . . . J}.
Let N be the set of nonnegative integers, i.e., N = {0, 1, 2, . . .} and let Z be the set of

all integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Without loss of generality, in this paper,
we vectorize a table by a vector of counts n = (n1, . . . , nk). For example suppose we have
the following 2× 3 table (

2 3 4
5 6 7

)
we write this table as a vector of counts

n = (2, 3, 4, 5, 6, 7) .

Under this point of view, a contingency table n can be regarded as a vector n ∈ Nk.
The fiber of an observed table nobs with respect to a map T : Nk −→ Ns is the set

FT (nobs) =
{
n | n ∈ Nk , T (n) = T (nobs)

}
. (1)

When the dependence on the specific observed table is irrelevant, we will write simply FT

instead of FT (nobs).
In mathematical statistics framework, the map T is usually the minimal sufficient

statistic of some statistical model and the usefulness of enumerating the elements in
FT (nobs) follows from classical theorems such as Rao-Blackwell theorem (see e.g. [32]).

When the map T is linear, T is defined by an s×k-matrix AT , and the (ℓ, h)th element
of the matrix AT is

AT (ℓ, h) = Tℓ(h), (2)

where Tℓ is the ℓ-th component of T . In terms of the matrix AT , FT can be rewritten in
the form:

FT =
{
n | n ∈ Nk , AT (n) = AT (nobs)

}
. (3)

The matrix AT is called the design matrix or constraint matrix, and the s rows are
the vectors for computing sufficient statistics. For example, for 2 × 3 tables under the
independence model, AT is the 5× 6 matrix given by

AT =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


and the rows of AT compute row and column sums of the contingency table.

To connect any two tables of the fiber FT with a path of nonnegative tables, algebraic
statistics suggests an approach based on the notion of Markov moves and Markov bases.
A Markov move is any table m with integer entries that preserves the linear map T , i.e.
T (n±m) = T (n) for all n ∈ FT .
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A finite set of moves M = {m1, . . . ,mr} is called a Markov basis if it is possible to
connect any two tables of FT with moves in M. More formally, for all n1 and n2 in FT ,
there exist a sequence of moves {mi1 , . . . ,miA} and a sequence of signs {ϵi1 , . . . , ϵiA} such
that

n2 = n1 +

A∑
a=1

ϵiamia (4)

and

n1 +
a∑

j=1

ϵijmij ≥ 0 for all a = 1, . . . , A . (5)

See [15] for further details on Markov bases.
To actually compute Markov bases, we associate to the problem two distinct polynomial

rings. First, we define R[x] = R[x1, . . . , xk], i.e., we associate an indeterminate xh to any
cell of the table; then, we define R[y] = R[y1, . . . , ys], with an indeterminate yℓ for any
component of the linear map T . In the following we will use some facts from commutative
algebra, to be found in, e.g., [12].

Now we remind a reader of a Markov subbasis.

Definition 1 ([9]). A Markov subbasis MAT ,nobs
for nobs ∈ Nk and integer matrix AT is

a finite subset of ker(AT ) ∩ Zk such that, for each pair of vectors u, v ∈ FT , there is a
sequence of vectors mi ∈ MAT ,nobs

, i = 1, . . . , l, such that

u = v +

l∑
i=1

mi,

0 ≤ v +

j∑
i=1

mi, j = 1, . . . , l.

The connectivity through nonnegative lattice points only is required to hold for this specific
nobs.

Note that MAT ,nobs
for every nobs ∈ Nk and for a given AT is a Markov basis MAT

for AT .
Now we recall some definitions from commutative algebra:

• An ideal I ⊂ R[x] is radical if

{f ∈ R[x] | fa ∈ I for some a ∈ (N− {0})} = I ;

• Let I, J ⊂ R[x] be ideals. The quotient ideal (I : J ) is defined by:

(I : J ) = {f ∈ R[x] | f · J ⊂ I} ;
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• Let I, J ⊂ R[x] be ideals. The saturation of I with respect to J is the ideal defined
by:

(I : J∞) = {f ∈ R[x] | ga · f ∈ I, g ∈ J , for some a ∈ (N− {0})} ;

• Let Z = {z1, . . . , zs} ⊂ Rk. A lattice L generated by Z is defined:

L = ZZ = {x = α · y|α ∈ Z, y ∈ Z}.

Z ⊂ Rk is called a lattice basis of L if each element in L can be written as a
linear integer combination of elements in Z. Now a lattice basis for ker(AT ) has the
property that any two tables can be connected by its vector increments with allowing
to swing negative in the connecting path (see Chapter 12 of [33] for definitions and
properties of a lattice basis).

See [12] more details on the definitions above.

3. Computational methods

There are many ways to fit and evaluate a loglinear model for a multiway table of
counts. For example, maximum likelihood fitting and asymptotic measures of goodness
of fit are available as part of any generalized linear model package, such as the one in a
software R [35]. R command loglin fits table, using iterative proportional fitting (IPF).
IPF is more convenient than Poisson regression if the data is in a multidimensional array.
Both methods rely on χ2 asymptotics on either the Pearson χ2 statistic or likelihood ratio
statistic for goodness of fit. For sparse tables, we often use exact conditional methods in
order to avoid asymptotic doubts. The command chisq.test in R has an option for the
exact method on two-way tables, called Fisher’s exact test introduced by Fisher [18].

For multiway tables, the package exactLoglinTest maintained by [7] contains an
importance sampling (IS) method in [5] and there are certain examples where it has
difficulty generating valid tables.

One can run Markov chains with a set of Markov moves obtained from a set of gen-
erators of a toric ideal associate with its design matrix using the algorithm proposed by
Diaconis-Sturmfels [15]. One can compute such generators using algebra software pack-
ages, including COCOA [11], Macaulay 2 [20], and Singular [21] which implement several
algorithms. 4ti2 [1] is one of the most popular software to compute a Markov basis because
it is very fast, it has a natural coding language for statistical problems, and it has utilities
for filtering output.

A Monte Carlo method, which is extremely flexible and does not require algebraic
computations, is sequential importance sampling (SIS) [9].

4. Computing Markov subbases

From the definition of a Markov basis and also from the definition of MCMC, we do
not allow all entries in the table to go negative when we are sampling. However, if one
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allows entries in the table to go negative, connecting Markov chains are easier to find. Let
M be a set of Markov moves.

Proposition 1 (Proposition 0.2.1 in [10]). Suppose IM is a radical ideal, and suppose
the moves in M form a lattice basis. Then the Markov chain using the moves in M that
allows entries to drop down to −1 connects a set that includes the set FT (nobs).

The idea of allowing some entries allowed to drop down to −1 appears in [6] and [9]. In
high dimensional tables (k large), the enlarged state space that allows entries to drop down
to −1 may be much larger than the set of interest FT (nobs), even though each dimension
is only slightly extended. Nevertheless, Proposition 1 makes it possible to use the connect
tables in a fiber on large tables (see [10]).

The Markov basis is a powerful tool to construct an irreducible Markov chain for any
margins. However, in general, it is very hard to compute a Markov basis and also there
can be arbitrary many elements in the Markov basis [14]. It is possible that a smaller set of
moves may connect tables if margins are strictly positive. In order to study the connecting
sets of moves in a fiber for certain values of margins, Chen et. al., in [9], introduced a
notion of Markov subbases and here we are interested in computing a Markov subbasis
under models with certain values of margins directly without computing a Markov basis
nor computing the radical of the ideal of binomials from the lattice basis. In [10] Chen et.
al. developed algorithms to compute such a Markov subbasis under some assumptions.

Theorem 1 (Proposition 0.4.1 in [10]). Let AT be a 0-1 matrix. Suppose there is an
integer lower bound b > 0 on all the constraint values:

tℓ ≥ b, ℓ = 1, 2, . . . , s,

where tℓ is the ℓ-th coordinate of the vector t = AT (nobs).
Let Iℓ = ⟨xh⟩AT (ℓ,h)>0 be the monomial ideal generated by all the indeterminates for

the cells that contribute to margin ℓ. If

IAT
∩

s∩
ℓ=1

Ib
ℓ ⊂ IM

where IAT
is the toric ideal associate with the matrix AT , IM is a toric ideal generated by

elements in M , and Ib
ℓ = ⟨xi1xi2 · · ·xib⟩AT (ℓ,ij)>0, then the moves in M connect all tables

in FT .

This result can establish connectivity in examples where the primary decomposition is
hard to compute. It does not require that IM be radical. If we assume that IM be radical,
then we have the following theorem.

Theorem 2 (Theorem 0.4.1 in [10]). Suppose IM is a radical ideal, and suppose M is a
lattice basis. Let p = x1 · · ·xk, let t = AT (nobs), and let tℓ be the ℓ-th coordinate of t.
For each index ℓ with tℓ > 0, let Iℓ = ⟨xh⟩AT (ℓ,h)>0 be the monomial ideal generated by
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indeterminates for cells that contribute to margin ℓ. Let L be the collection of indices ℓ
with tℓ > 0. Define

IL =

(
IM :

∏
ℓ∈L

Iℓ

)
.

If
(IL : (IL : p)) = ⟨1⟩ (6)

then the moves in M connect all the tables in FT .

One can find examples and applications of Theorems 1 and 2 in [10].
Assuming IM be radical might be too strict thus we would like to remove this assump-

tion. Here we have the following conjecture:

Conjecture 1. Suppose M is a lattice basis. Let p = x1 · · ·xk, let t = AT (nobs), and let
tℓ be the ℓ-th coordinate of t. For each index ℓ with tℓ > 0, let Iℓ = ⟨xh⟩AT (ℓ,h)>0 be the
monomial ideal generated by indeterminates for cells that contribute to margin ℓ. Let L
be the collection of indices ℓ with tℓ > 0. Define IL as in Theorem 2. If the equation in
(6) satisfies, then the moves in M connect all the tables in FT .

Algorithms used in Theorem 1 and Theorem 2 do not compute a minimum set of moves
connecting all tables in FT with assumption of positive margins. Also note that without
loss of generality, we can assume that all margins are positive because cell counts in rows
and/or columns with zero marginals are necessary zeros and such rows and/or columns
can be ignored in the conditional analysis. Thus we have the following problem:

Problem 1. Assume that all margins are positive. Find an algorithm to compute a min-
imum set of moves connecting all tables in FT in terms of inclusions.

More generally,

Problem 2. With tℓ > 0 for some row index ℓ, find an algorithm to compute a minimum
set of moves M in terms of inclusion connecting all tables in FT .

From our simulations, the algorithms used in Theorem 2 and Theorem 1 seem slower
than the algorithms to compute a full Markov basis using geometry, such as implemented
in 4ti2. Therefore to make an algebraic method more practical we have the following
problem.

Problem 3. With tℓ > 0 for some row index ℓ, develop an algorithm to compute a
minimum set of moves M in terms of inclusion which connects all tables in FT faster
than computing a full Markov basis via algorithms using geometry such as implemented in
4ti2.

Now we consider computation on Markov subbases for some specific models. Firstly
we consider a two-dimensional tables with upper bounds. Contingency tables with upper
bounds on the cell counts have recently been considered in, e.g., [13]. In general a Markov
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basis for unbounded contingency table under a certain model differs from a Markov basis
for bounded tables. In [29, 30] Rapallo applied Lawrence lifting to compute a Markov
basis for contingency tables whose cell entries are bounded. However, in the process, one
has to compute the universal Gröbner basis of the ideal associated with the design matrix
for a model which is, in general, larger than any reduced Gröbner basis. Thus, this is
also infeasible in small- and medium-sized problems. Here we consider bounded two-way
contingency tables under independence model. For i ̸= i′ and j ̸= j′, consider the square-
free move of degree two with +1 at cells (i, j), (i′, j′) and −1 at cells (i, j′) and (i′, j)
:

j j′

i 1 −1
i′ −1 1

.

For simplicity we call this a basic move. It is well known that the set of all basic moves
forms a unique minimal Markov basis under the independence model (in terms of algebra,
extending the notion of indispensable binomials of a toric ideal, in [3] Aoki et. al. define
indispensable monomials of a toric ideal and establish some of their properties), i.e. the
problem on the tables with fixed rows sums and column sums.

However, the Markov basis for for bounded tables (i.e. all of the cells of a table have
upper bounds) is much bigger that the set of all 2× 2 minors. Then in [31] Rapallo and
Yoshida showed that if these bounds on cells are positive, i.e., they are not structural
zeros, the set of basic moves of all 2 × 2 minors connects all tables with given margins.
Contingency tables with structural zero cells are called incomplete contingency tables ([4,
Chapter 5]). Properties of Markov bases for incomplete tables are studied in [2, 27, 29].

Theorem 3 ([31]). Consider I × J tables with row and column sums fixed and with all
cells bounded. If these bounds are positive, then a Markov subbasis for the bounded tables
is the set of basic moves of all 2× 2 minors.

Now we assume that the given margins are positive for bounded I × J tables, i.e., we
assume that all row and column sums are positive. Without loss of generality, we can
assume that all margins are positive because cell counts in rows and/or columns with
zero marginals are necessary zeros and such rows and/or columns can be ignored in the
conditional analysis.

Now we consider I×J contingency tables with only diagonal elements being structural
zeros under assumption of positive conditions on row and column sums. In [2] Aoki and
Takemura showed the following propositions.

Proposition 2 ([2]). Suppose we have I×J tables with fixed row and column sums. A set
of basic moves is a Markov subbasis for I×J contingency tables, I, J ≥ 4, with structural
zeros in only diagonal elements under the assumption of positive marginals.

Motivated by the proposition above we have the following problem to solve:

Problem 4. Let S ⊂ X be the set of structural zeros. Suppose we have I × J tables with
fixed row and column sums. What is the necessary and sufficient condition on S so that a
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set of basic moves is a Markov subbasis for I × J contingency tables with structural zeros
in S under the assumption of positive marginals.

5. Connectivity of fibers of positive marginals in bivariate logistic
regression

In the case of bivariate logistic regression, in [24] Hara et. al. showed a simple subset of
the Markov basis which connects all fibers with a positive sample size for each combination
of levels of covariates. First, we consider univariate Poisson regression [16] with the set
of levels {1, . . . , J} of a covariate. The mean µj of independent Poisson random variables
Xj , j = 1, . . . , J , is modeled as

logµj = α+ βj, j = 1, . . . , J.

The sufficient statistic for the models is

(

J∑
j=1

Xj ,

J∑
j=1

jXj).

The first component is the total sample size

n =
J∑

j=1

Xj .

The design matrix AT for this model is given by

AT =

(
1 1 . . . 1
1 2 . . . J

)
. (7)

First we focus on the minimum-fiber Markov basis for the univariate Poisson regression.
The minimum-fiber Markov basis is defined as the union of all minimal Markov bases [34].

Proposition 3 ([24]). Let ej denote the contingency table with just 1 frequency in the
j-th cell. The set of moves

B = {±(ej1 + ej4 − ej2 − ej3) | 1 ≤ j1 < j2 ≤ j3 < j4 ≤ J, j2 − j1 = j4 − j3} (8)

forms the minimum-fiber Markov basis for the univariate Poisson regression.

Now we focus on the univariate logistic regression [8]. We first show a brief review of
Markov bases of univariate logistic regression model. Let {1, . . . , J} be the set levels of
a covariate and let X1j and X2j , j = 1, . . . , J , be the numbers of successes and failures,
respectively. The probability for success pj is modeled as

logit(pj) = log
pj

1− pj
= α+ βj, j = 1, . . . , J.
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The sufficient statistics for the model is

(X1+, X+1, . . . , X+J ,

J∑
j=1

jX+j).

Hence moves m = (mij) for the model satisfy (m1+,m+1, . . . ,m+J) = 0 and

J∑
j=1

jm+j = 0. (9)

The design matrix for this model is the Lawrence lifting Λ(AT ) of AT in (7):

Λ(AT ) =

(
AT 0
EJ EJ

)
, AT =

(
1 1 . . . 1
1 2 . . . J

)
, (10)

where EJ denotes the J × J identity matrix.
In general, Markov bases of the Lawrence lifting of AT , Λ(AT ), become more compli-

cated than Markov bases for AT . In usual applications of the logistic regression model,
however, X+j := X1j + X2j is fixed by a sampling scheme and positive. In [8] Chen et.
al. showed that a simple subset of Markov bases of Λ(AT ) guarantees connectivity of all
fibers satisfying (X+1, . . . , X+J) > 0.

Let ej be redefined by a 2 × J integer array with 1 in the (1, j)-cell and −1 in the
(2, j)-cell. Then in [24] Hara et. al. showed that the set of moves in (8) connects all fibers
with (X+1, . . . , X+J) > 0. More strongly, the set of moves is norm-reducing [34] for any
two tables x, y in any fiber with positive marginals.

Proposition 4 ([24]). The set of moves

BΛ(AT ) = {±(ej1 + ej4 − ej2 − ej3) | 1 ≤ j1 < j2 ≤ j3 < j4 ≤ J, j2 − j1 = j4 − j3} (11)

is norm-reducing for all fibers with (X+1, . . . , X+J) > 0 for the univariate logistic regres-
sion model.

In [8] Chen et. al. introduced a subset of B which still connects all fibers with
X+j > 0,∀j.

Theorem 4 ([8]). The set of moves

B0 = {m ∈ B | j2 = j1 + 1, j3 = j4 − 1} (12)

connects every fiber satisfying (X+1, . . . , X+J) > 0 for the univariate logistic regression
model.

Let {1, . . . , J} and {1, . . . ,K} be the sets levels of two covariates. For j = 1, . . . , J ,
k = 1, . . . ,K, let X1jk and X2jk be the numbers of successes and failures, respectively, for
level (j, k). The probability for success p1jk is modeled as

logit(p1jk) = log

(
p1jk

1− p1jk

)
= µ+ αj + βk, (13)
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j = 1, . . . , J, k = 1, . . . ,K.

Then the likelihood is written by

L(α, β, γ) ∝
J∏

j=1

K∏
k=1

(1 + exp(α+ βj + γk))−n+jk

×
J∏

j=1

K∏
k=1

exp (αn1jk + βjn1jk + γkn1jk)

=

J∏
j=1

K∏
k=1

(1 + exp(α+ βj + γk))−n+jk

× exp

αn1++ + β

J∑
j=1

jn1j+ + γ

K∑
k=1

kn1+k



Thus the sufficient statistics for this model is X1++,
∑J

j=1 jX1j+,
∑K

k=1 kX1+k, X+jk,
∀j, k. Hence moves m = (mijk) for the model satisfy

m1++ = 0,

J∑
j=1

jm1j+ = 0,

K∑
k=1

km1+k = 0, m+jk = 0, ∀j, k.

Let

B =

(
1 1 . . . 1
1 2 . . . K

)
.

Then the design matrix for the bivariate logistic regression model is Lawrence lifting of
Segre product Λ(AT ⊗ B). Here we consider a set of moves which connects every fiber
satisfying X+jk > 0, ∀j, k.

Definition 2. Let ejk = (eijk) be redefined as an integer array with 1 at the cell (1jk), −1
at the cell (2jk) and 0 everywhere else. Define BΛ(AT⊗B) as the set of moves m = (mijk)
satisfying the following conditions.

1. m = ej1k1 − ej2k2 − ej3k3 + ej4k4

2. (j1, k1)− (j2, k2) = (j3, k3)− (j4, k4)

Theorem 5 ([24]). BΛ(AT⊗B) connects every fiber satisfying X+jk > 0, ∀j, k.

Theorem 5 shows the connectivity result for fibers with positive response variable
marginals for bivariate logistic regression. There is a natural extension of Theorem 5 to
m covariates: Let j = (j1, . . . , jm) denote the combination of m levels and let ej denote
an array with 1 at the cell (1, j) and −1 at the cell (2, j). Define BΛ(A1⊗···⊗Am) as the set
of the following moves m:
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1. m = ej1 − ej2 − ej3 + ej4

2. j1 − j2 = j3 − j4 .

Then we have the following conjecture.

Conjecture 2. The set of moves BΛ(A1⊗···⊗Am) connects every fiber with positive response
marginals for the logistic regression with m covariates.

In [24] Hara et. al. conjectured that we can further restrict to the set of moves
z = ej1 − ej2 − ej3 + ej4 , where the elements of j1 − j2 = j3 − j4 are ±1 or 0.

Conjecture 3. The subset of moves from BΛ(A1⊗···⊗Am) such that the elements of j1−j2 =
j3 − j4 are ±1 or 0 connects every fiber with positive response marginals for the logistic
regression with m covariates.

We have here an assumption that response marginals are positive. However this as-
sumption may be too strict in practice. As discussed in Chen et al. [8], the connectivity
under this assumption means that, if entries in columns in which response marginals are
zeros are allowed to drop down to −1, any two tables with zero response marginals are
connected by the set of moves proposed above. Hence it is possible to implement MCMC
theoretically. Thus it would be interesting to investigate the cases if we have that the
coefficient of one of the covariates is zero in the bivariate logistic regression.
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