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Abstract. We consider the real log canonical threshold for the learning model in Bayesian esti-
mation. This threshold corresponds to a learning coeflicient of generalization error in Bayesian
estimation, which serves to measure learning efficiency in hierarchical learning models [30, 31, 33].
In this paper, we clarify the ideal which gives the log canonical threshold of the restricted Boltz-
mann machine and consider the learning coeflicients of this model.
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1. Introduction

Many recent studies in statistics have used algebraic geometry, one example being
the study of learning coefficients in singular Bayesian statistics. The learning coefficient
corresponds to the main term of the generalization and training errors. Singular models,
such as neural networks, normal mixtures, reduced rank regressions, Bayesian networks,
binomial mixtures, Boltzmann machines, and hidden Markov models, have a singular
Fisher metric which is not always approximated by any quadratic form. Therefore, the
classic model selection methods of regular statistical models such as AIC [1], TIC [29],
HQ [15], NIC [21], BIC [28], and MDL [25], cannot apply to the singular models and it is
difficult to analyze the asymptotic behavior of these generalization and training errors.

S. Watanabe [30, 31, 32, 33] established the theory of learning coefficients using alge-
braic geometry, even though the statistical model is singular. However, he presents only a
universal law, and more mathematical consideration is needed to obtain the exact learning
coefficient.

The learning coefficient is the log canonical threshold of the Kullback function. Let
f be a nonzero holomorphic function over C or an analytic function over R on a smooth
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variety Y, and let Z C Y a closed subscheme. The log canonical threshold Az (Y, f) is
analytically defined as

Mz(Y, f) = sup{c: | f|~¢ is locally L? near Z}

over C, and
Mz(Y, f) =sup{c: |f|7¢ is locally L' near Z}

over R [18, 22]. It is known that if f is a polynomial or a convergent power series, Ao(C?, f)
is the largest root of the Bernstein-Sato polynomial b(s) € C[s] of f, where b(s) f* = Pfs+!
for a linear differential operator P [9, 10, 17]. The log canonical threshold Az(Y, f) also
corresponds to the largest pole of [ ... , | f**¢(w)dw over C, ([ near z |fI7¥(w)dw over
R), where 9(w) is a C*°— function with a compact support and such that ¢ (w) # 0 on
Z.

Log canonical thresholds can be obtained by Hironaka’s Theorem [16]. However, it is
still difficult to obtain them in learning theory for several reasons, such as degeneration
with respect to their Newton polyhedra and non-isolation of their singularities [14]. More-
over, in algebraic geometry and algebraic analysis, these studies are usually done over an
algebraically closed field [18, 22]. There are many differences between the real field and
the complex field. For example, log canonical thresholds over the complex field are less
than 1, while those over the real field are not necessarily less than 1. We cannot therefore
apply results over an algebraically closed field to our cases directly.

In this paper, we clarify the ideal which gives the log canonical threshold of the re-
stricted Boltzmann machine (Theorem 1) and consider the learning coefficients of this
model (Theorem 2). We use inclusion of ideals and a recursive blowing up from algebraic
geometry. We obtain the exact values in certain conditions and bounds in all other cases.

In the past few years, we have also obtained the learning coefficients for reduced
rank regression [8] and for Vandermonde matrix type singularities (e.g. the three layered
neural network) [7, 2, 6]. Learning coefficients in the case of the normal mixture models
with dimension one have also been obtained recently [4]. D. Rusakov, D. Geiger [26, 27|
and P. Zwiernik [35] obtained them for naive Bayesian networks and for directed tree
models with hidden variables, respectively. In the previous paper [5], we considered the
learning coefficient of a modified and simplified restricted Boltzmann machine. The several
techniques in [5] are used in this paper (Theorem 3 and Lemma 4).

This paper consists of four sections. In Section 2, we summarize the framework of
Bayesian learning models. In Section 3, we show our main results, and we discuss with a
relation between our results and other works in Section 4.

2. Learning coefficients and singular fluctuations

In this section, we present the theory of learning coefficients and singular fluctuations.
Let ¢(x) be a true probability density function of variables z € RY and let 2" :=
{x;}_, be n training samples selected from ¢(x), independently and identically. Consider
a learning model which is written in probabilistic form as p(z|w), where w € W C R? is
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a parameter. The purpose of the learning system is to estimate ¢(x) from 2™ by using
p(x|w).
Let p(w|x™) be the a posteriori probability density function

n

plwfa") = - (w) [ plailw).

n i=1

where ¥ (w) is an a priori probability density function on the parameter set W and

a:kmmﬂmwmw

Let us define [ dwf(z)(w) [Tiy pla|w)?
] wflx w i:lp I;|w
Ew[f( )] fdw¢(w) H?:l p(xi|w)ﬁ ,

where [ is the inverse temperature. We usually set g = 1.

Then we have a predictive density function p(z|X"™) = E,,[p(z|w)], which is the average
inference of the Bayesian density function.

We next introduce the Kullback function K (¢||p) and the empirical Kullback function

Kn(qllp) :

B o q(x)
K(qllp)—;(J( )1 B oa)’
1 op 4(1)
Kn(qllp) = - ;1 B olen)

for density functions p(x),q(z). The function K(p||q) always has a positive value and
satisfies K(¢||p) = 0 if and only if ¢(x) = p(x).

Now we define the Bayesian generalization error By, Bayesian training error By, Gibbs
generalization error Gy and Gibbs training error G; as follows:

By = K(q(2)||Ewlp(z|w)])),

By = Kn(q(2)| Ew[p(zilw)]),

Gy = Ey[K(q(z)|Ip(z|w))],
and

Gt = Ey[Kn(q(z)||p(z|w))].

The most important of these is the Bayesian generalization error. This error shows how
precisely the predictive function approximates the true density function.
S. Watanabe [30, 31, 34] proved the following four relations:

A — 1
BB, = T2 o)
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BB = 2 o)
ElGo) = 2% 4 o)
ElG] = Agﬁ”ﬂ Fol).

A is called a learning coefficient and v a singular fluctuation, both of which are bira-
tional invariants. Mathematically, A is equal to the log canonical threshold introduced in
Section 1. For regular models, it holds that A = v = d/2 where d is the dimension of the
parameter space.

Thus we have

B[B,) = BIB] + 28(EIGI] - E[Bi]) + o()

and
1
B(Gy] = EIG + 2(E(Gd] ~ EIB]) +o(..).
Eliminating the expectation of the true probability density function from these four
errors, let
BLy =~ q(z)log Ey[p(x|w)],

T

1TL
BL, = —= log Ey[p(x;|w)],
= =5 o8 Bulalu)]

GLy = —Eu[)_ q(x)logp(x|w)]

1 n
GL, = _Ew[ﬁ Zlogp(xi]w)].
i=1

Then we have 1
E[BL,] = E[BLy| + 2B(E[G] — E[By]) + o(;)

and
FIGL,) = EIGL] + 28(E[G:] - BIB)) + (%),

This is called WAIC (widely applicable information criterion). These two equations show
that we can estimate the Bayesian and Gibbs generalization errors from the Bayesian and
Gibbs training errors without any knowledge of the true probability density functions.
Note that the generalization errors relate to the generalization losses via the entropy of
the true distribution. Training errors are calculated from training samples x; using a
learning model p. In real applications or experiments, we usually do not know the true
distribution but only the value of the training errors. Our purpose is to estimate the
true distribution from the training samples, which shows that these relations are effective.
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We can select a suitable model from among several statistical models by observing these
values.
The difference between the Bayesian training error and Gibbs training error converges
to v/n:
nB(E[Gt] — E[By]) — v, n — 00.

These relations were shown using resolution of singularities and the Schwarz distribution.
Define a empirical process

)
log i

Zﬁ’

where K(w) = ) q(x)log E](T)) If K(w) = 0, &, is ill-defined. Let us consider a
p(x|w

manifold by a resolution map p of singularities (Appendix A.2). On a small open set U,

with a local coordinate system u, = (uy,- -« ,uq), we have

2
K (plua)) = ui™ up™ g™,

loglm a(@, ua)ujtus? - -,
and
wmmwwwwwﬁﬁ-#
where a(z,uq) satisfies Y a(x,uq)q(x) = uftus? - - u)? and ¢o(uq) # 0. The value X is

obtained by min, min;<;<g kg: and 6 by the max number of elements in {j | - JH = A}

Also we have

o)) = L 3 I g = v
n a \/ﬁ g uslu§2 . uild

IZ u® u2 CL(ZL‘Z',UQ)),

which is a well-defined empirical process even if K(w) = 0. The variable &, (u(uq)) con-
verges to a random variable of a Gaussian process &(u,) whose mean is 0 and variance is
2.

By using Schwarz distribution, the value v is obtained theoretically from the learning
coefficient A and its order 6:

g o A3 [ dug(u JA=1/2= BBV (W)
2 B [t . [ duth=1/2e=BiHBViEW)

V=

where ) . shows the sum of local coordinates that attain the minimum A and the maxi-
mum 6. Our purpose in this paper is to obtain A for the restricted Boltzmann machine.
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Figure 1: A restricted Boltzmann machine: M is the number of binary observable units  and N is the number of
binary hidden units y. The learning model is p(z, y|a, b, ¢) o exp(3_1, Zj\;l aijriy;+0, bi:ci—i—Z;V:l CiYj)
where a, b, c are parameters.

3. Restricted Boltzmann machine

Definition 1. For a real analytic function f in a neighborhood of w*, let A\y+(f) be the
largest pole of fU |f|7dw and O« (f) be its order, where U is a sufficiently small neighbor-
hood of w*. For the ideal I generated by real analytic functions f1,--- , fn in a neighborhood
OfU}*; deﬁne )\w*(I) - )‘w*(f12 +o f?%)

The second definition is well-defined by Lemma 1 in Appendix A.1.
Let 2< M € Nand N € N. Set

M N M N
exp(D iy D WijTils + D iz biti + 22510 ¢5y5)
Z(a,b,c) ’

p(z,yla,b,¢) =

where a € RMXN p ¢ RM ¢ € RN are parameters,

M N M N
Z(a,b,c) = Z exp(z Z ai; T3y + Z b;x; + Z ciy;),
i=1 j=1

z;=0,1,y,;=0,1 =1 j5=1

z = (2;) € {0,1}M and y = (y;) € {0, 1}V (Fig. 1).
Consider a restricted Boltzmann machine

P($|ayb70) = Z p($7y|a7bac)
y;=0,1

M N M N
_ ¥ exp(Dim1 Dojm1 Wiy + Dimy biwi + D5 ¢iy;)
Z(a,b,c)

[T, exp(bia) T exp((CM) aijzi + ¢;)y;)
Z : Z(a,b,c)

y;=0,1

[T exp(bias) TN, (1 + exp(X agjai + ¢5))
Z(a,b,c) ’
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Assume that the true distribution is p(z|a*, b*, ¢*) with a* = (aj;),b* = (b]), " = ().
Then the Kullback function K (a,b,c) is

Z p(z|a®,b*, ") (log p(x|a™, b*, ") — log p(z|a, b, c)).
z;=0,1

Since we consider a neighborhood of —2{zla:t:-<) 7 =1, we have

p(z]a*,b*,c*

Z p(x|a®,b*, c*)(log p(x|a™, b*, c*) — log p(x|a,b,c))
xi:(],l

pala.bd) 1 plelabo
p(zla*,b*,c*) 2% p(x|a*, b*, c*)

= 5 {talar )~ plalasp) 4 P g HERAT gy g o - PRy
z;=0,1

2 p(zla*, b*, c*) p(zla*, b*, c*)

p(z[a, b, c)

p(zla*, b*, c*)

= Z p(x|a*,b*,c*)(1— )2{1+0(1_ )})

— Z p($|a*7b*76*)(17 p(x|a,b,c) )2{1+0(17 p(m|a,b,c) )}

p(xla*, b*, c*) p(x|a*, b*, c*)
Therefore we only need to obtain the log canonical threshold of
Uy = Z (p(z]a, b, c) — p(x|a*,b*, c*))?,
xr;==x1

since the ideal generated by 1 — %, x € {0,1}M is equal to the ideal generated by

p(z|a, b, c) — p(z|a*,b*, c*),z € {0,1}M (Definition 1).

Set T = {x = (z;) € {0,1}M} and write |z| = 21 + - + 2.

By Theorem 3 in Appendix A.1, rather than considering the function Vg, we only need
to obtain the log canonical threshold of

M N M
Z{Z (biz;) + Zlog + exp Z aijT; + ¢5)) — Z(bfaﬁl) — Z log(1 + exp(z a;;Ti +c;))
i=1 j=1 i=1

x€eZ i=1
S g1+ explen) + 3 lo(1 + exp(c)) 1)
Jj=1 J=1
where xo = (0,---,0).
Theorem 1. Let

N N
1 1
B= b b+ S log(— Rl )y g, L eDe
= 1+ exp(zZ 105+ ¢ = 1 +expc;
1 _ ..
ag; = exp(aiy) , and c; = exp(¢j).

1 4 exp(a;j) exp(c;)
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Also let

_ / / /
Sz,j,m = E , Ay Qiggt Qe
i1 <ig < <im

| =Tig = =@y, =1

T

The log canonical threshold of the restricted Boltzmann machine is equal to that of

S Yy

=1 e€T |z>2 j=1
10g(zl7£|2{0;'(63m—2 _ c;m—?» + c;,m—‘l — o (=1)™)Sgjm — c;‘f’(c;f/m—Q ¥ (_1)m)8;,j,m
S €1(e™ 2 = e g o (1)) 1

where ¢; >0 for j=1,...,N.

The proof of this theorem appears in Appendix A.1.
Note that if the above theorem is not used, the function Z(a,b,c) is needed to be
clarified in more detail for our purpose.

Theorem 2. Consider the restricted Boltzmann machine

[T, exp(biz:) [T)2; (1 + exp(S1L) aijwi + c;))
Z(a,b,c) ’

p(zla, b, c) =
where a,b, c are parameters and the true distribution is p(z|a*,b*,c*).
Case 1 If M > N and a* =0, then we have A = %—F%.
Case 2 If M < N and a* =0, thenwehcwe%thg)\g%qt%.
Case 3 We have A < % + Zjvzl Aj, where

3M

., =0,
A= 2 ri=12
2M+1
2+ ) ] > 37
where 1; is the number of elements in {a;‘j #0,i=1,---,M}.
3M
= r=0, 9=
Case 4 If N =1 then A = 2]\/[2—1’ r=1,2, andf = 2, M 2’.T 0, where r
oafr1 1, otherwise,
5, =3
is the number of elements in {a}; #0,i=1,--- ,M}.
2, N=1a"=0
_ _ 3 — ) ) )
Case 5 If M =2 then A = 3 and 0 { 1. otherwise.
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The proof of this theorem appears in Appendix A.2.

Remark 1 When the true distribution is not in the restricted Boltzmann machine model,
the learning coefficient \ is infinity, because the Kullback function is positive.

Remark 2 Rusakov & Geiger [26, 27] obtained A\ and 6 for the following class of Naive
Bayesian networks with two hidden states and binary features:

M M
=1 i=1

where x € {0,1}M, d = {d;}}£, € (0,1)M, e = {e;}M, € (0,1)” and 0 < ¢t < 1. For
symmetry, we can assume that 0 < ¢ < 1. Set exp(b;) = lfidi and exp(a;1 + b;) = 1=

_ei *
1—t 7N 1—e _
If we set = [[;Z; =g = ¢}, then we have

[1Y, exp(biz:) + ¢, TTL, exp((ai + bi)x;)
Z(a,b,c) ’

p(z|d, e t) =

here Z(a,b,¢) = —x+—ro.
where Z(a, b, c) T

The difference between two models is as follows: ¢} > 0 for Naive Bayesian networks,
while ¢] = exp ey > 0 for the restricted Boltzmann machine.
M+1 C*/ o 0
3%4 ’ ! 72 O_ ’ 0
o2 cy r=
We have \ = ] ! ’ ’
M1 i’ £0,r=1,2,

3,
2,
2L £ 0,7 > 3. b
where 7 is the number of elements in {a}; # 0,i = 1,--- , M} [26, 27]. (The values X
and 6 in the case ¢}’ # 0,7 = 0 are added to those in [26, 27].)
A shorter proof than that in [26, 27] appears in Appendix A.2.4 and A.2.6. This seems

to suggest that Theorem 1 is effective.

' =0,M =2,r=0,
' £0,M =2,r =0,
otherwise,

and 6 =

4. Discussion

In this paper, we consider the learning coefficient of restricted Boltzmann machines
(Theorem 2). We obtain the exact values for M > N, a* =0, for M = 2 and for N = 1,
and give bounds for the other types. The case M > N is usually the case in applications.
Case 4 shows that A is not linear with respect to r and case 5 shows that A is independent
of the number of elements a;; # 0. These observations imply that we need more careful
consideration to obtain the exact values A when a* # 0.

The learning coeflicients of our recent results have been used very effectively by M.
Drton [12, 13] for model selection, using a method called sBIC, which is available for
singular models, while BIC cannot be applied to singular models.

Our theoretical results introduce a mathematical measure of precision to numerical
calculations such as Markov Chain Monte Carlo. Nagata and Watanabe [23, 24] gave a
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mathematical foundation for analyzing and developing the precision of the MCMC method
using our theoretical values of marginal likelihoods.

G. Montufar and N. Ay [20] showed a universal approximation result for the restricted
Boltzmann machine. They showed that any distribution on {0, 1} can be approximated

arbitrarily well by N = 2M~1 — 1 hidden units. By using Theorem 3 and by setting
N N
b, = b; + Z log(1 + exp(a;j + ¢;) — Z log(1 + expc;),
=1 j=1
1 — exp(a;j)
!/ J /
a;; = , and c; = exp(c;),
Y 14 exp(aij) exp(cj) i = oxp(ey)
and
S:l?:j;m = Z a’;:lja’ggj T a’{im‘j7
i1 <ig<--<im
zi1=2i2=~-~=.’zim=1

their theorem showed that if N > 2M~1 — 1 then there exist b a :}/7 ;” such that b*’ =

log W((O))’ ijl log{1 + le\ ( *Im—2 C*;me o (=)™ s jm} = log leiigi for
any distribution p(z) = Lﬁ > 0 on o € {0,1}M, where e; € {0,1}M such

Dzefoym W(z)
that ith element of e; is 1 and the other elements are 0. Then we have Ay 4/ o (J) <
i %G Y

. n__
min{ 251, MVENEM ) where

~ N ~
Wie W(z)

J={(b —1 ) log{l+ A2 = (=)™ 5 m ) — log —
< 08 = 0 ;:1 og{ Eﬁ (=1)™)$z,jm} — log 7 0)

|z € {0,1}",]z| > 2).

Moreover, M. A. Cueto, J. Morton and B. Sturmfels [11] gave the conjecture such that
the restricted Boltzmann machine has the expected dimension min{ M N+ M +N,2M —1}”
and they proved that it is true when N < 2M~"log2(M+1)" 5 q N > oM—tloga(M+1)2 - Thig
theorem showed that the maximum rank of J’s Jacobian matrix has min{MN + M +
N,2M — 1},

Roughly speaking, A shows the character at a singular point, while an approximation
result and a result of dimension show the character at general points.

Our future research aims to improve our methods and to apply them for the general
Boltzmann machine, which is also known as the Bayesian network model, the graphical
model or the spin model, as such models are widely used in many fields. These are new
problems, even in mathematics, to obtain the desingularization of Kullback functions,
since the singularities of these functions are very complicated and as such most of them
have not yet been investigated. However, we believe that extending our results would
provide a mathematical foundation for the analysis of various graphical models.
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A. Appendix
A.1. The proof of Theorem 1.

We give below Lemma 1 as it is frequently used in this paper.

Lemma 1 ([3, 4, 19]). Let U be a neighborhood of w* € R. Let I be the ideal generated
by fi,..., fn which are analytic functions defined on U.

W Ifgi+ . A gm < fT -+ fr then A (g7 + -+ g7) < X (ff + -+ f7)

(2) If g1,---,9m € I, then Ap(g? + -+ + g2) < A (f2+ -+ + f2). In particular, if
91, - - gm generate the ideal I then My (f2 + -+ f2) = A= (97 + - -+ + g2,).

Proof.
() If (g2 +...+g%)Cc>0is L' then (f2 +---+ f2)~¢is also L.
(2) The fact g2 + -+ + g2, < P(f2 4+ --- + f2) for P >> 1 completes the proof.
Q.ED.

The following lemma is also used in the proofs.

Lemma 2. Let I,J be the ideals generated by fi(w),..., fn(w) and gi(w'),..., gm(w'),
respectively. If w and w' are different variables then

Ny (JT+ ot gl 4+ g0) =M (T + )+ X (g7 + -+ g0)-

The following theorem is a modified version in the previous paper [5].

N i(z,a A
Theorem 3 ([5]). Assume that p(x|a) = % = % for
x J1= ’ x J=

z € X. Then the log canonical threshold of 3. v (p(z|a) — q(x))? and its order are those
of

and q(x)

N N
Z{Zlog W(x,a) —log W (x) — Zlog W (x0,a) + log W (x0)}?,

zeX J

for a fixred xg € X.

Proof. Consider the ideal I generated by p(x|a) — ¢(x) for z € X.
12, Wiza) 3, T Wiza) 2 Wiwa) T2, Wi a)

Then I is generated by ") RGO and so by W) i

for z,2’ € X.
Since |z — 1|/2 < |logz| < 2|z — 1] for |x — 1] < 1/2, we have

—1)%/4

s aWile) )

z,2'€X W(x) vazl Wj (x/7 a)

N N
< > O logWy(w,a) —log W(z) +log W (a') — > "log W(a', a))?
rax'eX J 7
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N Wiz, a) W(z')

1= a2
2 e

By Lemma 1 (1), we have the log canonical threshold of Y .y (p(z|a) — ¢(x))* and its
order are those of the ideal

N
(Zlong(:c,a)—logW( ) +log W (z ZlogW ) | 2" € X),

which is equal to <Z;V log W;(z,a) — log W (z) + log W () — Z;V log Wj(zo,a) | x € X)
for a fixed zp € X. The proof is completed by Lemma 1 (2).

Q.E.D.
Set
N N
1 ; 1 )
b =bi — b + > log( T explay +C]) ) — Zlog(ipci).
= 1 —i—exp(Z:Z af; +c) o 1+ expcj
Then we have
M N
St e+ Y log( L OREL i+ )y Lt enaley)
i=1 j=1 1+exp(Zz RO ) 1+ exp(c})
].+€Xp A5 +C) N 1+€XP(ZM ai-a:i—i—c-)
_Zb/xz ZZ I+ 3 log( =1 i),
i=1 j=1 1+expa —I-C) ) 1—|—exp(zZl ijz_|_c)
N M
1+exp )
Z:: 1+expc))( sz)’

which is the term in Eq. (1).
1 — exp(asj)

Let
ot a W + exp(a;;) exp(c;)

and c; = exp(c;).

Since
S (14 ¢TI, explage:)) (1 + ) 12w
og
j=1 [0+ exp(aq; ) ;)"
i (14 agye)™ (1 + G T, explagm) (1+ ) 1)
- [T, (1 + ;)i

(L4 aj;c;)™ (1 + ¢} 1M, exp(aijz;))

N
Z z 1 g
o 1+c]
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(L dhd)m 4+ T, (1 - al;)®

N

§ 17 J
/

= 1+cj

M+ de)T + T (1 —a))™ —1-¢
1+c;-

+1)

Dﬁz

\ \
—

S s+ ¢ S (1)

N —
z_: 1+cj - — D

||

N
=D log() (e = P et e (P s + 1),

U
N

we have in Eq. (1) as

EHE:hm+§:bg§: 2 T T e (1)) 80 + 1)

zeZ =1
|zl
/ m— m—4
Eng (M =M T T — e (2™ DY (3)
* _ X . X x 1 _x /“_ * /
Where szjzm - Z 11 <ig < <im 1 allj aZ?j alm] :

mil :xigz"':wim:

By Lemma 1, we need to consider the log canonical threshold of

E:HW+ > {EjngZ T T e (1)) sa g + 1)

z€Z,|z|>2 j=1
||

Zlog D " = A G e (D)) + DY

2

_ be2+ S )

z€Z,|z|>2 j=1

1og<2 A" A G D sagm = G 4 GO
Z‘;ﬁ' 5 ;< ( */m— 2 C;f/m73 + c;f/mfﬁl o (_1)m)8:;’j7m + 1
QED.

A.2. The proof of Theorem 2.
Theorem 4. [Desingularization, Hironaka [16]]
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Let f be a real analytic function in a neighborhood of w* € R with f(w*) = 0. There
exist an open set V 3 w*, a real analytic manifold U, and a proper analytic map p from
U toV such that

(1) p:U—E—=V — f10) is an isomorphism, where & = p~(f~1(0)),
(2) for each w € U, there is a local analytic coordinate system (u1,--- ,uq) such that
f(p(u)) = £uf'us? - -uj?, where si,--- ,sq are non-negative integers.

Applying Hironaka’s theorem to the Kullback function K(w) > 0, for each w* €
K~1(0) N W, we have a proper analytic map p from an analytic manifold U to a neigh-
borhood V,,» of w* satisfying Hironaka’s Theorem (1) and (2). Then the local integration
on Vi« of the zeta function wa* | K (w)|*1(w)dw is

/ K () P4 () oo

- / Zo1, 25 2020 0)| il 1),

where U, is a small open set with local coordinate system (u,--- ,uq) and U = UU,.

Therefore, the poles can be obtained as (k1+1)/(2s1),-- -, (ka+1)/(2s4), where |ul,(u)| =
u]flugz uflduo(u) and po(u) # 0.

It is known that p in Hironaka’s Theorem can be obtained by using a blowing up
process.

For simplicity, set a;; = aj;, b; = by, and ¢;; = ¢;.

Let B* =
N _ _ _ _
3 log( = Smeadei (2 = P T (F) )5 — (G S EDMmd .
7=1 Z‘rzl 2 ]( 72_c;m73+c;m74_.”_f_(_]_)m) a:]m+1

Definition 2. (1) Let r = (r;;) be an H x H' matriz and x an element of {0,1}. An

Tin T2 ce i g
analytic function f is called an x-type function of Ll TEHL L L if
TH1 TH2 ce THH'
N

z=1,i <i<H

(2) Let z,2" € {0,1}1. Denote x <2’ if x; < foralli=1,...,H, and x < 2’ if v < 2’
and x # x'.

For example, Sy j, is an z’-type function of a for all 2’ < z (2’ € {0,1}M).
From now, set x;, ;, = x such that |z| =2, z;, = x;, = 1.
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Lemma 3. We have
(B2 1 iy <ig) C (B* i |z| > 2)

C <{Cj(C}"_2 — T (S M)y g iy — (TR = T (1) ™)aj aj
ti <dg <o <dp,j=1,...,N).

The following lemma is used for proving Theorem 2.

Lemma 4 ([5]). After a linear coordinate change from (r,...,rin) to (r'ia, ..., 7"in) for
i=1,---, M on the manifold obtained by a blowing up with variable (dg,...,dy), we have

d2 52 52
(rig, .. ,man) |0 | (dey..oydN) [ + (rig, -, i)
dN TiN TiN
N
= > e
k=2
Proof.
Construct the blow-up along the submanifold {dy = d3 = --- = dy = 0}.
Let dQ = V1, d3 = Uldé, ety dN = 'Uld/N.
Then we have,
dg T2 52
ds T3 i3
(7’1‘2,...,7’1']\[) : (dz,...,dN) : +(7’i2,...,7’i]v)
dn TiN TiN
1 1 0 0 ’I“jQ
d/3 0 1 0 Ti3
= (rig,...,mn) | v} . (L,d'3,--- ,d'n)+ !
d'y 00 - 1 riN
1
d's
The matrix . (1,d's,--- ,d'n) is symmetric and its eigenvalues are 0 and 1 +
d'n
A3+ +d?. Let Q = \/ 14+ d?%+4---+d? and let G be an orthogonal matrix (G'G
p Q2 0 - 0
3
is the identity matrix) such that G . (1,d's, -+ ,d'N)G = 0 0 - 0 [,
0 0 : 0

d’.N

...a

imJ
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that is,
1 —ds —d; —d'y
Q Q3 Qi-10Q; QN_10N
d/3 i _d/3d/ 7d/3dl]\]
Q Q3 Qi—1Q; QN-1QN
d'4 0 —d'4d'; —d'4d' §
QN Qi—1Q; QN-1QN
_ dd
G Qi*le
Q’i—l
Qi
0
d ‘ QNn_1
QJJ\\]I 0 0 QN
Then we have
1 1 0 - 0
d's 0o 1 - 0
’U% . (17d/37'” 7d/N)+
dn o o0 --- 1
1+d3+---+d% 0 -~ 0 10 --- 0
0 0 --- 0 01 --- 0
= G . . et
0 0 --- 0 00 --- 1
1+ +d5+--+d%) 0 - 0
0 1 0--- 0 -
= G G
0 0 - 1
Therefore, we can change the variables from (rjo, 73, ,rin) to (72,773, ,iN)
by
ri JIA R0+ a3+ td%) 0 o 0 ri
7“/'1'3 _ 0 1 0--- 0 aT 743
N 0 o ... 1 TiN
We have
1 10 -+ 0 ris
dlg o1 --- 0 ri3
(riz,ri3, -+ ,min) | 01 : (1,d'z,--- ,d'n)+ ’
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N
>

k=2

/
ikT jk-

Since ¢; > 0, let a;; = |/cja;j.

We have

N
BPivia = Z log(
j=1

cjal-ljam ctar .a¥
E log(

1+ cta

. RPN S N
CjSa,5,2 — CjSy 52 1) —
1 + C* + ) -
52,5, j=1
N _
Qi jQigg — a’z az
= g lo l U)o,
j=1 —i—a“]azﬂ

J Zl] 12]

The following Step 1, 2 and 3 refer to the proof of Case 1 and Case 2.

A.2.1. Step 1.
Assume that a* = 0.

For z € {0,1}M, let z(* E{Ol}Mbe:c() {

and let a(8) =

@
Q99 Aof
5\84)2 T ag\ff)H

0, ifi<s,
x;, ifi> s,

J ll] 2] _|_1)

50

Q.E.D.

By using a blowing up process together with an inductive method of s, we have the
following Case A or Case B.

Case A

N

B¥iviz = Z log(cjsz jm + 1)

2,,2

u1u2 ..

2,2

= u1u2..

2,2

ulug...

where fi(z

(s)
fi1i2

J=1

2
: uilu’il+1

2,
S U Wiy 410

Uiy {flllz + al(jzl

sl F) +al) +

'5112 12171

uz{fi(fi)g + Zk:erl zleaiji

1T
and B(S;”Q are T,

()

112

€ <a(3)

J=1

1Tiq4
+uiB ),

U%Bg‘;lw }7

12,4
+uiB 4"},

N
= log(@i,;iy; + 1)

i1<i2§5,
11 < 5 <19,

8<i1<i2,

,-type functions of (alg))erlSkSM,lSlsN with

(s)

) a’il,min{il—l,s}’ a’i21’ o

(s) (s)

' ’aig,min{il—l,s}> :
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Case B Fix (/' such as ¢ < s < . The ideal (B"%12 41 < ig) is generated by the
following functions:

2,2 2 ~(s) . .
UTUG - - UG Wiy g1 ui2ai2i(13 11 <12 < 8,
2,2 2 ~(s : -
UTUG U Uiy 1 7+ Us 1y 5 11 <8 <oy ity < l, (6)

2,2 2
u1u2...u£u£+1...us+l‘

Also we have

da—u{”N 1uéM HN-1 (M s+1)N—1 gJJ\fl SIN=1 1 da(®.

Construct the blow-up of B* along the submanifold {a;; =0,1 <i < M,1<j < N}.
Let a1 = u1, a;j = ulaw, (i,7) # (1,1).

Let ay = a}; + ZJ o @10, for i > 2.

Then we have

2 4 plx _ 4 plry; s ;
Biis — ui (@, +ZJ 2 010 123) +uiBTe = wjal,; +uiBiz, i =10 > 1
- 2 N a .a Iz : :
“1(ZJ:1 i1j m) uiB™ iz 2<41 <19

Then for 2 < i1 < i9,

N N N
Y- =/ =/ =/ =/
Zamam Z11 ZQU @, ;) 121 Zaljam) + Z“iljaizj
Jj=1 Jj=2 Jj=2
—/ —/
ajo Q0
—/ =/
_ _ _ a3 |, L @iy3
= S 4 @) | | @ai)|
_I —
a1n A, N
a122
—~/
a
) ) 23
+(ail27"'7az’1N) : )
—/
ZQN
where (V) = & (@, —SN aal, ) — (N, a a, )al, and B*ai are 2 _type func-
1112 111 i1 7=2 %127 J=2"13%15/ %21 1119 YP
= —~/ —~/
21 a22 T oy
=/ =/
a a e a
. 31 32 3N _
tions of ) ) ) i with fz iy € <a211, ;’21 )
=1 —~/ —~/
Ay Ay2 0 AN /)
By Lemma 4, after changing variables, we have
/ —/
aly 1 0 0 jyo
/ —~/
rog _/ a13 1 = _/ 0 1 0 @iy3
( Q25 Qg3 aailN) : (a12aa137"' 7a1N)+ .
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Leta()—a” for2<z<M1<]<Nanda§])—a1j for 2 < j < N.
We have Case A with s = 1, ie., B2 = u%(al(l% uiB ml”) for i > 1, B¥12 =

1
1 1T;. 4 . . — _
u ( 1122 + Zj =2 21] 12J) u%B(l)l 2) for 1 <41 < iz. Note that I = < 15 117 o ’/LH> =
af ), e ,aEB) since the coordinate change is linear. Therefore, we also have fl(lll)2 and
1 1 1
aél) G;Q) a(2 .
R ) (1) N
B'%i1i2 are azg Z) -type functions of %1 ?2 : ?ZN with fm2 <a§1%,az(.2}>.
ORI R ¢}
Ay Gy 0 QN

Assume Case A. Construct the blow-up of function (5) along the submanifold {agj) =
0,s+1<i<M1<j<N}

Let az(.‘;) = u5+1a’§;) fors+1<i<M,1<j<N and a,gj) = a’g) for i1 < i9 < s.

We have
u%u% . 'Ugluiﬁ-l u,Q{f“‘?2 +a 1521 + u%BExiliz} 11 <12 < 8,
BZC;)”Q =q udu3-- 'U%Uiﬁrl usus+1{fmz/us 1+ a'£221 - u%B(a:;” Jusi1}, i1 < s <o,
wdud w2l (S fu e + SN 0 3B U2 Y, s < <o,

We may set a’i‘fgl,sﬂzlor a'éfg:1f0rs+1§€’§Mand1§£§s.

If a’é,sg = 1, we may assume a’gl)-l for 1 < i1 <igo <s,and for 1 <i3 <€ —1,i9 >

) ¢ < (s) (s) (s) (s)

s are in a neighborhood of 0. Since fg(;, gy 5 Gy gy Gprys ,ag,7£_l>, we have

fw JUust1 + aZ 7& 0, and (B ?3”2 | 0 <y <ig,ig > 8) = (UduZ -+ uZuppy - UsUsi1)

(s) 1(s) 2 /iy L
Let @ ~(S) _ lezg + CL 1211 + ulB(s)l 27/ 11 < 12 S S,
!/ Tiqi . . .
Gion fivio/Us+1 + az-(;;)l + u%B(S)1 2 Jusyy, i1 < {,ig > iy.
i (5) (5) (5) (5)
: 191 S S S S
Jacobian |(8 ,(2 )1 )| is not zero, since fl122 <ai11, T mingi 1) Bislo > B minfiy— 1.8}
1291
Therefore, we have CaseB.

Next assume a 2421,5+1 = 1.

N
Set a”gz)sﬂ a’z(»j’)sH + D ist2 a’gilj Z( 3 for io > s+ 2.
Then for s + 2 < iy < 19,

s) /
mg /us+1 + Z a; i1j% 123
J=s+1
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N
. //(S 2 : 2 : § { 1(s) 1(s)
- 1122 /us-l- + zl,s-l—l a s+1,j 11] zg,s—i—l a s-l—l,] wj + a ilja 127

Jj=s+2 J=s+2 Jj=s+2
_ (s) 4,2 1(s) //(5 § : a’ (s) 2 : 1(s) /(s
- filig /U’S-i-l ta i2,3+1 i1,8+1 a s+1,] le zl,s+1 a s+1 ] 12]
Jj=s+2 Jj=s+2
1(s) 1(s) /
Z a8+13 111 Z @ st1,5@ zzj Z am 221
j=s+2 Jj=s+2 Jj=s+2

(s+1) _ (s) 1(s) N 1(s) i(s) 1(s) N 1(s) ()
Let fuzz - 2112/u8+1+a 22,S+1(a i178+1_zj s+2 a’ s+1,74 ilj) a 1178+1(Zj:8+2 @ sp1,;9 iZJ)'

(s) 1(s) o)
a/s+2,1 a s+2,2 7 Qgpo N
Then fz(fg is an :1:,5 i )—type function of : : : with
(s) (s) (S)
ayp dhp a,MN
(s+1) 1(s) 1(s) 1(s) 1(s)
lezg < 1117 Ha 11,S+17ai217.” ) @ i2,5+1>'

We have, by Lemma 4,

a’(s /(S CL CL
Z s+1,54 ll] 2: s+1J Zz] Z Zl] 223

Jj=s+2 Jj=s+2 Jj=s+2
- (8) _n(s)
1"{s ns
- Z @ irj @ dgg
j=s+2
1 . 1 ) .
Let az(j;t) = a,§§21 for i1 < s, i1 < i and al(QZ) = EZ for s < i1 < i9 and
o (s+1) (s+1
(i1,92) # (s + 1,s +1). Also let f“SZ2 fm2 for i1 < iy <'s, f“S22 ) = le2/us+1 for
+1) Tiqi Tiqi
i1 < s < g, f(ilm = fSHiQ/uSJrl for 19 > s+ 1, B’(slﬁ) = B’()12 for i1 < iy < s,

1T, 1254 1z /T4
B(sﬁf) :B( 12 fygpq for iy < s < ig, B(sﬁf) :B ”’/us+1 for s < i1 < ig.

Then we have Case A with s+ 1.

A.2.2. Step 2.

In Step 1, we finally have Case B type. By blowing up the function in Case B again,
we may obtain the log canonical threshold. However, since we have the same inductive
results for

N
<Z Ay iy 2 1 < i <ig < M> (7)
j=1

instead of

<Bxi1i2 1< <19 §M>
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if s > min{M, N} and thus both log canonical thresholds are the same, we can obtain the
log canonical threshold much more simply by using Eq. (7).
Now we consider the log canonical threshold of 21§i1<7j2§M(Z§v:1 iy jing)?.

In Step 2, we use the same symbol a rather than a® for the sake of simplicity.
We need to consider the ideal generated by the following function with the inductive
method with s.

(8)

UTUS =+~ UL Qg 5 11 < 5,11 <19 < M,
2,2 2 N . )
u1u2~~-us§ jmst1 BirjQizj s+1<11 <ig <M,

and .
da =] U§M—j+1)(N—j+1)+(2M—j)(j—l)—lduda.
7=1

Construct the blow-up of Z;Vﬂ a;, jGi,; along the submanifold {a;; = 0,1 <i < M,1 <
j < N}. Then we have by Lemma 4

u%aizl, 1 <io < M,
1 N . .
uF (£ + D jma Qinjlisg) 2 <y <idz < M,
and da = v}V 'duda.

By using Lemma 1 again, we have Eq. (8) with s =1 as

u%a,ﬂ, 1< ig < M,
N . .
uf (Y50 @irjaing) 2 < iy <idp < M.

Assume the ideal generated by Eq. (8). Construct the blow-up of function (8) along the
submanifold {a;,;;, = 0,1 <1y <is < M,i; < 8,044, =0,s+1<ig < M,s+1<iy < N}.
Then we have

5 9 . . .
{Ul"'usuerlaizip 1§21<22§M711§87
2 2,2 N ; )
UT o UGUS L D G Gy jing, S+ 1< <idg <M,

and

y M=) (N=8)+(2M—1-5)s/2-1 ﬁ U(ijJrl)(N7j+1)+(2ij)(jfl)fldudb’

s+1 J

Jj=1
where we can set ag; =1 or as11,541 = 1.
If as1 = 1, we have

(M—-j+D(N-j+1)+ @M -j)i—-1)
4

,7=1,...,s

and (M = )(N — )+ (2M — 1 — 5)s/2

2 )
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as candidates for the log canonical threshold.
If asy1,541 = 1, then setting the variables the same as in Step 1 and using Lemma 1,
we have

2 2 . . .

UL+ USUs 41 gy 1<4 <ip < M,iy <s,
2 2,2 :

UT "+ UGUS 1 iy 5415 s+1<iy <M, 9)
2 2.2 N . .

UT - USUG L D gqg QinjGings, S+ 2 <01 <ig < M,

and

da — ugﬁ_s)(N_sH(zM_1—s)s/2—1 H u’gM_j+1)(N_j+1)+(2M_j)(j_l)_lduda.

j=1
Construct the blow-up of the ideal generated by Eq. (9) along the submanifold {a;,;, =
0,1 <1 <1< M,’il < S, Us41 = 0}.
Then if a;; = ust1a;5, we have the ideal (8) with s +1 as

{ U% U§U§+1azgzp i1<5+1 1<'i1<'i2§M77
2 2 2
Uy Uy Z] =542 @i1jGizg, S +1<ip <ip< M,

and

da — ug]_:_4l—s)(N—s)+(2M—1—s)s—1 H u](CM_k+1)(N_k+1)+(2M k)(k—1)— d da.

k=1

If aij = a21aij, Ug+1 = A21Ug+1, WE have

2 2 2

Uy Usts4+109

UT " " UgUg4+1A9] Wigiq 1< 11 <ig < M7/Ll <s+ 17 (7’1712) 7é (172)7
2 2,2 2 :

UL UGU 105 Gy st 1, s+1<ip < M,

2 2,2 .2 N : :
ug - usuL a5 Y jms2 QinjQigg, S+ 2 <1y <idp < M,
and

ug{\fl—s)(N—s)+(2M—1—s)s/2—1agJIW—s)(N s$)+(2M—1—s)s— H (M—k+1)(N—k+1)+(2M—k)(k—1)— ld db,

which have

M—-j+D(N—j+ 1+ CM—j)( -1
1 ,

j=1,...,84+1,

and (M = 5)(N =) + (2M — 1= 5)s/2

2
as candidates for the log canonical threshold.
Finally, we have

u%u%---u?ai”l, 1<ii<ia<M,i1 <s
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where s = min{N, M } and
da = H u](CM—k+1)(N_k+1)+(2M—k)(k—l)—ldudb’
k=1

and obtain the poles

(M —k+1)(N—k+1)+ M —k)(k—1)
4

and
(2M —1—3s)s

4
Therefore, we have the log canonical threshold % if M > N and W if M < N.

A.2.3. Step 3.

We obtain % as the log canonical threshold of
<Cj(C;~n72 — C;-nig + C;nill — et (—1)m)ai1jai2j S Qg 1 <lg < - <ipy,Jj=1,.. aN>

:<ai1ja¢2j T <i2,j=1,...,N>.

by using Lemma 2.
By Lemma 3, we have

<bi,BIi1’i2 21 <4,01,09, < M,ip < ig) - <bi,Bx 1 <i< M, ’{L“ > 2>

< <bivcj(0?%2 — T (1)) g - gy

1<i<M1<ii<ig<-<ip<M1<j<N).

Let Ag be the log canonical threshold of the ideal (B* : |z| > 2).

We need the log canonical threshold A; of the ideal (b;, B* : 1 <1i < M, |z| > 2). By
Lemma 2, A1 corresponds to % + Ao.

By using Step 1, 2 and Lemma 1, we have

M MN_ M M MN M >N,
2 4 T 0= ML M <N,

and therefore we have Theorem 2 Case 1 and Case 2.
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A.2.4. The case of N = 1.

Assume that ajy, a3y, a7 #0 and ap g 4,079, 4y = 0.
2, M=2
— _ M M g_ ) ) .
If = 0 then we have A = 5 + -, 0 = { 1 M>3 as the log canonical threshold

M ;92 2
of Z¢:1 by + Z1§i§M71§i1<i2§M(Clai11ai21) .
Assume that » > 0.

By setting
a;1 = log(1 4+ crai1a41) — log(1 + ¢jaj a};),
fori=2,---,r,
a; = log(1 4+ cra11041),
fori=r+1,---, M, and we only need to consider the ideal
<b17"' 7bMaa217"' 7C_LMlan‘$ €I>7
where a;; = @ 0=1 s =) ir<ig<e<i i1 aq, 1. and B®
i cajal/ciarn, i #1, hm xil;lﬂcz'?:”':;;;:l nt il
g der( = e = ()™ = G e ()
i (e = e e e (<L)l +

If r =1,2 then we have A = % + %, 0 = 1 by considering the ideal

<b17"' ,bM,(in,"' )&M].)'

Assume r > 3. We need to consider the ideal

citaitas o
— — 1 1 1 * kK
<bl, oo, bysGgt, - ap, log(el——5—— + 1) — log(cias a3 + 1),
cia
1911
*2 k2 k% *2 k2 k%
(11€1701109103; " « % ko € 011091031
log(ci(cp — 1) ) +cjatag, +cjanay + ———5 — + 1)
ciai, c1ay

—log(ci(er — D(a1aza3;) + cra1yas; + claq az; + cragag; + 1)) .

*x2 x2 ok *
By setting ¢; = log(-"1™21%1 4 1) — log(cjas,a}y + 1), we have

ciail
(b1, ,bar, @21, -+ 5 an, €,
* T?
111 * k% k k% * ok ok * k%
log((Tz — Daiiciasazy + cjajiay; + ciajaz + cjay a3 + 1)
11

% * * * * Xk * k k * Xk *
—log(ci(c] — 1)ay a3 a3 + ciajay + ciaja3; + cjayaz + 1)) .
* k2
We have A = & + ML 9 — 1 by setting a1y = log((% — 1)ancias,al; + ciaj a3, +
* Xk * * ok * * * * * * * Xk * * k * X %k *
ciaiiaz + cjayay; + 1) —log(ci(c] — 1)ajiaz a3, + ciajjas, + cjaj a3, + ciazaz + 1).
By Lemma 3, we have not only Case 4 but also Case 3.

+1).
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A.2.5. The case of M = 2.

2, N=1,r=0,
1, otherwise,

N N X ok *
(23:1 log(cjaijaz; +1) — Zj:l IOg(Cjalj%j +1))%

We have A\ = 3,6 = { as the log canonical threshold of b? + b3 +

A.2.6. Naive Bayesian networks.
If ¢’ = 0, then we have \ = % + %, 0= { as the log canonical threshold of

M 42 ! 2
> b7 + ZlgigM,1§i1<i2§M(c>f Aiy1@in1)~
If ¢’ # 0, then we have the same results in subsection A.2.4.



