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Abstract. Graphs are the primary mathematical representation for networks, with nodes or ver-
tices corresponding to units (e.g., individuals) and edges corresponding to relationships. Exponen-
tial Random Graph Models (ERGMs) are widely used for describing network data because of their
simple structure as an exponential function of a sum of parameters multiplied by their correspond-
ing sufficient statistics. As with other exponential family settings the key computational difficulty
is determining the normalizing constant for the likelihood function, a quantity that depends only
on the data. In ERGMs for network data, the normalizing constant in the model often makes
the parameter estimation intractable for large graphs, when the model involves dependence among
dyads in the graph. One way to deal with this problem is to approximate the likelihood function
by something tractable, e.g., by using the method of pseudo-likelihood estimation suggested in
the early literature. In this paper, we describe the family of ERGMs and explain the increasing
complexity that arises from imposing different edge dependence and homogeneous parameter as-
sumptions. We then compare maximum likelihood (ML) and maximum pseudo-likelihood (MPL)
estimation schemes with respect to existence and related degeneracy properties for ERGMs involv-
ing dependencies among dyads.
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1. Introduction

Graphs provide a natural way to represent relational or network data in which nodes
represent individuals and edges represent relationship among individuals. Network data
are of special interest in many different scientific fields such as social science, biology and
epidemiology. For an overview of such models and their analyses, see [18].

Among the common descriptive statistics used to describe network data are: counts
of motifs such as edges, stars, triangles, density, centrality and cohesive subsets, etc. A
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model incorporating these statistics may give descriptive “explanations” for those struc-
tural effects. In what follows we study several members of the class of network models
whose probability distributions are an exponential family, describe their interconnections,
and focus on the estimation of their parameters.

1.1. Types of Network Models

For simple network settings, in which the data form an adjacency matrix for the graph,
[15] focus on two basic classes of network models: Exponential Random Graph Models
(ERGMs), and Bayesian hierarchical models (see also [10]). ERGMs exhibit familiar
exponential family form and they are often amenable to approaches linked to algebraic
statistics because the likelihood functions involve polynomials, e.g, see [21, 11]. In addition
the minimal sufficient statistics (MSS), which offer a lower dimensional representation of
the data, possess in many cases interesting geometric properties that can be exploited
for formal inference. Typical examples include Erdős-Rényi models, dyadic independence
models such as the β-model [7, 24] and p1 model [17], and Markov random graph models
[13] more generally. Bayesian hierarchical models can involve ERGMs as partial building
blocks but then they lose their simple exponential family form through the hierarchical
assumptions, and almost always have no simple minimal sufficient statistics. The number
of parameters is reduced by integrating over all parameters in lower levels of the hierarchy.
In this paper, we mainly focus on the first type of model and study the properties and
estimation methods of those models.

Here we focus on the following special subclasses of ERGMs:

• Undirected Bernoulli graphs with mutually independent and identically distributed
edges (Erdős-Rényi model).

• Undirected Bernoulli graphs with node-dependent edges (e.g., β-model).

• Directed dyadic independence graphs with node-dependent parameters (e.g., p1
model [17]).

• Undirected Markov graphs where we assume two edges are conditionally independent
if they don’t share a node. [13] used ERGMs with number of edges, triangles and
different degree of stars to model Markov graphs.

• Realization independent models: two tie variables share two relationships and form
a circuit (e.g., see [25] and [31]).

Exponential Random Graph Models (ERGMs) have also been described as “p∗” mod-
els, e.g., by [36], [26]. All of these models, like those in the special classes mentioned
above, happen to characterize the network through descriptive statistics, e.g., the number
of edges, stars and triangles, etc. Each statistic represents a social relation pattern or
motif that can occur in the graph. The most common form of inference for such mod-
els involves Maximum Likelihood Estimation (MLE) and Maximum Pseudo-Likelihood
Estimation (MPLE).
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1.2. Issues Associated With Parameter Estimation in ERGMs

While maximum likelihood estimation for the Erdős-Rényi, β and p1 models is rela-
tively straightforward, once one moves beyond the settings involving dyadic independence,
problems arise due to the partition function that is needed to enumerate all graphs with
the same number of nodes and the inferential degeneracy property of such models, e.g.,
see [16] and [22]. [32] systematically studied a more general class of statistical models with
interacting points and talked about the degenerate behavior that can occur.

The term degeneracy is typically used to describe an array of seemingly pathological
behaviors of some ERGMs. In this paper, we mean that as the number of nodes n increases
the normalizing constant of the model becomes infinite so that there do not exist valid
models that can be fit to the data. Typical phenomena include network data settings where
(1) the probability distribution corresponding to the estimated parameters has mass only
over few network configurations, for instance the empty or fully connected graph, or (2) the
maximum likelihood estimation (MLE) does not exist and the Fisher Information matrix
is singular or nearly so. [22] characterized the existence of MLE from the perspective
of the geometry structure of discrete exponential families, and illustrate near-degeneracy
behavior for some small graphs. [28] introduced the notion of “sensitivity” and used it
to characterize the property of degeneracy. He attempted to explain the phenomenon
from the perspective of fitting the model using MCMC and showed what kind of sufficient
statistics make the model unstable.

The normalizing constant for dyadic-dependent ERGMs is often computationally in-
tractable because its calculation requires the enumeration of all graphs with the same
number of nodes. One way to estimate model parameters is to convert the joint likelihood
function into a product of conditional likelihood to eliminate the normalizing constant.
We refer to this as the method of Maximum Pseudo-Likelihood Estimation (MPLE) and
[33] proposed its use for ERGMs and following the work of [35, 20] the method found
widespread adoption in the social science literature because MPLE can be accomplished
by fitting a logistic regression model.

The idea of MPLE goes back to the work by [4] who applied it in modeling the spatially
interacting random variables using lattice systems, where each lattice point is conditionally
independent of the other points given its nearest neighbors. Thus that the joint probability
distribution can be factorized into a product form of conditional probabilities. [5] proposed
pseudo-likelihood estimation for Gaussian random fields. These ideas then worked their
way into a wide range of applications such as image processing and computer vision, e.g.,
[19] and [14]. The problem setting here is the estimation of the conditional relationships
between random variables given the replicated observations of each random variable. The
consistency of MPLE under some regularity conditions were proved by [2]. [9] gave the
consistent confidence intervals for MPLE when independent and identically distributed
observations are available. [8] also considered pseudo-likelihood estimation constructed
from marginal densities and investigated the consistency property in this scenario. In
ERGMs, the random variables are defined in terms of edges linking nodes and, when
dyads are no longer independent, the existing asymptotic theory on pseudo-likelihood
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estimation does not apply.
The properties of MPLE for ERGMs were not well understood and questions about

them arose after [6] and [30] explained how maximum likelihood estimates could be pro-
duced directly via Markov chain Monte Carlo (MCMC) methods. When MCMC methods
came into use, questions remained about the usefulness of MPLE methods, which seemed
to work even in near-degenerate situations. [34] proposed a framework to compare the
MLE and MPLE of ERGMs and investigated through simulations bias and efficiency in
terms of mean-squared error of the natural and mean valued parameters.

1.3. Our Contributions

In this paper, we reconsider the comparison of MLE and MPLE methods for dyadic-
dependent ERGMs. We give some theoretical properties, describe how they differ for small
graphs, for which we can do full enumeration of possibilities, and discuss the situation for
large graphs when the MLE can not be computed directly. We examine the asymptotic
performance of the MLE and MPLE as the number of nodes increases, and report an
empirical study regarding the consistency of MLE and MPLE.

The paper is organized as follows: we introduce the basic form of ERGMs and the
relationships among different subclasses of ERGMs in section 2. We show the theoretical
and empirical results about the comparison in section 3 and provide an overview of ERGM
estimation properties in section 4.

2. Exponential Random Graph Models (ERGMs)

In this paper, we mainly focus on static or cross-sectional network settings and we con-
sider different assumptions about the edge structures within exponential family framework.
Thus we represent a network as a graph G = (V,E), where the vertex set V corresponds
to the individuals comprising the network and the edge set E corresponds to the relations
linking the individuals. We represent the observed network by an n×n adjacency matrix,
y, with entries that are 0’s or 1’s, where a 1 represents the presence of an edge between
a pair of nodes and 0’s represent absence. Note that the number of binary undirected

graphs with n nodes is 2

 n
2


= 2

n(n−1)
2 because there are

(
n
2

)
possible edges and

each edge takes value 0 or 1. The observed adjacency matrix y is a realization of of a
random variable Y , whose distribution is assumed to have the exponential family form:

Pθ,Y(Y = y) =
exp [θ · T (y)]

c(θ,Y)
, y ∈ Y, (1)

where

c(θ,Y) =
∑
y∈Y

exp(θTT (y)),
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(a) (b)

Figure 1: (a) 4-node complete graph (b) dependence graph with the assumption of complete independence
among edges

θ ∈ Θ ⊆ Rq is the parameter, and T : Y → Rq are statistics based on functions of
Y . These statistics may include counting quantities such as the number of edges, the
number of reciprocated or mutual edges, the number of triangles, or the number of k-stars
for k = 2, 3, . . ., etc. Other statistics or network motifs that might also be of interest
are functions of Y that represent transitivity, centrality and clustering. The term in
the denominator c(θ,Y) is the normalizing constant or partition function and computing
it requires enumerating all possible graphs with n nodes. This is a barrier to do both
simulation and inference for many specific ERGMs when the number of vertices is large.

We first describe some special classes of ERGMs where the edges or pairs of edges
between pairs of nodes or dyads are independent, and then we focus on the dependent
setting.

2.1. Erdős-Rényi Model

The Erdős-Rényi Model assumes edges are independent and identically distributed
with common probability p. Thus we can view the edges in the graph as a sample from
the binomial distribution:

P (Y = y) =
∏
i<j

pyij (1− p)1−yij .

The 4-node complete graph and its independence graph are shown in Figure 1.
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2.2. Bernoulli Graph Model

To generalize the Erdős-Rényi model, we relax the assumption that the edges are
identically distributed. We call such a model as Bernoulli model and such graphs as
Bernoulli graphs. Let

P (Yij = 1) =
expαij

1 + expαij
,

then

P (Y = y) =
∏
i<j

(
expαij

1 + expαij

)yij ( 1

1 + expαij

)1−yij
.

Much of the probabilistic and statistical physics literature focuses on variants of this model
and on settings in which statistics of interest involve counts of connections among nodes,
e.g., see [15]. The degree of a node in a network is the number of connections it has to
other nodes and the degree distribution is the distribution of these degrees over the entire
network. For graphs with directed edges we often consider in-degrees (counts of edges
coming into nodes) and out-degrees (counts of edges going out from nodes) separately.
Depending on specifications for αij the degree distributions or the sequences of degrees
(or in-degrees and out-degrees) may be sufficient statistics.

2.2.1. β-model for undirected graphs

The simplest Bernoulli graph model for undirected graphs represents αij as a sum of β
parameters corresponding to the two nodes being linked by an edge, i.e., the probability
of the edge between node i and j depends on the sum of the parameters βi and βj :

P (Yij = 1) =
eβi+βj

1 + eβi+βj
.

Thus the probability of observing a graph with each edge having the above probability is

P (Y = y) = exp

{
n∑
i=1

diβi − φ(β)

}
,

where di’s are the degree sequence of the observed graph. The di’s are the sufficient
statistics for this model and correspond to both the row and the column totals of the
adjacency matrix y. [7] studied properties of this model and [23, 24] characterized the
conditions for the existence of the MLE for the β-model.

2.2.2. Holland-Leinhardt p1 model for directed graphs

The p1 model of [17] essentially provides variants on a directed version of the β-model
and proposes that three factors affect the outcome of a dyad (involving a pair of nodes)
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with directed edges: (1) the propensity for individual outgoing ties, α, (2) the propensity
for individual incoming ties, β of an individual, (3) and “reciprocity” or mutual linkage
between pairs of nodes comprising a dyad, ρ. If we add a parameter for the overall density
of edges θ, the form of the joint likelihood for p1 is

logP (X = x) ∝ θx++ +
∑
i

αixi+ +
∑
j

βjx+j + ρ
∑
ij

xijxji, (2)

with K(ρ, θ, α, β) as the ERGM normalizing constant. The minimum sufficient statistics
are the in-degree and out-degree for each node and the number of dyads with reciprocated
edges.

[17] presented an iterative proportional fitting method for maximum likelihood esti-
mation for this model, and discuss the complexities involved in assessing goodness-of-fit.
[12] provided a contingency table and log-linear representation of this simple version of
p1 and extend the model to allow for node specific reciprocation where we replace ρ by
ρ+ ρi + ρj . [23] also characterized the conditions for the existence of the MLE for p1, and
[21] and [11] studied the algebraic statistical aspects of these models.

2.3. Dependence among edges or dyads

[13] introduced a formal approach towards the study of the dependence structure
among edges and proposed the class of Markov random graph models.

The Markov property is usually associated with stochastic processes where the condi-
tional probability distribution of future states of the process (conditional on both past and
present values) depends only upon the present state. Graphs display the Markov prop-
erty when two nodes are conditionally independent of one another (not linked by edges)
given the edges linked to the nodes that separate them in the graph. Frank and Strauss
introduced the notion of the (dual) dependence graph of a given network graph, in which
there is an edge between two nodes if they share a common node in the original graph.
Figure 2 shows the Markov dependence graph.

According to the Hammersley-Clifford theorem, the probability function of a general
random graph G can be factorized according to its dependence structure D, i.e.,

P (G) = c−1 exp
∑
A⊆G

αA,

where c is the normalizing constant and A is a clique of D. This produces a new fac-
torization for graphs with a dependence structure described by the Markov dependence
graph.

2.4. Markov Random Graph Model

The Markov random graph model of [13] is built on the notion that two edges are
conditionally dependent if they share one common node. The dependence graph thus



X. Yang, A. Rinaldo, S. Fienberg / J. Alg. Stat., 5 (2014), 39-63 46

(a) (b)

Figure 2: (a) 4-node complete graph (b) Markov dependence graph

characterizes the dependence structure among all possible

(
n
2

)
pair of nodes, either

edges or non-edges.
In the dependence graph of the Markov graph the cliques correspond to edges, triangles

and different degree of stars in the original network as shown in Figure 3 and 4. By the
Hammersley-Clifford theorm, the probability function of graph G under the Markov graph
assumption can be written as:

P (G) = c−1 exp[
∑

τuvw +
n−1∑
k=1

∑
σv0...vk/k!]. (3)

Frank and Strauss focus on the homogeneous representation of this model so that each
kind of structure has the same parameter.

Let dk be the number vertices having degree k, then we have the following relationship
between the degree distribution and stars, and the relationship between their parameters,

sk =
∑
k≤j

(
j
k

)
dj and δj =

∑
k≤j

(
j
k

)
σk.

Equation (3) becomes

P (G) = c−1 exp

τt+
n−1∑
j=1

δjdj

 . (4)
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(a) (b)

Figure 3: (a) The 3-star highlighted in the complete graph (b) The corresponding triangle in the dependence
graph

(a) (b)

Figure 4: (a) The triangle highlighted in the complete graph (b) The corresponding triangle in the dependence
graph
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Figure 5: The relationships among subclasses of ERGMs

The dependence structure makes the distribution difficult to factorize, so that the com-
putation of normalizing constant c becomes a major barrier for parameter estimation.

2.5. Connections among subclasses of ERGMs

The special subclasses of ERGMs we have described are related by layers of assump-
tions on the dependence structure of the distributions over edges or dyads. We summarize
their relationships in Figure 5. On the top row are models for undirected graphs and
on the bottom row are models for directed graphs. Imposing different assumptions and
following the arrows, we can see the increasing complexity of the subclasses of ERGMs.

3. Estimation Methods

3.1. Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) has been a mainstay of the inferential statis-
tics toolkit, and it is based on the maximization of the likelihood function with respect to
the parameters given the observed data.

In detail, given the distribution of a random graph Y as in Equation 1, we can write
the likelihood function as:

l(θ; y) = log(Pθ,Y(Y = y)) = θ · T (y)− κ(θ), (5)

where κ(θ) = log c(θ,Y) and c(θ,Y) =
∑

y∈Y exp(θTT (y)). The maximum likelihood

estimator (MLE) θ̂ of the parameters θ is the (unique) maximizer of the log-likelihood
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function (5), if well defined. Formally

l(θ̂, y) = sup
θ∈Rq

l(θ, y).

The MLE is said to be nonexistent when the above supremum is not attained at any vector
in Rq. For ERGMs nonexistence implies that the log-likelihood function is maximized
along certain sequences of parameter vectors with norm diverging to infinity. See [22].

For ERGMs the calculation of MLEs is complicated by the normalizing constant, espe-
cially in settings where the edges have a dependence structure. In the complete indepen-
dence of edges case, the probability function factorizes in a nice way so that we don’t need
to enumerate all graphs when estimating the normalizing constant. There is no such nice
property, however, for the Markov random graph models. This is precisely why the Maxi-
mum Pseudo-likelihood Estimation (MPLE) was introduced in the late 1980s, to estimate
parameters in ERGMs.

3.2. Maximum Pseudo Likelihood Estimation

Now we consider the problem in another way. As before, we denote Yij as the edge
connecting node i and j. Let P (Yij = 1|Y c

ij) be the conditional probability where Y c
ij is

the graph after removing edge ij. Then, we have

P (Yij = 1|Y c
ij) =

P (Yij = 1, Y c
ij)

P (Y c
ij)

=
P (Yij = 1, Y c

ij)

P (Yij = 1, Y c
ij) + P (Yij = 0, Y c

ij)
=

exp [θ · δ(ycij)]
1 + exp [θ · δ(ycij)]

,

where δ(ycij) = T (y+ij)− T (y−ij) is the change of sufficient statistics when yij changes from

0 to 1. Y +
ij and Y −ij represent graphs by setting Yij = 1 or 0 with the remainder of the

network Y c
ij fixed. Note that this has a logistic regression form and we can estimate

the parameters by fitting a logistic regression model using the observed network and the
change of sufficient statistics as shown above. The pseudo-likelihood is:

lP (θ; y) = θ ·
∑
ij

δ(ycij)yij −
∑
ij

log(1 + exp(θT δ(ycij))), (6)

and the MPLE maximizes this pseudo-likelihood.
Let us consider the case where edges are independent of one another. Then P (Yij =

1|Y c
ij) = P (Yij = 1). This indicates that the pseudo-likelihood is the same as the likelihood

and the MPLE is the same as the MLE in this scenario. But for Markov random graph
models where the independence assumption doesn’t hold, the conditional likelihood is no
longer the same as the likelihood. How the MPLEs and MLEs differ is of our interests for
the edge dependent case.

[3] showed the MLE exists if and only if t(yobserved) ∈ rint(C) where C is the convex
hull formed by all possible sufficient statistics. By rint(C) we mean the relative interior
of convex hull C. Similarly rbd(C) is the relative boundary of C.

As we noted above, we can compute the MPLE by fitting a logistic regression. For
each possible edge Yij of a graph, we get the difference between the sufficient statistics by
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adding (when Yij = 0 ) or removing this edge (when Yij = 1). For example consider the
ERGM for an undirected graph where the sufficient statistics are the number of edges,
triangles and 2-stars. Then we count the number of edges, triangles and 2-stars by adding

or removing one of the

(
n
2

)
edges. Then we treat each possible edge as the response

variable and the sufficient statistics difference as the covariates. In this sense, the existence
of MPLE is equivalent to the existence of MLE for logistic regression. According to [1] and
[27], we have: A necessary and sufficient condition for the MPLE to exist is ∀α ∈ Rq, ∃i, j
such that (2yij − 1)αT δ(ycij) < 0, which is equivalent to the fact that the MPLE exists
unless a separating hyperplane exists between the scatterplot of ties and non-ties in the
space defined by the δ(ycij) (assuming a full-rank design matrix).

More specifically, these conditions for the existence of MPLE can be characterized as
follows:

1. Complete separation. There exists a solution a and b to the following linear
programming problem,

ax− b > 0 , ay − b < 0

where x is the matrix whose rows are of the vectors δ(ycij) corresponding to the
realized edges in the graph and y is the matrix whose rows are the vectors δ(ycij)
corresponding to non-edges. In another word, there exist a hyperplane separating
the vectors δ(ycij) corresponding to edges and non-edges. In this case, the MLE of
the logistic regression parameters (the MPLE) does not exist.

2. Quasi separation. There exists a solution a and b to the following linear program-
ming problem,

ax− b ≥ 0 , ay − b ≤ 0

and the equality has to hold for at least one data point. In this case, there ex-
ists a hyperplane separating data points belonging to two classes, however, both
classes have data points on the separation hyperplane and the other data points are
completely separated. In this case the MPLE does not exist either.

3. Overlap. There is no solution to the above linear programming problem. In this
case, the MPLE exists.

These three conditions are mutually exclusive and exhaustive, that is, all observations
will fall into one of the three categories.

4. Computational Results

In this section, we compare the MLE and MPLE for the dependent models with the
number of edges, triangles and 2-stars as minimal sufficient statistics. The goal of this
study is to give a general idea on how these two estimation methods differ for models with
dependence among edges.
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4.1. Results on small graphs

It is possible to enumerate all graphs if n is small and we can get the exact estimation
of the partition function and MLE. The availability of the convex hull formed by all MSSs
helps us to understand and characterize the existence of MLE. Our first experiment is
based on all 7, 8 and 9-node graphs.

Table 1 summarizes the number of graphs and number of MSSs for 7, 8 and 9-node
graphs. Table 2 shows the proportion of MSSs inside and on the boundary of the convex
hull. Those on the boundary are cases whose MLEs don’t exist. As the number of
nodes increases, the number of graphs increases exponentially and the number of different
sufficient statistics increases proportionally. But the proportion of them on the boundary
of the convex hull decreases.

Table 1: Summary of MSSs for 7, 8 and 9-node graphs

# graphs MSS # diff MSS

7-node 221 = 2M E, Tri, 2-stars 390

8-node 228 = 268M E, Tri, 2-stars 1274

9-node 236 = 68B E, Tri, 2-stars 3746

Table 2: Some statistics of the convex hulls for 7,8 and 9-node graphs

insideboundary onboundary prop onboundary

7-node 252 138 0.354

8-node 1,003 271 0.213

9-node 3,239 507 0.135

We show the two dimensional and three dimensional MSSs plots for 7-node graphs in
Figure 6. [16] and [22] use this plot to illustrate the geometry of sufficient statistics for
ERGMs. Those graph realizations on the boundary of the convex hull correspond to the
non-existence of MLEs.

4.1.1. Existence of MLEs and MPLEs

The following theorem captures the relationship between the existence of MLE and the
existence of MPLE:

Theorem 1. The existence of the MPLE implies the existence of the MLE.

Proof. We will show the equivalent statement that the MLE doesn’t exist implies the
MPLE doesn’t exist. The MLE exists if and only if T (y) ∈ ri(C) where C is the convex
hull formed by all sufficient statistics (see [3]).

For any sufficient statistic t on the rbd(C), there exists a vector α such that α>(t−t′) ≤
0 for any t′ ∈ C. When computing the MPLE, we are actually fitting a logistic regression
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Figure 6: Convex hull formed by sufficient statistics of 7-node graphs (a) number of edges vs number of triangles
(b) number of edges vs number of 2 stars (c) number of triangles vs number of 2 stars (d) number of edges,
number of triangles vs number of 2 stars

with 1’s corresponding to the observed edges and 0’s to the non-edges. For every pair of
nodes (i, j), δ(yci,j) = t − t(y−i,j) if there is an edge between them and δ(yci,j) = t(y+i,j) − t
otherwise. We also have, for every pair (i, j),

α>(t− t(y−ij)) ≤ 0 and α>(t− t(y+ij)) ≤ 0

where t = t(y+i,j) if there is an edge between i and j and t = t(y−ij) otherwise. This implies

that α>δ(ycij) ≤ 0 if there is an edge between i and j and α>δ(ycij) ≥ 0 otherwise. This
shows that the 1’s and 0’s are quasi-completely separated and the MLE for the logistic
regression does not exist in this case.

As a consequence of this theorem, we can fit the MPLE before fitting the MLE. If we
know that the MPLE exists, then we are certain that the MLE exists and we can proceed to
fit the MLE using MCMC. In the near degeneracy case, more than one run of the MCMC
sampler may be needed to get reasonable estimates because it is difficult to sample enough
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graphs with different observed sufficient statistics but the MCMC should converge with
a long enough chain. Unfortunately instability near the boundary also means that the
variance associated with the MLE will have some increasingly large components.

We further show the relationship between the MPLE and MLE empirically in Table 3
and 4. All graphs with the same sufficient statistics form a fiber. It is obvious that the
MLEs are the same for graphs in a fiber. The MPLEs could be different. We evaluate
the existence of the MLE for each fiber and the MPLEs for each graph in all fibers. The
cases of (E)xistence and (N)on-existence are shown in the contingency tables where “(E)”,
“(N)” and “(EN)” represent existence, non-existence and cases when the estimates both
exist and non-exist. For example, the number of different MSSs is 390 for 7-node graphs:
129 of them are cases when both the MLEs and MPLEs exist, 22 of them are cases when
the MLEs exist but the MPLEs don’t exist, and 101 of them are cases when the MLE
exists but the MPLE exists in some cases but not in others. We find similar patterns for
the 8-node graphs. The results illustrate Theorem 1.

Table 3: The contingency table regarding the existence of MLEs and MPLEs for fibers of 7-node graphs

(E).MPLE (N).MPLE MPLE-(EN)

(E).MLE 129 22 101

(N).MLE 0 138 0

Table 4: The contingency table regarding the existence of MLEs and MPLEs for fibers of 8-node graphs

(E).MPLE (N).MPLE MPLE-(EN)

(E).MLE 190 66 741

(N).MLE 0 250 0

4.1.2. Estimation of the Model Parameters

We study the difference between MLE and MPLE with respect to parameter estimation.
We denote the two different parameter estimates by θMLE = θ̂ and θMPLE = θ̃, and
the distributions under θMLE and θMPLE are pθ̂ and pθ̃. We compute the MLE of the
Markov random graph models for each sufficient statistics and compute the MPLEs for all
the graphs within that fiber. Figure 7 displays the number of different MPLE estimates
in each fiber of 7-node graphs for the cases in which both the MLE and MPLE exist.
For readability we sorted these different values in the ascending order. The x-axis labels
the indices of the sorted sufficient statistics from 1 to 129. We have obtained the values
displayed on the y-axis by computing the L1 distances between the estimates pθ̂ and pθ̃
and counting the number of different values of these distances in each fiber.
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Figure 7: The number of different MPLEs estimated from graphs in the same fiber for 7-node graphs

When both the MLE and the MPLE exist, we compare the L2 distance between θ̂ and
θ̃, the L1 distance between pθ̂ and pθ̃ and the entropy of distributions pθ̂ and pθ̃, where the

MPLEs θ̃ are estimated from all graphs in the fiber. Figure 8 shows these comparisons for
7-node graphs. Again, to give a better illustration of the differences, we sort the sufficient
statistics according to the minimum difference between the MLE and MPLE in each sub-
figure. Note that the MLEs are the same for graphs with the same sufficient statistics.
The MPLEs might differ, however, as we show in Figure 7. It is easy to see that both
the parameter estimates and the distributions under the two estimates differ considerably
in some cases. In particular, 8(b) show the L1 (total variation) distance between the
distributions pθ̂ and pθ̃ based on the sufficient statistics (and their ordering) considered in
in Figure 7. For most fibers, the values of the distances are greater than 0, indicating that
in those cases the MLE and the MPLE parametrize different distributions. Remarkably,
in a number of cases, the distance gets as large as 2 which means the two distributions are
supported on disjoint sets, even if the MLE θ̂ and the MPLE θ̃ are estimated using the
graphs in the same fiber. Figure 8 (c) and (d) display the values of the entropies. Note
that the distributions with (nearly) 0 entropy are degenerate as it only has support on
a single or a small number of values. In particular, we see degenerate behaviors for the
MLE even when the MPLE exists.

4.2. Results on large graphs

We now compare MLEs and MPLEs on large graphs. Because it is essentially infeasible
to enumerate all graphs for more than n = 10 nodes, we use an MCMC sampling algorithm
to obtain the MLE approximately, instead of estimating the MLE directly.

Our study of the two approaches is structured as follows. Given a ground truth pa-
rameter θ = (0.0384, 0.2378,−0.0853) for edge, triangle and 2-star which corresponds to
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Figure 8: 7-node graphs: when both MLE and MPLE exists, (a) L2 distance between θ̂ and θ̃ (b) L1 distance
between pθ̂ and pθ̃ (c) Entropy of pθ̂ (d) Entropy of pθ̃

a model far from degenerate, we sample 100 graphs with specific number of nodes from
this model. Fit MLEs and MPLEs using each group of graphs to get θ̂’s and θ̃’s. Figure
9 shows the histograms of the edge parameter of θ̂’s and θ̃’s when the number of nodes
n = 100, 200, 400 and 600. Table 5 shows the mean and standard error of the estimated
edge parameter of θ̂’s and θ̃’s. In this specific case, the MLE and MPLE do not differ
very much, even asymptotically. Table 6 and 7 show the summary statistics for triangle
and 2-star parameters. They also indicate that both MLE and MPLE are asymptotically
unbiased and MPLE is a good approximation of MLE in this case.

Our experiments, however, show that most parameters in the parameter space corre-
spond to degenerate models as the number of nodes increases. Now we pick a parameter
value θ = (−3.1043,−1.8940, 1.0219) corresponding to a near degenerate model based on
our previous experiment. We conduct similar study as on the non-degenerate case. Figure
10 and Table 8 show that the sufficient statistics of graphs sampled from pθ̂ and pθ̃ no
longer center around the true value which indicates that the model doesn’t fit the data
well. We show the results when n = 100 and n = 200. We further find that degeneracy
happens when n = 400.
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Figure 9: The histogram of edge parameters in θ̂ for (a) 100-node, (b) 200-node, (c) 400-node, and (d) 600-

node graphs, edge parameters in θ̃ for (e) 100-node, (f) 200-node, (g) 400-node, and (h) 600-node graphs and

the absolute value difference between θ̂ and θ̃ (i) 100-node, (j) 200-node, (k) 400-node and (l) 600-node graphs
with true model θ = (0.0384, 0.2378,−0.0853)

Table 5: The mean and standard error of simulated edge parameters with true value 0.0384

Edge parameter
MLE MPLE

mean se mean se

n = 100 0.139 0.541 0.161 0.555

n = 200 0.096 0.376 0.107 0.373

n = 400 0.097 0.331 0.102 0.327

n = 600 0.037 0.275 0.047 0.285

4.3. Example: Zachary’s Karate Club

[37] collected network information on the relationships among the 34 members of a
university karate club. Figure 11 shows the observed network structure. Our purpose here
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Table 6: The mean and standard error of simulated triangle parameters with true value 0.2378

Triangle parameter
MLE MPLE

mean se mean se

n = 100 0.228 0.064 0.229 0.065

n = 200 0.235 0.036 0.235 0.036

n = 400 0.242 0.026 0.242 0.026

n = 600 0.239 0.027 0.239 0.027

Table 7: The mean and standard error of simulated 2-star parameters with true value -0.0853

2-star parameter
MLE MPLE

mean sd mean sd

n = 100 -0.088 0.021 -0.089 0.022

n = 200 -0.088 0.014 -0.088 0.014

n = 400 -0.087 0.008 -0.087 0.009

n = 600 -0.085 0.007 -0.086 0.007

Table 8: The mean and standard error of edge parameters in θ̂ and θ̃ with true value -3.1043

Edge parameter
MLE MPLE

mean se mean se

n = 100 0.329 0.831 0.361 0.847

n = 200 0.162 0.442 0.192 0.458

is simply to use this network to illustrate differences between MLEs and MPLEs for dyadic-
dependent ERGMs, and several of the fitted models actually provide a poor description
of the data which, as other authors demonstrate and as Figure 11 shows, consist of two
or three somewhat connected blocks.

We show the sufficient statistics for various ERGMs of increasing complexity associated
with this network in Table 9.

We calculated the MLEs for these ERGMs using the MCMC sampler in the R package
“ergm”. Table 10 shows the fitted parameters along with their estimated standard errors
for the MLE and MPLE for a sequence of 8 increasingly complex ERGMs.

The MPLE exists for all of these models, which implies the MLE exists as well. Model
1 is the Erdős-Rényi model and for it everything is nice. The other models belong to the
Markov random graph model family. From the table we see that the MLEs and MPLEs
differ for these dyadic-dependent ERGMs; occasionally they even have different signs.
Moreover, near-degeneracy of the MLE occurs when we fit these dependent models. For
example, for model 2 the standard errors are very large suggesting that we are approach-
ing the boundary of the parameter space. For model 3, 4 and 5 the MCMC sampler
for computing the MLE gets stuck at one graph; thus the standard error estimate of 0.
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Figure 10: The histogram of edge parameters in θ̂ for (a) 100-node, (b) 200-node graphs, edge parameters in

θ̃ for (c) 100-node, (d) 200-node graphs and the absolute value difference between θ̂ and θ̃ (e) 100-node, (f)
200-node graphs with true model θ = (−3.1043,−1.8940, 1.0219)

The “ergm” package does not give valid estimates for model 7 and 8 and the MCMC
sampler exits with errors. This behavior is due to the poor convergence of the MCMC
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for these models. Finally for the intermediate model 6, the MLE results show estimated
standard errors that are large relative to the estimated values, again suggesting some form
of problematic behavior.

Fig. 2. Zachary’s karate club network. Communities were identified by maximizing the likelihood modularity (Left) and by maximizing the Newman–Girvan
modularity with K = 2 (Right), where the shapes of vertices indicate the membership of the corresponding individuals. The dashed line cuts the nodes into
two groups which are the “known” communities that the club was split into.

by Rosvall and Bergstrom using a data compression criterion (21),
which is closely related to L-M. We note that, as is usual in cluster-
ing, there is no ground truth, only features which can be validated
ex post fact. It is interesting to note that, if instead of K = 2, we put
K = 4, as in Fig. 3, it is evident for both modularities that merg-
ing the communities on either side of the eigenvector split, gives
the “correct” Karate Club split. This suggests that the standard
policy mentioned by Newman (16) of increasing the number of
communities by splitting is not necessarily ideal since in this case
the “misclassified” individual of Fig. 2 would never be “correctly”
classified.

Private Branch Exchange. Our second example is of a telephone
communication network where connections are made among the
internal telephones of a private business organization, a so called
PBX. PBXs are differentiated from “key systems” in that users of
key systems usually select their own outgoing lines, while PBXs
select the outgoing line automatically. Our data contains 621

individuals. Fig. 4 Left shows the results of community detection
by L-M, where the adjacency matrix is plotted but the nodes are
sorted according to the membership of the corresponding individ-
uals identified by maximizing the likelihood modularity. Similarly,
the right panel of Fig. 4 shows the communities identified by N-
G, where the maximum Newman–Girvan modularity is 0.4217.
Note that the identified communities by L-M have sizes 323, 81,
78, 97, 41, and 1, respectively. The communities are ordered sim-
ply by their average node degrees, essentially the order for hCAN .
Interestingly, the last L-M community has only one node that
communicates with almost everyone else, nodes in the second
community only communicate with internal nodes, nodes in the
fourth community and the sixth community, but not with others;
Similarly, the third community only communicates with the fifth
and sixth communities, and so on. In other words, communica-
tion between communities is sparse. However, the communities
identified by N-G are quite different with only the fifth commu-
nity heavily overlapping with a community identified by L-M. This

Fig. 3. Zachary’s karate club network. Communities were identified by maximizing the likelihood modularity (Left) and by maximizing the Newman–Girvan
modularity with K = 4 (Right), where the shapes of vertices indicate the membership of the corresponding individuals. The dashed line cuts the nodes into
two groups which are the known communities that the club was split into.

21072 www.pnas.org / cgi / doi / 10.1073 / pnas.0907096106 Bickel and Chen

Figure 11: The network structure of the Zachary karate club data among 34 individuals

Table 9: Sufficient statistics of the Zachary karate club network data

edges triangle kstar2 kstar3 kstar4 kstar5 kstar6 kstar7 kstar8

78 45 528 1764 5082 11741 21604 31836 37729

kstar9 kstar10 kstar11 kstar12 kstar13 kstar14 kstar15 kstar16 kstar17

35981 27523 16756 8009 2940 800 152 18 1

5. Conclusion

In this paper, we have described the relationships among different subclasses of Ex-
ponential Random Graph Models (ERGMs) from the perspective of dependence among
edges. The introduction of edge dependence, e.g., in the form of Markov dependence,
yields a probability function for the graph that no longer factorizes in a nice way. We de-
scribed the implications of the complexities introduced by edge dependence for estimation
and we introduced Maximum Pseudo-Likelihood Estimation (MPLE) as an alternative
to the more standard Maximum Likelihood Estimation (MLE), an approach which does
not involve computing a complex normalizing constant and can be fitted using logistic
regression. We then studied the relationship between MLE and MPLE for ERGMs, ex-
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Table 10: MLEs and MPLEs for the parameters of 8 ERGMs with increasing parametric complexity with standard
errors shown in the parenthesis

model edges kstar2 triangle kstar3 kstar4 kstar5 kstar6
MLE

1 -1.82(0.12)
2 -3.67(1300.5) 0.18(20.3)
3 -3.941(0) 0.11(0) 0.44(0)
4 -3.41(0) 0.11(0) 0.04(0)
5 -2.95(0) -0.05(0) 0.58(0) 0.02(0)
6 -0.46(3.86) 0.27(0.19) -0.54(0.69) 0.19(0.17) 0.03(0.02)
7 Degenerate model and no reasonable model is fitted using the “ergm” package.
8

MPLE
1 -1.823(0.12)
2 -3.68(0.3) 0.18(0.02)
3 -3.95(0.33) 0.15(0.03) 0.463(0.13)
4 -3.41(0.56) 0.13(0.09) 0.006(0.01)
5 -2.96(0.57) -0.05(0.1) 0.58(0.14) 0.02(0.01)
6 1.24(0.9) -1.21(0.23) 0.67(0.16) 0.38(0.06) -0.05(0.01)
7 0.75(1.39) 0.67(0.16) -1.04(0.44) 0.29(0.2) -0.02(0.06) -0.004(0.01)
8 9.99(2.19) 0.71(0.17) -4.85(0.83) 2.83(0.51) -1.24(0.23) 0.38(0.07) -0.06(0.01)

amining theoretical properties, exact calculations for small graphs and a simulation. We
also illustrated the connections using the Zachary karate club data.

The two forms of estimation we explore here, MLE and MPLE, differ in several aspects.
The existence of MPLE for an ERGM implies the existence of MLE. When both of them
exist, the estimation θ̂ and θ̃ and the resulted model pθ̂ and pθ̃ are different sometimes
according to our simulation study on small graphs. The difference is quite large in the near-
degenerate settings. We also evaluated their difference by sampling graphs with increasing
number of nodes from the true model and fit parameters using the two methods when
the number of nodes is more than 10. The MLE and MPLE differ little when the true
parameter lies within the convex hull and the model has a large entropy. The experimental
results empirically show that the variance of both the MLE and MPLE decreases as the
number of nodes increases. This is a sign of consistency of MLE and MPLE for ERGMs.
Our analysis of the karate club data also shows the MLEs and MPLEs can however be
different, sometimes in substantial ways.

[29] described a form of model consistency as the size of the network n grows, which
fails to hold for edge-dependent ERGMs. Yet the dual graph or dependence graph inter-
pretation associated with Markov random graph models remains alluring. Thus, despite
the estimation problems we have highlighted in this paper, we believe that the complexities
of edge-dependent ERGMs bear further investigation.
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