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Betti Numbers of Cut Ideals of Trees
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Abstract. Cut ideals, introduced by Sturmfels and Sullivant, are used in phylogenetics and alge-
braic statistics. We study the minimal free resolutions of cut ideals of tree graphs. By employing
basic methods from topological combinatorics, we obtain upper bounds for the Betti numbers of
this type of ideals. These take the form of simple formulas on the number of vertices, which arise
from the enumeration of induced subgraphs of certain incomparability graphs associated to the
edge sets of trees.
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1. Introduction

Let G be a simple graph. We denote the set of its vertices by V (G) and the set of
its edges by E(G). By a cut A|B of G, we mean a partition of V (G) into two subsets,
A,B ⊆ V (G) (so that A∩B = ∅ and A∪B = V (G)). Partitions are considered unordered,
hence the number of cuts of a graph G is 2|V (G)|−1.

Note that a given cut A|B also partitions the set of edges into two subsets: SA|B ⊆
E(G), consisting of those edges whose endpoints lie in different parts, and TA|B ⊆ E(G),
consisting of those edges whose endpoints lie in the same part.

We may associate a toric ideal to a graph G as follows. Fix a field k, and introduce
the polynomial rings RG := k[rA|B : A|B a cut of G] and SG := k[se, te : e ∈ E(G)], in

2|V (G)|−1 and 2|E(G)| indeterminates, respectively. Define the ring homomorphism:

φG : RG → SG

rA|B 7→
∏

e∈SA|B

se ·
∏

e∈TA|B

te.

∗Corresponding author.

Email addresses: samu.potka@aalto.fi (S. Potka), sarmient@mis.mpg.de (C. Sarmiento)

http://www.jalgstat.com/ 108 c© 2013 JAlgStat All rights reserved.



S. Potka, C. Sarmiento / J. Alg. Stat., 4 (2013), 108-117 109

The cut ideal of a graph G is:
IG := kerφG ⊂ RG.

Cut ideals were introduced by Sturmfels and Sullivant in [9]. They showed how to
obtain generators for the cut ideal of a graph G in terms of the generators of two cut
ideals IG1 and IG2 in the case where G is a zero-, one- or two-sum of two graphs G1 and
G2. They also obtained necessary and sufficient conditions for the toric variety V(IG) to
be smooth, among other results. Later, Nagel and Petrović [6] proved that the cut ideals
of ring graphs admit a quadratic Gröbner basis and established algebraic properties which
derive from this fact, such as Cohen-Macaulayness and Koszulness of the coordinate ring
RG/IG. In [3], Engström proved a conjecture presented in [9], namely that the cut ideals
of K4-minor free graphs are generated by quadrics.

We shall study minimal free resolutions of the cut ideals of the class of tree graphs. A
tree graph is a connected graph without cycles. From [6], we know that their cut ideals are
arithmetically Gorenstein, and from [3] that they are generated by quadrics. We denote
a tree on n vertices by Tn. By applying some topological ideas introduced by Engström
and Dochtermann in [2], we were able to obtain estimates for some of the Betti numbers
of the cut ideals of Tn:

Theorem 1.1. For the Betti numbers of ITn+1, we have the following bounds, which hold
independently of the underlying field:

β0,2(ITn+1) ≤ β0,2(in ITn+1) =
1

2
(4n − 2·3n + 2n)

β1,3(ITn+1) ≤ β1,3(in ITn+1) =
1

3
(8n − 3·6n + 3·4n − 2n)

β2,4(ITn+1) ≤ β2,4(in ITn+1) =
1

8
(16n − 4·12n + 6·8n + 2·7n − 4·6n + 4·5n

−9·4n + 2·3n + 2·2n)

β1,4(ITn+1) ≤ β1,4(in ITn+1) =
1

4
(7n − 4·6n + 6·5n − 4·4n + 3n)

β3,5(ITn+1) ≤ β3,5(in ITn+1) =
1

60
(2·32n − 10·24n + 30·20n − 120·18n + 30·17n

−40·16n + 180·15n + 375·14n − 420·13n − 180·12n

+200·11n − 280·10n − 220·9n + 985·8n − 720·7n

+655·6n − 710·5n + 35·4n + 340·3n − 132·2n)

β2,5(ITn+1) ≤ β2,5(in ITn+1) =
1

12
(3·14n − 12·12n − 2·11n + 22·10n − 2·9n

−9·8n − 6·7n + 9·6n − 10·5n + 11·4n − 4·3n)

We emphasize that, since the main algebraic results used to obtain these bounds,
that is Hochster’s formula (cf. Theorem 1.2 below) and the upper semi-continuity of Betti
numbers (cf. Lemma 2.2), apply for an arbitrary field, our arguments adapt almost directly
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to obtaining bounds for the Betti numbers of the cut ideals of trees over any field (see the
last paragraph in the proof of Theorem 1.1).

1.1. Definitions

We recall some definitions that are necessary for presenting our proof of Theorem 1.1.
A simplicial complex ∆ is a collection of subsets of a finite base set [n] := {1, 2, . . . , n}
which is closed under taking subsets. The independence complex Ind(G) of a graph G is the
simplicial complex on V (G) whose faces are the subsets of V (G) which are not adjacent
in G. The Stanley-Reisner ideal of a simplicial complex ∆ on n vertices is the square-free
monomial ideal:

I∆ := 〈xi1xi2 . . . xir : (i1, i2, . . . , ir) /∈ ∆〉 ⊆ k[x1, . . . , xn].

One of the cornerstones of combinatorial commutative algebra is Hochster’s formula, re-
lating the Betti numbers of the minimal free resolution of a Stanley-Reisner ideal I∆ with
the homology of the subcomplexes of ∆:

Theorem 1.2 (Hochster’s formula, [5]). For i > 0, the Betti numbers βi,j of the Stanley-
Reisner ideal of a simplicial complex ∆ are given by:

βi,j (I∆) =
∑

F⊆V (∆)
|F |=j

dimk H̃j−i−1(∆[F ],k), (1)

where ∆[F ] refers to the subcomplex of ∆ induced by the vertices in F .

The edge ideal of a graph G on n vertices is the monomial ideal defined as 〈xixj :
(ij) ∈ E(G)〉 ⊆ k[x1, . . . , xn].

2. Proof of the Main Result

A couple of preliminary computations using Macaulay2[4] provide us with the first two
total Betti numbers of the cut ideals, over Q, for some path graphs Pn. They are listed in
Table 2.1†.

We observe that the number of generators and first syzygies increases quickly when
considering larger paths. Accordingly, direct use of the usual functions in Macaulay2

(for example, gens, syz, res) becomes unfeasible when doing the computations. This
motivates the general strategy of trying to relate combinatorial properties of the graphs
to algebraic properties of their cut ideals, which we shall follow now.

Our approach derives from the results of Engström and Dochtermann in [2] and consists
of two steps:

†The blank in the last entry means the computation had not concluded after roughly one hour. For the
next heaviest tasks, the computation of the syzygies of IP7 and the generators of IP8 , the CPU time was
55.7 minutes and 8.8 seconds, respectively. We used a 8 AMD Opteron Dual-Core 2.6 GHz computing
server with 64 GB RAM running Ubuntu 12.04. In each case, the generators were obtained with the
4ti2[1] interface for Macaulay2.
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β0 β1

IP3 1 0
IP4 9 16
IP5 55 320
IP6 285 4160
IP7 1351 44800
IP8 6069 -

Table 2.1: First two total Betti numbers of cut ideals of path graphs.

• Construct a Gröbner basis for ITn , and characterize the initial ideal from which it
arises combinatorially.

• Regard the initial ideal gotten as the Stanley-Reisner ideal of a certain simplicial
complex, and use Hochster’s formula to get an estimate for the Betti numbers of
ITn .

To have a picture of the initial ideals associated to ITn , we present the complete Betti
diagrams for their minimal free resolutions in Table 2.2 for n = 4 and n = 5. Here we use
the standard monomial ordering from Macaulay2, namely graded reverse lexicographic.

n = 4

total: 1 9 16 9 1

0: 1 . . . .

1: . 9 16 9 .

2: . . . . 1

n = 5

total: 1 55 326 951 1744 2273 2273 1744 951 326 55 1

0: 1 . . . . . . . . . . .

1: . 55 320 897 1462 1437 836 282 54 6 . .

2: . . 6 54 282 836 1437 1462 897 320 55 .

3: . . . . . . . . . . . 1
Table 2.2: Betti diagrams for the initial ideals of the cut ideals of paths on four and five
vertices.

We start with an observation. Note that the identification A|B 7→ SA|B defines an

injective mapping from the set of cuts of G into 2E(G). If G is a tree, this map is a
surjection onto 2E(G), and hence every subset of E(G) corresponds bijectively to a cut of
G. This allows us to think of the indeterminates in RG equivalently as being labelled by
the subsets of E(G) (see Figure 2.1a).

We wish to introduce a normal form for the monomials in RTn . To describe it, picture
a monomial m as stacked subsets of edges; then the normal form of m is obtained by
sending edges to the bottom as illustrated in Figure 2.1b. As it turns out, the normal form
of a monomial can be reached in steps by successively sending edges to the bottom for
pairs of cuts in the monomial. The translation into algebraic terms goes as follows.
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(a) Representation as a subset of edges. (b) Passing to normal form.

Figure 2.1: Equivalence of cuts and subsets of edges.

Proposition 2.1. Let ITn be the cut ideal associated to a tree Tn. Then there is a term
order in RTn with respect to which the set

B = {rX · rY − rX∪Y · rX∩Y : X,Y ⊂ E(Tn) are incomparable} ⊂ ITn

is a Gröbner basis for ITn (here we designate a cut of Tn by the subset of E(Tn) it cuts).

Proof. (Adapted from the proof of Theorem 9.1 in [8].) Assign a weight to the in-
determinate rX as the number of elements X ′ ⊂ E(Tn) incomparable with X. Let ≺ be
any term order refining the partial order given by the weights to a total order. We claim
that B is a Gröbner basis for ITn with respect to ≺. Assume to the contrary, that there
is at least one binomial b = m − m′ ∈ ITn such that m is not divisible by any rX · rY
with X,Y ⊂ E(Tn) incomparable. This implies that all indeterminates appearing in m
are mutually comparable.

By taking b to be the minimal binomial providing a counterexample, we may suppose
that m and m′ have no common factors, and further, that the (labels of the) indeterminates
in m′ are also mutually comparable (otherwise we may reduce m′ modulo B to have it that
way). Then m and m′ have disjoint sets of indeterminates. But since b belongs to ITn , m
and m′ must cut the same edges the same number of times (and equally for edges kept
together). This can only happen if m = m′, because only then can the indeterminates
inside m and m′ be mutually comparable, thus leading us to a contradiction. Hence, m
must be divisible by some rX · rY with X,Y ⊂ E(Tn) incomparable.

We will use the next lemma towards the end of the proof of Theorem 1.1. The reader
can refer to [5] for further details.

Lemma 2.2 (Upper semicontinuity, Theorem 8.29 in [5]). Fix a graded ideal I in a
polynomial ring k[x1, . . . , xn]. If in(I) is the initial ideal of I with respect to some term
order, then:

βi,j (I) ≤ βi,j (in(I)) for all i, j ∈ N

Proof. (Theorem 1.1) Let in ITn be the initial ideal giving rise to the Gröbner basis
of ITn presented in Proposition 2.1. This monomial ideal can be regarded as the edge
ideal of a graph ΓE(Tn) with the elements of 2E(Tn) as the vertex set and the pairs of the
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Figure 2.2: ΓE(Tn) for n = 4.

incomparable subsets of E(Tn) as the edge set. We call ΓE(Tn) the incomparability graph

of 2E(Tn); clearly, it only depends on |E(Tn)| = n− 1.
Now, extracting the insight from [2], we consider in ITn as the Stanley-Reisner ideal

of the simplicial complex Ind(ΓE(Tn)). This means that we can use Hochster’s formula to
calculate the Betti numbers of in ITn with knowledge of the counts of induced subgraphs of
ΓE(Tn) and the (dimension of the) reduced homology of their independence subcomplexes:

βi,j (in ITn) = βi,j

(
IInd(ΓE(Tn))

)
=

∑
F⊆V (ΓE(Tn))

|F |=j

dimk

(
H̃j−i−2(Ind(ΓE(Tn)[F ]))

)
. (2)

The enumeration of the induced subgraphs of ΓE(Tn) is a straightforward combinato-
rial calculation, which can be performed using inclusion-exclusion. We implemented this
procedure in a Python script [7] to get formulas for the number of induced subgraphs, and
illustrate it with the enumeration of .

We write the elements of ΓE(Tn) as tuples in {0, 1}n−1. Then, we can compare X,Y, Z ∈
ΓE(Tn) by indicating the number of entries i for which (Xi, Yi, Zi) attains every possible
value. Let these numbers be a, b, . . . , h, as in Figure 2.3.

a b c d e f g h

X 0 1 0 1 0 1 0 1
Y 0 0 1 1 0 0 1 1
Z 0 0 0 0 1 1 1 1 Y

X

Z

Figure 2.3: Comparison of X,Y, Z ∈ ΓE(Tn).

The condition for the edge XY to be present, for instance, is that both b+ f and c+ g
be larger than zero. Hence, the number of labelled occurences of in ΓE(Tn) is given by
the sum: ∑

a+b+...+h=n−1,
b+f>0, c+g>0,
c+d>0, e+f>0,

b+d=0 xor e+g=0

(
n− 1

a, b, . . . , h

)
=

∑
a+c+e+f+g+h=n−1,

f>0, c+g>0,
c>0, e+f>0,

b+d=0

(
n− 1

a, c, e, f, g, h

)
+ . . .
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a+b+c+d+f+h=n−1,

b+f>0, c>0,
c+d>0, f>0,

e+g=0

(
n− 1

a, b, c, d, f, h

)
− 2

∑
a+c+f+h=n−1,

f>0, c>0,
b+d=0,e+g=0

(
n− 1

a, c, f, h

)
.

The terms on the right hand side are decomposed according to inclusion-exclusion:∑
a+c+f+h=n−1

f>0

=
∑

a+c+f+h=n−1

−
∑

a+c+h=n−1
f=0

,

and by taking symmetry into account, we obtain:

# (ΓE(Tn)) = 6n−1 − 2 · 5n−1 + 2 · 3n−1 − 2n−1.

Finally, Table 2.3 contains the (dimensions of the reduced) homologies of the independence
complexes of the induced subgraphs making contributions. Note that, as long as the
independence complexes of the graphs involved in equation (2) have torsion-free homology
groups, we do not have to be concerned about the characteristics of the underlying field k.
Putting this together with the counts for the induced subgraphs, we obtain the formulas
in Theorem 1.1. The fact that these expressions bound the Betti numbers of ITn from
above is a consequence of the well-known upper semicontinuity for the Betti numbers of
a minimal free resolution, stated in Lemma 2.2. Thus, we conclude the proof.

Graph dim H̃0 dim H̃1

1 0
2 0

Graph dim H̃0 dim H̃1

3 0
2 0
1 0
1 0
1 0
0 1

Graph dim H̃0 dim H̃1 Graph dim H̃0 dim H̃1

4 0 3 0

2 0 2 0

1 0 0 1
1 0 1 0
2 0 1 0
1 1 0 1
1 0 0 1
0 2 1 0
1 0 0 1

Table 2.3: Contributions to the reduced homology of the independence complexes of graphs over
Z. Notice that there is no torsion in any of these homology groups.

Below, in Table 2.4, are the estimates for the Betti numbers of ITn for n up to nine.
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n β0,2 β1,3 β2,4 β1,4 β2,5 β3,5

3 1 0 0 0 0 0
4 9 16 9 0 0 0
5 55 320 897 6 54 1450
6 285 4160 32025 150 3380 156824
7 1351 44800 810255 2280 115950 9798758
8 6069 435356 17298519 27300 2984380 474814396
9 26335 3978240 335187657 283626 64924734 19911592842

Table 2.4: The Betti numbers of the initial ideals. Obtained by using subgraph counts
and the homology of independence complexes.

3. Further remarks

A few interesting questions were left unaddressed in this note.

1. Does the combinatorial description we used for the initial ideal of ITn provide in-
formation about the cellular complexes supporting the minimal cellular resolution
of in ITn? Our initial computations of the minimal free resolutions of in ITn with
Macaulay2 showed that the minimal free resolution of the cut ideal of a tree on four
vertices is supported by the polytopal complex in Figure 3.1.

Figure 3.1: A Schlegel diagram of a polytopal complex supporting the minimal free res-
olution of the initial monomial ideal of P4. The monomials corresponding to the vertices
are, respectively, r1|234r12|34, r1|234r123|4, r12|34r123|4, r2|134r123|4, r12|34r14|23, r2|134r14|23,
r1|234r124|3, r2|134r124|3, r14|23r124|3.

2. Do our methods allow us to establish the polytopality of the supporting cell com-
plexes for the cut ideals of trees of any size? Do they allow to establish the symme-
try of the f -vector of such cellular complexes (which would reflect the arithmetic-
Gorenstein nature of the cut ideals of trees, which was established in [6]).
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3. As a last comment, we mention that a computation of the minimal free resolu-
tion of the cut ideal of a tree on five vertices yielded the non-unimodal Betti vec-
tor (1, 55, 320, 891, 1436, 1375, 1375, 1436, 891, 320, 55, 1). As seen in Table 2.2, this
property washed away when looking at the minimal free resolution of an initial ideal.
Is it possible to recover a non-unimodal Betti vector from the initial ideals of the
cut ideals of trees with respect to some term order? This would amount to a cell
complex with a non-unimodal f -vector supporting a minimal cellular resolution of
the initial ideal. That would be of independent interest in the case that the cell
complexes from the previous paragraph are polytopal.
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