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Tying Up Loose Strands: Defining Equations of the Strand
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Abstract. The strand symmetric model is a phylogenetic model designed to reflect the symmetry
inherent in the double-stranded structure of DNA. We show that the set of known phylogenetic
invariants for the general strand symmetric model of the three leaf claw tree entirely defines the
ideal. This knowledge allows one to determine the vanishing ideal of the general strand symmetric
model of any trivalent tree. Our proof of the main result is computational. We use the fact that
the Zariski closure of the strand symmetric model is the secant variety of a toric variety to compute
the dimension of the variety. We then show that the known equations generate a prime ideal of
the correct dimension using elimination theory.
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1. Introduction

The strand symmetric model is a phylogenetic model designed to reflect the symme-
try inherent in the double-stranded structure of DNA. This symmetry naturally imposes
restrictions on the transition probabilities assigned to each edge and imposing only these
restrictions gives the general strand symmetric model (SSM). The phylogenetic invariants
of a model are algebraic relationships that must be satisfied by the probability distributions
arising from the model. Their study was originally proposed as a method for reconstruct-
ing phylogenetic trees [4, 10], but they have also been useful theoretical tools in proving
identifiability results (see e.g. [2]). Results in [6] imply that to determine generators of
the ideal of phylogenetic invariants for any trivalent tree, it suffices to determine them for
the claw tree, K1,3.

Though the general strand symmetric model itself is not group-based, Casanellas and
the second author [3] showed that it is still amenable to the Fourier/Hadamard transform
technique of [7, 11]. In the Fourier coordinates, it becomes evident that the parameteri-
zation of the model for K1,3 is a coordinate projection of the secant variety of the Segre
embedding of P3 × P3 × P3. From this observation, the same authors were able to find 32
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degree three and 18 degree four invariants of the homogenous ideal for K1,3 and to show
that these invariants generate the ideal up to degree four. Whether or not these equations
generate the entire ideal was heretofore unknown.

In this paper, we show that these 50 equations in fact generate the entire ideal of the
SSM for K1,3. First, we use the parameterization of the model after the matrix-valued
Fourier transform and the tropical secant dimension technique of Draisma [5] to determine
the dimension of the variety of probability distributions arising from the model. Then,
using Macaulay2 [9], we show that the ideal generated by these fifty equations defines a
variety of the same dimension. Finally, with the aid of symbolic computation we generate a
decreasing sequence of elimination ideals demonstrating that the ideal in question is prime.
Thus, the variety defined by these equations is irreducible, contains the parameterization,
and is of the same dimension as the parameterization, from which the result follows.

2. Phylogenetic Invariants of the SSM model

2.1. Preliminaries

The general strand symmetric model on an n-leaf rooted tree T is a phylogenetic
model of 4-state character change. Since the SSM is specifically intended to model DNA
evolution, we associate to each node v of the tree a random variable Xv with state space
corresponding to the DNA bases {A,C,G,T}. Associated to each edge is a 4× 4 transition
matrix with rows and columns indexed by the bases. The entry θij encodes the probability
of changing from character i to j along that edge. In the double helix structure of DNA
it is always the case that the bases A and T are paired together and likewise for C and
G. So that our model reflects this strand symmetry, we let π = (πA, πC , πG, πT ) be the
distribution of the bases at the root, and set πA = πT and πC = πG. Additionally, since a
character transition in one strand will induce a corresponding transition in the other, we
insist

θAA = θTT , θAC = θTG, θAT = θTA, θCA = θGT , θCC = θGG, θCG = θGC , θCT = θGA.

The key observation from [3] is that the SSM is a matrix-valued group-based model.
Identify the character states of the random variables of a phylogenetic model with elements
of G × {0, . . . , l} where G is a finite abelian group and l ∈ N. Then each character state
is indexed by an element

(
j
i

)
where j ∈ G and i ∈ {0, . . . , l}. In these indices, the entries

of the transition matrix along edge E are written Ej1j2i1i2
and the probability that the root

is in state
(
j
i

)
is equal to Rji .

Definition 1. A phylogenetic model is a matrix-valued group-based model if for each
edge, the matrix transition probablities satisfy

Ej1j2i1i2
= Ek1k2i1i2

whenever j1 − j2 = k1 − k2 and the root distribution probabilities satisfy Rji = Rki .
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Let G = Z2 and l = 1, then the following identifications make manifest the matrix-valued
group-based structure of the SSM: A = ( 0

0 ), G = ( 0
1 ), T = ( 1

0 ), C = ( 1
1 ).

The tree parameter of an algebraic model determines a polynomial map sending each
choice of stochastic parameters into the probability space indexed by n-tuples of the char-
acters. Thus, for the SSM of a tree T , if we let ST be the space of stochastic parameters
we have the following map,

φT : ST → ∆4n−1.

If we do not impose the stochastic conditions on the parameters then im(φT), where the
closure is taken in the Zariski topology, is a variety. In Section 16.1 of [3], the authors
detail the group-valued Fourier transform and show how it can be used to obtain a simple
parameterization for the closure of the cone over the SSM for T = K1,3, denoted CV (T ).
Letting qmnoijk be the transformed coordinates of the image space, we have

ψ : qmnoijk = dmm0i enn0j f
oo
0k + dmm1i enn1j f

oo
1k

if m+n+o ≡ 0 in Z2, and qmnoijk = 0 otherwise. Now to determine the defining equations for

the SSM for K1,3, it is enough to determine the defining equations for im(ψT) = CV (T ).
Let I be the ideal generated by the fifty equations found in [3], the rest of the paper will
be concerned with proving the following theorem.

Theorem 1. The vanishing ideal of the strand symmetric model for the graph K1,3 is
minimally generated by 32 cubics and 18 quartics. The ideal has dimension 20, degree
9024, and Hilbert series

1 + 12t+ 78t2 + 332t3 + 984t4 + 1908t5 + 2394t7 + 1908t8 + 984t9 + 332t10 + 78t11 + 12t12 + t13

(1− t)20
.

Note that the Hilbert series suggests that the ideal is Gorenstein though we have not
been able to prove this.

2.2. Dimension

A toric variety is a variety that is parametrized by monomials. Let C ⊂ CV (T ) be the
toric variety parameterized in each coordinate only by the monomial containing variables
with zero in the first entry of the subscript. Thus, CV (T ) is the second secant variety of
C, denoted Sec2(C), and we can compute its dimension using existing techniques from
[5].

The theorem from [5] which we wish to apply is conveniently formulated for our pur-
poses by Theorem 15 from [1]. We associate to each monomial xu11 x

u2
2 . . . xunn in the

parameterization of a toric variety an integer vector u and let A be the set of these integer
vectors. Let H = {x ∈ Rd : cTx = e} be a hyperplane in Rd that splits Rd into two
components which we will label H+ = {x ∈ Rd : cTx > e} and H− = {x ∈ Rd : cTx < e}.

In our case, the matrix A is a 12× 32 matrix of rank 10, with each column containing
exactly threes 1’s and nine 0’s. If we let {e00, e01, e10, e11} denote the standard basis in R2×2
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then the thirty-two columns of A are

{emi ⊕ enj ⊕ eok ∈ R12 : m+ n+ o ≡ 0 in Z2}.

For example, the column of A corresponding to the coordinate q110101 is given by
0
0
0
1

⊕


0
0
1
0

⊕


0
1
0
0


which we write as (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)T .

Theorem 2. [1, Theorem 15] Let VA be a projective toric variety with corresponding set
of exponent vectors A ⊂ Nd. Let H be a hyperplane not intersecting A. Let A+ = A∩H+

and A− = A ∩H−. Then dim(Sec2(VA)) ≥ rank(A+) + rank(A−)− 1.

Recall that I is the ideal generated by the fifty equations found in [3].

Lemma 1. dim(CV (T )) = dim(V (I)) = 20.

Proof. Regard C as a projective variety so that C = VA from Theorem 2. The
hyperplane defined by the vector c = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) and e = 3

2 gives |A+| =
|A−| = 16 and rank(A+) = rank(A−) = 10. Therefore, by Theorem 2, as a projective
variety dim(Sec2(C)) ≥ 19 and as an affine cone dim(CV (T )) ≥ 20. Using Macaulay2 we
determine that dim(V (I)) = 20, and since CV (T ) ⊆ V (I), we must have dim(CV (T )) =
20.

2.3. Primality

In this section we outline our approach for determining if the ideal I is prime. There
are algorithms for determining whether or not an ideal is prime implemented in many
computer algebra systems. However, these algorithms do not terminate for many of the
large ideals confronted in practice, including the ideal I generated by the cubics and
quartics contained in I(CV (K1,3)). We use the following result from [8] which in certain
cases allows one to determine the primality of an ideal by determining the primality of an
ideal in fewer variables.

Lemma 2. [8, Proposition 23] Let k be a field and J ⊂ k[x1, . . . , xn] be an ideal containing
a polynomial f = gx1 + h with g, h not involving x1 and g a non-zero divisor modulo J .
Let J1 = J ∩ k[x2, . . . , xn] be the elimination ideal. Then J is prime if and only if J1 is
prime.

Proposition 23 of [8] was stated without proof, so we include a proof of the result for
completeness.

Proof. (⇒) It is true in general that the elimination ideal of a prime ideal is prime.
Suppose J is prime and let a, b ∈ k[x1, . . . , xn] \ J1 such that ab ∈ J1. Since J1 ⊂ J ,
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it must be that either a or b is in J \ J1, otherwise it would contradict that J is prime.
Therefore, either a or b is in k[x1, . . . , xn] \ k[x2, . . . , xn] and so ab must have some term
that involves x1, which implies ab 6∈ J1, a contradiction.

(⇐) Suppose J1 is prime but that J is not. Then there must exist a, b ∈ k[x1, . . . , xn] \ J
with ab ∈ J \ J1. Choose a and b so that ab has minimal x1-degree among all such pairs.
Let d be the x1-degree of a and d′ the x1-degree of b. Since ab ∈ J \ J1, d + d′ ≥ 1, and
so without loss of generality we can assume d ≥ 1. Write

a = h0 + h1x1 + h2x
2
1 + . . .+ hdx

d
1,

where each hi ∈ k[x2, . . . , xn] and hd 6= 0. Then since f ∈ J and g is not a zero divisor
mod J , a′ := (ga− hdxd−11 f) is not in J and has x1-degree strictly less than d. It follows
that a′b has x1-degree strictly less than that of ab. Finally, since ab and f are in J ,
a′b = gab− hdxd−11 fb is in J , contradicting the minimality of the x1-degree of ab.

Lemma 3. The ideal I generated by the 32 cubics and 18 quartics of the general strand
symmetric model for K1,3 is prime.

Proof. The proof is obtained by repeated application of Lemma 2. The computations
we describe can be found at

http://www4.ncsu.edu/∼smsulli2/Pubs/LooseStrandsWebsite/SSM Supplement.html

in the Macaulay2 file SSM Supplement where the symbols 0,1,2, and 3 are substituted for
( 1
1 ), ( 1

0 ), ( 0
1 ), and ( 0

0 ).
First, we let I0 = I. Beginning with k = 1, we find a polynomial fk = gkxk+hk ∈ Ik−1,

verify that gk is not a zero-divisor mod Ik−1, and then eliminate xk to obtain the ideal Ik.
In this way we generate a decreasing chain of elimination ideals

I = I0 ⊃ I1 ⊃ I2 . . . ⊃ I10.

Using the isPrime function in Macaulay2, we show that I10, and hence every ideal in the
sequence, is prime.

While this is the general outline of our approach, it is actually computationally easier to
show that none of the gk that we encounter is a zero-divisor mod the respective elimination
ideal first. Identify the new indices 0, 1, 2, and 3 with the set of standard basis vectors
{e1, e2, e3, e4} and define a multi-grading where the weight of qijk is ei+1 ⊕ ej+1 ⊕ ek+1.
Let qαqβ − qγqδ be a nontrivial binomial that is homogenous with respect to this grading.
For this particular sequence of ideals we are always able to choose fk = gkxk + hk so that
gk is either such a binomial or a product of such binomials. There are two elementary
observations that will be useful:

(i) g = l1l2 is a zero-divisor mod J if and only if at least one of l1 and l2 is.
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(ii) g is not a zero-divisor mod any elimination ideal of J if it is not a zero-divisor mod
J .

Thus, to show that none of the gk is a zero-divisor mod Ik−1 it is enough to show that
none of the homogenous binomials is a zero-divisor mod I.

The symmetry of I enables us to establish this by considering only a small subset of
the homogenous binomials. There is a group action of S4×S4×S4oS3 on Sec2(Seg(P3×
P3 × P3)), that comes from performing the rank-preserving column and transposition
operations. Hence, the same group acts on I(Sec2(Seg(P3 × P3 × P3))), where column
operations correspond to changing the indices of the variables and transposition operations
correspond to permuting the indices of each variable. Let G be the subgroup of elements
of S4 × S4 × S4 o S3 satisfying g · qmnoijk = qm

′n′o′
i′j′k′ with m+ n+ o ≡ m′ + n′ + o′ in Z2 for

each of the 64 variables. Since

I(CV (T )) = I(Sec2(Seg(P3 × P3 × P3))) ∩ C[qmnoijk : m+ n+ o = 0],

G acts on I(CV (T )), and since the generators of I generate I(CV (T )) up to degree four,
G acts on I as well. Let H be the subgroup of G generated by elements that correspond
to changing the indices. For example, h = ((01), (01)(23), (01)) ∈ H interchanges 0 ↔ 1
in the first index, 0 ↔ 1 and 2 ↔ 3 in the second, and 0 ↔ 1 in the third so that
h · (q021q113 − q013q121) = (q130q003 − q103q030). Then

H = 〈 ((01), id, id), (id, (01), id), (id, id, (01)), ((23), id, id), (id, (23), id),

(id, id, (23)), ((0213), (0213), id), ((0213), id, (0213))〉

is a 256-element normal subgroup and G ∼= H o S3. One can check that the set of homo-
geneous binomials partitions into three orbits under the action of G with representatives
q002q013 − q003q012, q002q113 − q003q112, and q002q120 − q020q102. In the file SSM Supplement

we show that none of the homogeneous binomials is a zero-divisor by showing that none
of these three binomials is a zero-divisor mod I.

Having shown that I is prime, we are able to give a short proof of Theorem 1.
Proof. [Proof of Theorem 1] The containment I ⊂ I(CV (T )) implies that CV (T ) ⊂

V (I). By Lemma 3, I is prime and so V (I) is an irreducible variety. By Lemma 1, CV (T )
is an irreducible variety contained in an irreducible variety of the same dimension, so
CV (T ) = V (I) and I = I(CV (T )). Knowing explicit generators of the vanishing ideal of
the strand symmetric model for the graph K1,3, the claims about the rank, degree, and
Hilbert Series of the ideal are easily verified by the Macaulay2 code in SSM Supplement.
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