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1. Introduction

Consider a square contingency table with commensurable row and column classification
variables X and Y . Such tables can arise from cross-classifying repeated measurements of a
categorical response variable. They are common in panel and social mobility studies. One of
the most cited examples, taken from Stuart [12], is shown in Table 1. It cross-classifies 7477
female subjects according to the distance vision levels of their right and left eyes.

Left Eye Grade
Right Eye Grade best second third worst

best 1520 266 124 66
second 234 1512 432 78
third 117 362 1772 205
worst 36 82 179 492

Table 1: Cross classification of 7477 women by unaided distance vision of right and left eyes.

The most parsimonious model for such tables is the symmetry (S) model, due to Bowker [3].
While the S model is easy to interpret, it is too restrictive and rarely fits well. An important
model that often fits better is the quasi-symmetry (QS) model of Caussinus [4]. Kateri and
Papaioannou [7] studied the QS model from the information-theoretic point of view and gen-
eralized it to a family of models based on the φ-divergence [10]. In their framework, classical
QS is closest to the S model under the Kullback-Leibler divergence. However, by changing the
divergence used to measure proximity of distributions, alternative QS models are found. For
instance, the Pearsonian divergence yields the Pearsonian QS model. For the data in Table 1,
Bishop et al. [2] applied the QS model, while Kateri and Papaioannou [7] applied the Pearso-
nian QS model, and here these two lead to estimates of similar fit. However, there are other
data sets where only one of them performs well. Our goal is to link these two models. We
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shall construct a one-parameter family of QS models that connects these two. In this way, more
options for data analysis are available. In case of a single square contingency table, the optimal
choice of this model parameter would be of interest. However, the more interesting practical
application lies in analyzing and comparing independent square tables of the same set-up, when
they cannot be modeled adequately all by the same (classical or Pearsonian) QS model. For
example, consider the same panel study carried out at two independent centers, with one of
them being modeled only by the classical QS and the other only by the Pearsonian QS. In this
scenario, the two fitted models are not as comparable as we would like. Our approach furnishes
in-between compromise models. Our family exhibits interesting properties when viewed from
the perspective of algebraic statistics [5]. It interpolates between two fundamental classes of
discrete variable models, namely, toric models and linear models [9, §1.2]. Indeed, the QS model
is toric, and its Markov basis is well-known, by work of Rapallo [11] and Latunszynski-Trenado
[5, §6.2]. The Pearsonian QS model reduces to a linear model, specified by the second factors
in (3). Its ML degree is the number of bounded regions in the arrangement of hyperplanes
{ai − aj = 1}, by Varchenko’s formula [9, Theorem 1.5].

This paper is organized as follows. Our parametric family of QS models is introduced
in Section 2. In Section 3 we derive the implicit representation of our model by polynomial
equations in the cell entries. That section is written in the algebraic language of ideals and
varieties. It will be of independent interest to scholars in combinatorial commutative algebra [8,
13]. Maximum likelihood estimation (MLE) and the fit of the model are discussed in Section 4.
Section 5 examines a natural submodel given by independence constraints. Section 6 discusses
statistical applications and presents computations with concrete data sets. Section 7 offers an
information-theoretic characterization in terms of φ-divergence, following [7] and [10].

2. Quasisymmetry Models

We consider models for square contingency tables of format I×I. Probability tables p = (pij)
are points in the simplex ∆I2−1. Here pij is the probability that an observation falls in the (i, j)
cell. We write n = (nij) for the table of observed frequencies. The model of symmetry (S) is

pij = sij with parameters sij = sji for 1 ≤ i ≤ j ≤ I. (1)

Here, and in what follows, the table (sij) is non-negative and its entries sum to 1. Geometrically,
the S model is a simplex of dimension

(
I+1

2

)
− 1 inside the ambient probability simplex ∆I2−1.

The classical QS model can be defined, as a model of divergence from S, by

pij = sij
2ci

ci + cj
, i, j = 1, . . . , I, (2)

where ci > 0, i = 1, . . . , I. The Pearsonian QS model is defined by the parametrization

pij = sij(1 + ai − aj) , i, j = 1, . . . , I, (3)

with parameters ai being constrained by |ai − aj | ≤ 1 for 1 ≤ i < j ≤ n. Both models are
semialgebraic subsets of dimension

(
I+1

2

)
+ I − 2 in the simplex ∆I2−1. The parameters ci and

ai, in (2) and (3) respectively, are expressing the departure from symmetry due to category
i. Their role and nature will be clarified later, after (9). The S model is the subset obtained
respectively for c1 = · · · = cI in (2) or a1 = · · · = aI in (3).

We here study the following quasisymmetry model (QSt), where t ∈ [0, 1] is a parameter:

pij = sij

(
1 +

(1 + t)(ai − aj)
2 + (1− t)(ai + aj)

)
, i 6= j, i, j = 1, . . . , I. (4)
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In all three models, the matrix entries on the diagonal are set to pii = sii for i = 1, . . . , I. For
t = 1, the model (4) specializes to the Pearsonian QS model (3). For t = 0, it specializes to the
QS model (2), if we set ai = ci− 1. The parameters ai will be assumed to satisfy the restriction

t ·maxiai −miniai ≤ 1. (5)

Since we had assumed 0 ≤ sij ≤ 1/2, the constraint (5) on the ai ensures that the pij are
probabilities (i.e. lie in the interval [0, 1]). Furthermore, if we change the parameters via

sii = xii for i = j, and sij = xij

(
1 + (1− t)ai + aj

2

)
for i 6= j,

then the model (QSt), defined in (4), is rewritten in the simpler form

pij = xij(1 + ai − taj) , i 6= j, i, j = 1, . . . , I. (6)

Note that xi+ =
∑I

j=1 xij =
∑I

j=1 xji = x+i, since the table (xij) is symmetric. For t = 1, the
probabilities defined by (6) satisfy

∑
i,j pij = 1. For t 6= 1, the ‘weighted sum to zero’ constraint

I∑
i=1

(xi+ − xii)ai = 0 (7)

is required in order to ensure that the cell probabilities in (6) satisfy
∑

i,j pij = 1.
The expressions (4) and (6) are equivalent. Whether one or the other is preferred is a matter

of convenience. Maximum likelihood estimation is easier with (4), since the MLEs of the sij are
rational functions of the observed frequencies nij . The estimates of the ai depend algebraically
on n, and they generally have to be computed by an iterative method. In the formulation (6),
none of the parameters have estimates that are rational in n. We shall see this in Section 4. On
the other hand, for our algebraic analysis of the QSt model, it is more convenient to use (6).

Example 1. Fix I = 3. For any fixed t, the model (6) is a hypersurface in the simplex ∆8 of
all 3× 3 probability tables. This hypersurface is the zero set of the cubic polynomial

(1 + t+ t2)(p12p23p31 − p21p32p13) +
t(p12p23p13 + p12p32p31 + p21p23p31 − p12p32p13 − p21p23p13 − p21p32p31).

(8)

For t = 0, we recover the familiar binomial relation that encodes the cycle of length three [5,
§6.2]. Thus, our family of QSt models represents a deformation of that Markov basis:

p12p23p31 − p21p32p13 +O(t).

The generalization of the relation (8) to higher values of I will be presented in Section 3. ♦

Another characteristic model for square tables with commensurable classification variables
is the model of marginal homogeneity (MH). This is specified by the equations

pi+ = p+i for i = 1, . . . , I. (9)

The model of symmetry S implies MH and QS, i.e. (2) with c1 = · · · = cI . By [2, §8.2.3], if the
models MH and QS hold simultaneously, then S is implied. In symbols, S = MH ∩ QS. This
identity is important in that it underlines the role of the parameters ci in the QS model. These
express the contribution of the classification category i to marginal inhomogeneity. We shall
prove next that the same identity holds for our generalized QSt model.

Proposition 1. For any t ∈ [0, 1], we have S = MH ∩QSt.
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Proof. It is straightforward to verify that S implies MH and QSt with ai = 0, for all i, which
leads to pij = xij = sij , for all i, j. On the other hand, under QSt as defined by (6), we have

pi+ − p+i = (1 + t)

(
ai(xi+ − xii)−

∑
j 6=i

ajxij

)
for i = 1, . . . , I. (10)

Combining this with MH as in (9), and setting yi := xii − xi+, the equation (10) implies∑
j 6=i

ajxij + aiyi = 0 for i = 1, . . . , I. (11)

This can be written in the matrix form Ba = 0, where a = (a1, . . . , aI)
T , x = (xij), and

B = x− diag(x1) =


x1I

B̃
...

xI−1,I

xI1 xI2 . . . yI

 .
The matrix B̃ is strictly diagonally dominant, provided |yi| = xi+ − xii >

∑I−1
j 6=i xij . This is

ensured if all xil are positive, as in Remark 1; otherwise a separate argument is needed.
By the Levy-Desplanques Theorem, the matrix B̃ is invertible and rank(B̃) = I − 1. Hence

rank(B) = I − 1, since B1 = 0. Therefore, all solutions of Ba = 0 have the form a = a1
for some a ∈ R. For t = 1, equation (6) now implies pij = xij = sij , for all i, j. For t 6= 1,
combining (7) with the positivity of xi+ − xii, we get a = 0. Hence symmetry S holds and the
proof is complete.

Remark 1. Contingency tables with structural zeros, i.e., cells of zero probability, are rare. If
they exist, they usually have a specific pattern (zero diagonal, triangular table). In our set-up
it is realistic to assume that there exists an index j such that pij > 0 for all i = 1, . . . , I. Thus,
without loss of generality, we can assume that piI > 0 and therefore xiI > 0 for all i = 1, . . . , I.

Example 2. (I = 3) Marginal homogeneity defines a linear space of codimension 2, via

p11 + p12 + p13 = p11 + p21 + p31,

p21 + p22 + p23 = p12 + p22 + p32,

p31 + p32 + p33 = p13 + p23 + p33.

Inside that linear subspace, the cubic (8) factors into a hyperplane, which is the S model
{p12 = p21, p13 = p31, p23 = p32}, and a quadric having no points with positive coordinates. ♦

In the light of Proposition 1, the parameter ai of the QSt model can be interpreted as the
contribution of each category i to the marginal inhomogeneity. By this we mean the difference
of ai minus the weighted average of all ai’s. This is the parenthesized expression in the identity

pi+ − p+i = (1 + t)xi+

ai −∑
j

xij
xi+

aj

 , i, j = 1, . . . , I. (12)

3. Implicit Equations

We now examine the quasisymmetry models QSt through the lens of algebraic statistics
[5, 9, 11]. To achieve more generality and flexibility, we fix an undirected simple graph G
with vertex set {1, 2, . . . , I}. Let IG denote the prime ideal of algebraic relations among the
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quantities pij = xij(1+ai− taj) in (6), where {i, j} runs over the edge set E(G) of the graph G.
The ideal IG lives in the polynomial ring K[ pij , pji : {i, j} ∈ E(G) ]. Here we take K = Q[[t]]
to be the local ring of formal Laurent series in one unknown t.

Our main result in this section is the derivation of generators for the ideal IG. One motiva-
tion for studying IG is the constrained formulation of the MLE problem in Section 4. The model
in Section 2 corresponds to the complete graph on I nodes, denoted G = KI . In particular, for
I = 3, the ideal IK3 is the principal ideal generated by the cubic in (8). Here we work with
arbitrary graphs G, not just KI , so as to allow for sparseness in the models. We disregard the
‘weighted sum to 0’ constraint (7), as this does not affect the homogeneous relations in IG.

Let E(G) denote the set of oriented edges of G. For each edge {i, j} in E(G) there are two
edges ij and ji in E(G). So we have |E(G)| = 2|E(G)|. An orientation of G is the choice of
a subset O ⊂ E(G) such that, for each edge {i, j} in E(G), either ij or ji belongs to O. An
orientation of G is called acyclic if it contains no directed cycle.

Let C denote the undirected n-cycle, with E(C) = {{1, 2}, {2, 3}, . . . , {n, 1}}. Then C has
2n orientations, shown in Figure 1 for n = 3. Precisely two of these orientations are cyclic. These
two directed cycles are denoted by oC and ōC . Their edge sets are E(oC) = {12, 23, . . . , n1} and
E(ōC) = {21, 32, . . . , 1n}. Any orientation δC of C defines a monomial of degree n via

pδC =
∏

ij∈E(δC)

pij .

We also define the integer c(δC) = 2|E(oC)∩E(δC)| − n. Note that c(oC) = n and c(ōC) = −n.
We associate with the n-cycle C the following polynomial of degree n with 2n terms:

PC =
∑
δC

coeff(δC) · pδC . (13)

The sum is over all orientations δC of C, and the coefficients are the scalars in K defined by

coeff(δC) =


c(δC)
|c(δC)| ·

(
tr−

|c(δC )|
2 + tr+2− |c(δC )|

2 + · · ·+ tr+
|c(δC )|

2
−2
)

if n = 2r,

c(δC)
|c(δC)| ·

(
tr−

|c(δC )|−1

2 + tr+1− |c(δC )|−1

2 + · · ·+ tr+
|c(δC )|−1

2
−1
)

if n = 2r − 1.

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Figure 1: The eight orientations δ1, δ2, . . . , δ8 of C = K3.

Example 3. We consider the cycle C = K3 of length n = 3. It has eight orientations, depicted
in Figure 1. The corresponding monomials and their coefficients are as follows:

pδ1 = p12p23p13 c(δ1) = 1 coeff(δ1) = t
pδ2 = p12p23p31 c(δ2) = 3 coeff(δ2) = 1 + t+ t2

pδ3 = p12p32p13 c(δ3) = −1 coeff(δ3) = −t
pδ4 = p12p32p31 c(δ4) = 1 coeff(δ4) = t
pδ5 = p21p23p13 c(δ5) = −1 coeff(δ5) = −t
pδ6 = p21p23p31 c(δ6) = 1 coeff(δ6) = t
pδ7 = p21p32p13 c(δ7) = −3 coeff(δ7) = −1− t− t2
pδ8 = p21p32p31 c(δ8) = −1 coeff(δ8) = −t

Thus, the polynomial PC defined in (13) is the cubic (8) seen in Example 1. ♦
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We define the classical QS model on the graph G by the parametrization (2) where {i, j}
runs over the set E(G) of edges of G. We write TG for the ideal of this model. This is a toric
ideal whose Markov basis is obtained from the cycle polynomials PC by setting t = 0:

Lemma 1. The ideal TG has a universal Gröbner basis consisting of the binomials

PC |t=0 = po(C) − pō(C) for all cycles C in G. (14)

Proof. The identity in (14) is straightforward from the definition of c(δC) and coeff(δC). It
was shown in [5, §6.2] that the binomials po(C) − pō(C) form a Markov basis for QS. Since the
underlying model matrix is totally unimodular, the Markov basis is also a Graver basis, and
hence it is a universal Gröbner basis, by [13, Propositions 4.11 and 8.11].

Example 4. For I = 4, the model QSt corresponds to the complete graph K4. This graph has
seven undirected cycles C, four of length 3 and three of length 4. Its defining prime ideal IK4

is generated by four cubics and three quartics, all of the form PC . For t = 0, we recover the
binomials corresponding to the seven moves that are listed in [11, §5.4, page 395]. ♦

This example is explained by the following theorem, which is our main result in Section 3.

Theorem 1. The prime ideal IG of the quasisymmetry model associated with an undirected
graph G is generated by the cycle polynomials PC where C runs over all cycles in G.

Proof. We begin by proving that PC lies in IG. The image of PC under the substitution
pij 7→ xij(1 + ai − taj) can be written as QC ×

∏
{i,j}∈E(C) xij , where QC is a polynomial in

K[a1, . . . , an]. Since each term pδC of PC is divisible by either p1n or pn1, we can write

QC = (1 + a1 − tan)T1n + (1 + an − ta1)Tn1. (15)

We need to show that QC is zero. To do this, we shall establish the following identities:

T1n = (−1)[n−1
2

]+1(t+ 1)2r−2(1 + an − ta1)
∏n−1
i=2 (1 + ai − tai)

and Tn1 = (−1)[n−1
2

](t+ 1)2r−2(1 + a1 − tan)
∏n−1
i=2 (1 + ai − tai).

To prove these, we shall use the decompositions

T1n = (1 + a1 − ta2)T1n,12 + (1 + a2 − ta1)T1n,21

and Tn1 = (1 + a1 − ta2)Tn1,12 + (1 + a2 − ta1)Tn1,21.

With this notation, we claim that the following holds for a suitable integer r:

(i) T1n,12 = (−1)[n−2
2

]t(t+ 1)2r−3(a2 − an)
∏n−1
i=3 (1 + ai − tai),

(ii) T1n,21 = (−1)[n−2
2

](t+ 1)2r−3(t2a2 − t− an − 1)
∏n−1
i=3 (1 + ai − tai).

Let C ′ be the cycle 2− 3− · · · − n− 2. In analogy to (15), we write

QC
′

= (1 + a2 − tan)S2n + (1 + an − ta2)Sn2.

Note that for any orientation δC of C in which 1n and 12 belong to E(δC), we have

c(δC) =

{
c(δC′)− 1 if n2 ∈ E(δC′),

c(δC′) + 1 if 2n ∈ E(δC′).

Also note that c(δC)
|c(δC)| =

c(δC′ )
|c(δC′ )|

. In order to prove (i) we consider the following two cases:
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Case 1. n = 2r − 1 is an odd number: We claim that T1n,12 = t(Sn2 + S2n). Note that C ′ is
an even cycle with n− 1 = 2(r − 1). The coefficient for δC can be written as

t× c(δC)

|c(δC)|
(
(tr−1− |c(δC )|−1

2 + tr+1− |c(δC )|−1

2 + · · ·+ tr+
|c(δC )|−1

2
−2) +

(tr−
|c(δC )|−1

2 + tr+2− |c(δC )|−1

2 + · · ·+ tr+
|c(δC )|−1

2
−3)
)
.

The first summand corresponds to the orientation δC′ with n2 ∈ E(δC′). The second summand
corresponds to the orientation δC′ with 2n ∈ E(δC′). By induction on n, we have

S2n = (−1)[n−2
2

]+1(t+ 1)2r−4(1 + an − ta2)
∏n−1
i=3 (1 + ai − tai),

and Sn2 = (−1)[n−2
2

](t+ 1)2r−4(1 + a2 − tan)
∏n−1
i=3 (1 + ai − tai).

Since −(1 + an − ta2) + (1 + a2 − tan) = (1 + t)(a2 − an), the claim (i) holds for n odd.

Case 2. n = 2r is an even number: We will first show that T1n,12 = t(Sn2 +S2n)/(1 + t)2. Here
C ′ is an odd cycle on n− 1 = 2r − 1 vertices. The coefficient for δC equals

t

(1 + t)2
× c(δC)

|c(δC)|
(
tr−

|c(δC )|
2
−1 + 2tr−

|c(δC )|
2 + · · ·+ 2tr+

|c(δC )|
2
−2 + tr+

|c(δC )|
2
−1
)
.

This sum can be decomposed as

(tr−
|c(δC )|

2
−1 + tr−

|c(δC )|
2 + · · ·+ tr+

|c(δC )|
2
−1) + (tr−

|c(δC )|
2 + tr−

|c(δC )|
2

+1 + · · ·+ tr+
|c(δC )|

2
−2),

where the first summand corresponds to the orientation δC′ with n2 ∈ E(δC′), and the second

summand corresponds to the orientation δC′ with 2n ∈ E(δC′). Therefore T1n,12 = t(Sn2+S2n)
(1+t)2

.

By induction on n, we have

S2n = (−1)[n−2
2

]+1(t+ 1)2r−2(1 + an − ta2)
∏n−1
i=3 (1 + ai − tai)

and Sn2 = (−1)[n−2
2

](t+ 1)2r−2(1 + a2 − tan)
∏n−1
i=3 (1 + ai − tai)

Since −(1 + an − ta2) + (1 + a2 − tan) = (1 + t)(a2 − an), the result holds for even n as well.

By a similar argument one can prove (ii). Now applying (i) and (ii) and the equality

−(1 + a2− ta2)(1 + an− ta1)(1 + t) = (1 + a1− ta2)(a2− an)t+ (1 + a2− ta1)(t2a2− t− an− 1),

we obtain

T1n = (−1)[n−2
2

]+1(t+ 1)2r−2(1 + an − ta1)
n−1∏
i=2

(1 + ai − tai) .

The identity for Tn1 is analogous. It follows that PC ∈ IG for all cycles of G.
It remains to be shown that the PC generate the homogeneous ideal IG. Recall that, by

Lemma 1, the images of the PC generate this ideal after we tensor, over the local ring K, with
the residue field Q = K/〈t〉. Hence, by Nakayama’s Lemma, the PC generate IG.

Remark 2. In Theorem 1 we can replace the local ring K = Q[[t]] with the polynomial ring
Q[t] because no t appears in the leading forms (PC)|t=0. This ensures that Q[t][pij ] modulo the
ideal 〈PC : C cycle inG〉 is torsion-free, hence free, and therefore flat over Q[t].

In statistical applications, the quantity t will always take on a particular real value. In the
remainder of this paper, we assume t ∈ R, and we identify IG with its image in R[pij ].

Corollary 1. For any t ∈ R, the cycle polynomials PC generate the ideal IG in R[pij ].
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Theorem 1 furnishes a (flat) degeneration from IG to the toric ideal TG. Geometrically, we
view this as a degeneration of varieties (or semialgebraic sets) from t > 0 to t = 0. Lemma 1
concerns further degenerations from the toric ideal TG to its initial monomial ideals MG. Any
such MG is squarefree and serves as a combinatorial model for both TG and IG.

We describe one particular choice and draw some combinatorial conclusions. Fix a term
order on R[pij ] with the property that pij � pk` whenever i < k, or i = k and j < `. For any
cycle C, we label the two directed orientations oC and ōC so that po(C) � pō(C). Fix a spanning
tree T of G. Let PT denote the monomial prime ideal generated by all unknowns pij where
{i, j} ∈ E(G)\E(T ) and pij divides poC , where C is the unique cycle in E(T ) ∪ {{i, j}}. The
squarefree monomial ideal

MG = in�(TG) =
〈
poC : C cycle in G

〉
=
⋂
T

PT , (16)

is obtained by taking the intersection over all spanning trees T of G. The simplicial complex
with Stanley-Reisner ideal MG is a regular triangulation of the Lawrence polytope of the graph
G. This triangulation is shellable and hence our ideals are Cohen-Macaulay. We record the
following fact.

Proposition 2. The ideals MG, TG and IG define varieties of dimension |E(G)| + I − 1 in
affine space, and their common degree is the number of spanning trees of the graph G.

Proof. Each of the components PT in (16) has codimension |E(G)\E(T )| = |E(G)|−I+1.

1

2

3 4

Figure 2: A graph G on I = 4 nodes and its eight spanning trees T

Example 5. Consider the graph G depicted in Figure 2. The associated toric ideal equals

TG = 〈 p12p23p31 − p21p32p13 , p12p24p41 − p21p42p14 , p13p32p24p41 − p31p23p42p14 〉.

This has codimension 2 and degree 8. Its (underlined) initial monomial ideal MG equals

〈p12, p13〉 ∩ 〈p12, p32〉 ∩ 〈p12, p24〉 ∩ 〈p12, p41〉 ∩ 〈p23, p41〉 ∩ 〈p23, p24〉 ∩ 〈p24, p31〉 ∩ 〈p31, p41〉.

These eight monomial prime ideals correspond to the spanning trees in Figure 2. The ideal IG
has three generators, two cubics with 8 terms and one quartic with 16 terms, as in (13). These
are obtained from the Markov basis of TG by adding terms that are divisible by t. ♦

4. Maximum Likelihood Estimation

A data table n = (nij) of format I × I can arise either by multinomial sampling or by
sampling from I2 independent Poisson distributions, one for each of its cells. In both cases, the
log-likelihood function, up to an additive constant, is equal to

`n(p) =
I∑
i=1

I∑
j=1

nij · log(pij). (17)
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Maximum likelihood estimation (MLE) is the problem of maximizing `n over all probability
tables p = (pij) in the model of interest. For us, that model is the quasisymmetry model (QSt),
where t is a fixed constant in the interval [0, 1]. This optimization problem can be expressed in
either constrained form or in unconstrained form. The constrained MLE problem is written as

Maximize `n(p) subject to p ∈ V (IG) ∩∆I2−1, (18)

where G = KI is the complete graph on I nodes, and V (IG) is the zero set of the cycle
polynomials PC constructed in Section 3. The unconstrained MLE problem is written as

Maximize `n(a, s). (19)

The decision variables in (19) are the vector a = (a1, . . . , aI) and the symmetric probability ma-
trix s = (sij). The objective function in (19) is obtained by substituting (4) into (17). We shall
discuss both formulations, starting with a simple numerical example for the formulation (18).

Example 6. Let I = 3, t = 2/3 and consider the data table

n =

 2 3 5
11 13 17
19 23 29

 with sample size n++ = 122.

Our aim is to maximize `n(p) subject to the cubic equation (8) and p11 + p12 + · · · + p33 = 1.
Using Lagrange multipliers for these two constraints, we derive the likelihood equations by way
of [5, Algorithm 2.29]. These polynomial equations in the nine unknowns pij have 15 complex
solutions. Two of the complex solutions are non-real. Of the 13 real solutions, 12 have at least
one negative coordinate. Only one solution lies in the probability simplex ∆8:

p̂11 = 1/61, p̂12 = 0.0286294, p̂13 = 0.0376289,
p̂21 = 0.0861247, p̂22 = 13/122, p̂23 = 0.1446119,
p̂31 = 0.1590924, p̂32 = 0.1832569, p̂33 = 29/122.

(20)

This is the global maximum of the constrained MLE problem for this instance. ♦

The benefit of the constrained formulation is that we can take advantage of the combinatorial
results in Section 3, and we do not have to deal with issues of identifiability and singularities
arising from the map (4). On the other hand, most statisticians would prefer the unconstrained
formulation because this corresponds more directly to the fitting of model parameters to data.

To solve the unconstrained MLE problem (19), we take the partial derivations of the objec-
tive function `n(a, s) with respect to all model parameters ai and sij . The resulting system of
equations decouples into a system for a and a system for s. The latter is trivial to solve. Using
the requirement that the entries of s sum to 1, it has the closed form solution

ŝij =
nij + nji

2n++
, i, j = 1, . . . , I. (21)

After dividing by 1 + t, the partial derivatives of `n(a, s) with respect to a1, a2, . . . , aI are

I∑
j=1
j 6=i

(1 + aj − taj)[nij(1 + aj − tai)− nji(1 + ai − taj)]
(1 + ai − taj)(1 + aj − tai)[2 + (1− t)(ai + aj)]

for i = 1, 2, . . . , I. (22)

This system of equations has infinitely many solutions, because the model QSt is not identifiable.
The general fiber of the map (4) is a line in a-space. Hence only I − 1 of the I parameters ai
can be estimated. One way to fix this is to simply add the constraint âI = 0.
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Example 7. Let us return to the numerical instance in Example 6. Here we have

ŝ11 = 1/61, ŝ12 = 7/122, ŝ13 = 6/61, ŝ22 = 13/122, ŝ23 = 10/61, ŝ33 = 29/122. (23)

The equations (22) can be solved in a computer algebra system by clearing denominators and
then saturating the ideal of numerators with respect to those denominators. As before, there
are precisely 15 complex solutions, of which 13 are real. The MLE is given by

â1 = −0.65948848999731861332, â2 = −0.13818331109451658084, â3 = 0. (24)

These are floating point approximations to algebraic numbers of degree 15 over Q. An exact
representation is given by their minimal polynomials. For the first coordinate, this is

62031304a151 + 2201861910a141 + 30829909776a131 + 206135547000a121 + 528436383696a111
−1126661553720a101 − 9740892273264a91 − 4305524252579a81 + 26533957305582a71

+88281552626154a61 + 44254830057030a51 − 76332701171853a41 − 83490498412056a31
+1857597611688a21 + 29825005557312a1 + 9354112703280 = 0.

With this, the second coordinate â2 is a certain rational expression in Q(â1). By plugging (23)
and (24) into (4) with t = 2/3, we recover the estimated probability table in (20). ♦

For larger cases, solutions to the likelihood equations (22) are computed by iterative numer-
ical methods, such as the unidimensional Newton’s method. The updating equations at the q-th
step of this iterative method are

a
(q)
i = a

(q−1)
i − ∂`n(a)/∂ai

∂2`n(a)/∂a2
i

∣∣
a=a(q−1) for i = 1, . . . , I − 1, q = 1, 2, . . . . (25)

We find it convenient to rewrite the first derivatives (22) as

∂`n(a)

∂ai
= (1 + t)

I∑
j=1

sij
2 + (1− t)(ai + aj)

(
1− 1− t

1 + t
cij

)(
nij
pij
− nji
pji

)
. (26)

The second derivative equals

∂2`n(a)

∂a2
i

= −(1 + t)

I∑
j=1

2(1− t)sij
[2 + (1− t)(ai + aj)]2

(
1− 1− t

1 + t
cij

)(
nij
pij
− nji
pji

)
(27)

−(1 + t)
∑
j 6=i

(1 + t)s2
ij

[2 + (1− t)(ai + aj)]2

(
1− 1− t

1 + t
cij

)2
(
nij
p2
ij

+
nji
p2
ji

)
.

Here i = 1, . . . , I − 1, the pij are the expressions in (4), and

cij =
(1 + t)(ai − aj)

2 + (1− t)(ai + aj)
.

We believe that the numerical solution found by this iteration is always the global maximum
in (19). This would be implied by the following conjecture, which holds for t = 0 and t = 1.

Conjecture 2. The Hessian H(a) =
(
∂2`n(a)
∂ai∂aj

)
is negative definite for all a ∈ RI with (5).

We verified this conjecture for many examples with t ∈ (0, 1). In each case, we also ran our
iterative algorithm for many starting values, and it always converged to the same solution.

The diagonal entries of the Hessian matrix are given in (27), while the non-diagonal are

∂2`n(a)

∂ai∂aj
=

2(1− t)2sijcij
[2 + (1− t)(ai + aj)]2

(
nij
pij
− nji
pji

)
(28)
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+
(1 + t)2s2

ij

[2 + (1− t)(ai + aj)]2

[
1−

(
1− t
1 + t

cij

)2
](

nij
p2
ij

+
nji
p2
ji

)
.

In the iterative algorithm described above, we had fixed the last parameter aI at zero. This
ensures identifiability, and it is done for simplicity. The constraint aI = 0 defines a reference
point for the other parameters a1, . . . , aI−1. Under this constraint, (12) leads to

ai =
1

1 + t

(
pi+ − p+i

xi+
− pI+ − p+I

xI+

)
for i = 1, . . . , I − 1.

This means that the contribution of category i to marginal inhomogeneity is compared to
the last category’s contribution. Hence, in view of (12), a reasonable alternative constraint
could be

∑I
j=1

xij
xi+

aj = 0. This constraint calibrates each category’s contribution to marginal
inhomogeneity relative to the weighted average of all I categories.

Remark 3. The iterative procedure described above for fitting the QSt models was implemented
by us in R. The algorithm works regardless of whether we impose the restriction aI = 0 or
not. We noticed that when imposing this constraint, the algorithm requires more iterations to
converge. The convergence is also affected by the initial values a(0) we used. A classical choice
would be ai = 0 for all i, as this corresponds to complete symmetry. However, we observed that
for a(0) with coordinates ni+−n+i

ni++n+i
, i = 1, . . . , I, the convergence is faster.

Remark 4. Here we consider the model parameter t as fixed. Alternatively, it could be esti-
mated from the data, as for the power-divergence logistic regression model in [6].

5. Quasisymmetric Independence

A natural submodel of (1) is the symmetric independence model (SI), which is given by

pij = sisj , i, j = 1, . . . , I. (29)

The I parameters si are non-negative and sum to 1. The corresponding probability tables
p = (pij) are symmetric and have rank 1. The models of quasisymmetric independence (QSIt)
can be defined analogously to the QSt models, by measuring departure from (29). Namely,
replacing the symmetric probabilities sij in (4) by the factored form in (29), we get

pij = sisj

(
1 +

(1 + t)(ai − aj)
2 + (1− t)(ai + aj)

)
, i 6= j, i, j = 1, . . . , I. (30)

The MLEs of the parameters of the SI model in (29) are

ŝi =
ni+ + n+i

2n
for i = 1, . . . , I. (31)

These are also the MLEs of the si parameters in the QSIt model. The likelihood equations for
a are as before, but with pij ’s in (26) as defined in (29) and (30). Their numerical solution can
be computed with the iterative procedure described in Section 4, adjusted accordingly.

Remark 5. In Proposition 1, if we replace the models S and QSt by SI and QSIt, then an
analogous statement holds. Thus, we have SI = MH ∩QSIt for each t ∈ [0, 1].

Following the discussion in Section 3, it would be interesting to derive the implicit equations
for the model QSIt. At present, we have a complete solution only for the special case t = 1.
The quasisymmetric independence model QSI1 is defined by the parametrization

pij = sisj · (1 + ai − aj), 1 ≤ i, j ≤ I. (32)

Alternatively, {i, j} could range over the edges of a graph G, as in Section 3. In the following
result, whose proof we omit, we restrict ourselves to the case of the complete graph KI .
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Proposition 3. The prime ideal of the QSI1 model in (32) is generated by the following homo-
geneous quadratic polynomials (for any choices of indices i, j, k, ` among 1, . . . , I):

• (pij + pji)
2 − 4piipjj,

• pkk(pij − pji) + pkipjk − pikpkj,
• (pij − pji)(pjk − pkj) + 4(pjjpki − pjipkj),
• p`i(pjk − pkj) + p`j(pki − pik) + p`k(pij − pji),
• pi`(pjk − pkj) + pj`(pki − pik) + pk`(pij − pji).

The general case where t < 1 differs from the t = 1 case in that the prime ideal of QSI1 is
no longer generated by quadrics. Even for I = 3, a minimal generator of degree 3 is needed:

Example 8. Fix I = 3. For general t ∈ R, we consider the model (30) with pii = sisi for
i = 1, 2, 3. Its ideal is minimally generated by 7 polynomials: 6 quadrics and one cubic. ♦

6. Fitting the Models to Data

We next illustrate the new models and their features on some characteristic data sets.
The goodness-of-fit of a model is tested asymptotically by the likelihood ratio statistic. The
associated degrees of freedom for QSt and QSIt are df(QSt) = (I− 1)(I− 2)/2 and df(QSIt) =
(I−1)2, respectively. As we shell see, the models in each family can perform either quite similar
or differ significantly, depending on the specific data under consideration.

A case of similar behavior is the classical vision example of Table 1. The model of QS
(t = 0) has been applied on this data often in the literature, while [7] applied Pearsonian QS.
Both models provide a quite similar fit, namely (G2 = 7.27076, p-value = 0.06375) for QS0 and
(G2 = 7.26199, p-value = 0.06340) for QS1. Here, df = 3.

The behavior of the QSt models for t ∈ (0, 1) is similar. The log-likelihood values vary
from −16388.11444 (t = 0) to −16388.11006 (t = 1) while the saturated log-likelihood is
−16384.47906 (see Figure 3, left). Table 2 gives the MLEs of the expected cell frequencies
under the models QS0, QS1 and QS2/3. For t = 2/3 we get G2 = 7.26234, with p-value
= 0.06399.
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Figure 3: Log-likelihood values of QSt for t in [0, 1] for data in Tables 1 (left) and 3(c) (right).

Examples for which the members of the QSt family are not of similar performance are the
two 3× 3 tables of [7, Tables 3 and 4], displayed in Table 3 (a) and (b). Here, the models QS0

and QS1 differ considerably in their fit. In particular, the data in Table 3 (a) are modeled well
by QS0 but not by QS1 (G2

0 = 0.18572 and G2
1 = 5.29006), while the opposite holds for Table 3

(b), since G2
0 = 6.29035 and G2

1 = 0.29215.
In such situations, the question arises whether some t is appropriate for both data sets.

Finding t such that QSt works for two or more I × I tables of the same set-up is of special
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Left Eye Grade
Right Eye

Grade best second third worst
best 1520 266 124 66

– (263.38a/ 263.38b/ 263.39c) (133.58/ 133.59/ 133.60) (59.04/ 59.09/ 59.09)
second 234 1512 432 78

(236.62/ 236.62/ 236.61) – (418.99/ 418.90/ 418.90) (88.39/ 88.40/ 88.40)
third 117 362 1772 205

(107.42/ 107.40/ 107.40) (375.01/ 375.10/ 375.10) – (201.57/ 201.58/ 201.58)
worst 36 82 179 492

(42.96/ 42.91/ 42.91) (71.61/ 71.60/ 71.60) (182.43/ 182.42/ 182.42) –

Table 2: Unaided distance vision of right and left eyes for 7477 women. Parenthesized values are ML estimates of the
expected frequencies under models (a) QS0, (b) QS2/3, and (c) QS1.

(a)

1 2 3

1 28 10 15
1 122 126 102
1 49 22 26

(b)

1 2 3

1 38 128 36
1 5 119 43
1 12 88 31

(c)

1 2 3

1 28 12 25
1 122 126 102
1 49 22 26

Table 3: Simulated 3 × 3 examples of [7], generated by the models (a) QS0 and (b) QS1 (their Tables 3 and 4,
respectively). A toy example in (c).

interest in the study of stratified tables. Using the same model on all strata makes parameter
estimates among models comparable. This is a major advantage of the proposed family.

Models that lie ‘in-between’ the two extreme cases (t = 0 and t = 1) may lead to a consensus.
Even if that consensus model does not perform as well as QS0 and QS1 on each table separately,
it can provide a reasonable fit for both tables. To visualize this, Figure 4 (left) shows the p-
values of the fit of the QSt models with t ∈ [0, 1], for Tables 3 (a) and (b), by solid and dashed
curves, respectively, along with the significance level of α = 0.05. The consensus model QSt
would have t ∈ (0.061, 0.302). Among these models, we propose QS0.14, since the intersection of
the two curves happens around t = 0.137. The fit of this model for Table 3 (a) is G2 = 2.27614
(p-value=0.1314) while for (b) it is G2 = 2.16744 (p-value=0.1409). The vector of MLEs for
parameters ai is (−0.5458, 1.8555, 0) and (2.1247,−0.5406, 0), respectively. We note that, in
deriving the consensus model, the G2 values could have been used as an alternative to the
p-values in Figure 4.

In all examples treated so far, the log-likelihood under QSt was monotone in t (see Figure
3, left, and Figure 5, upper), suggesting that the ‘best’ model will be achieved at either t = 0 or
t = 1. This is not always the case. For example, for the data in Table 3 (c), the best fit occurs
for t = 0.036 (see also Figure 3, right), giving G2 = 1.742943 · 10−6 (p-value=0.9989) while
for t = 0 and t = 1, it is G2 = 0.0610 (p-value= 0.8049) and G2 = 1.1131 (p-value=0.2914),
respectively. Furthermore, even when the best model is for t = 0 or t = 1, we may still want
to use some t ∈ (0, 1), e.g. for stratified tables with different optimal model at each level of the
stratifying variable, as explained above.

Applying the quasisymmetric independence models to Tables 3 (a) and (b), we observe
that QSI0 fits well on Table 3 (a) but not on (b), while model QSI1 is of acceptable fit for
both data sets. Indeed, we have G2

a(QSI0) = 1.3600 (p-value=0.8511), G2
b(QSI0) = 11.8622 (p-

value=0.0184), G2
a(QSI1) = 6.4643 (p-value=0.1671) and G2

b(QSI1) = 5.8640 (p-value=0.2095).
For the performance of the QSIt model for t ∈ [0, 1], see Figure 4 (right) and Figure 5 (lower).
For t = 0.532, the p-value of the fit of the model is equal to 0.1983 for both data sets.

All examples of this section were worked out with R functions we developed for fitting the QSt
and QSIt models via the unidimensional Newton’s method. The adopted inferential approach
is asymptotic. In cases of small sample size, exact inference can be carried out via an algebraic
computations along the lines described in Section 3, and demonstrated in Examples 6 and 7.
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Figure 4: p-values for the G2 goodness-of-fit test of QSt (left) and QSIt (right) for t ∈ [0, 1], along with the significance
level α = 0.05. Data are from Table 3: (a) black and (b) blue.

7. Divergence Measures

The one-parameter family of QS models we proposed, QSt, t ∈ [0, 1], connects the clas-
sical QS model (t = 0) and the Pearsonian QS model (t = 1). These two belong both to
a broader class of generalized QS models that are derived using the concept of φ–divergence
[7, 10]. Measures of divergence quantify the distance between two probability distributions and
play an important role in information theory and statistical inference. A well known divergence
measure is the Kullback-Leibler (KL) divergence. However there exist broader classes of diver-
gences. Such a class, including the KL as a special case, is the φ-divergence. In the framework
of two-dimensional contingency tables, this class is defined as follows.

Let p = (pij) and q = (qij) be two discrete bivariate probability distributions. The φ–
divergence between p and q (or Csiszar’s measure of information in q about p) is defined by

Dφ(p,q) =
∑
i,j

qijφ(pij/qij). (33)

Here φ : [0,∞) → R+ is a convex function such that φ(1) = φ′(1) = 0, 0 · φ(0/0) = 0, and
0 ·φ(x/0) = x · limu→∞ φ(u)/u. For φ(u) = u log(u)−u+1 and φ(u) = (u−1)2/2, the divergence
(33) becomes the KL and the Pearson’s divergence, respectively. We adopt the notation in [10].
For properties of φ-divergence, as well as a list of well-known divergences belonging to this
family, we refer to [10, Section 1.2]. The differential geometric structure of the Riemannian
metric induced by such a divergence function is studied by Amari and Cichock [1].

The generalized QS models introduced by Kateri and Papaioannou [7] are based on the
φ-divergence and are characterized by the fact that each model in this class is the closest model
to symmetry S, when the distance is measured by the corresponding divergence measure. The
classical QS model corresponds to the KL divergence, while the Pearsonian QS corresponds to
Pearson’s distance. We shall prove in Theorem 3 that the other members of the QSt family,
i.e. for t ∈ (0, 1), are φ-divergence QS models as well, and we identify the corresponding φ
function.

Theorem 3. Fix t ∈ (0, 1) and consider the class of models that preserve the given row (or
column) marginals pi+ (or p+i) for i = 1, . . . , I, and also preserve the given sums pij+pji = 2sij
for i, j = 1, . . . , I. In this class, the QSt model (4) is the closest model to the complete symmetry



M. Kateri, F. Mohammadi, B. Sturmfels / J. Alg. Stat., 6 (2015), 1-16 15

0.0 0.2 0.4 0.6 0.8 1.0

−
9
4
2
.0

−
9
4
1
.5

−
9
4
1
.0

−
9
4
0
.5

−
9
4
0
.0

t

L
L
a

0.0 0.2 0.4 0.6 0.8 1.0

−
9
5
3
.0

−
9
5
2
.5

−
9
5
2
.0

−
9
5
1
.5

−
9
5
1
.0

−
9
5
0
.5

t

L
L
b

0.0 0.2 0.4 0.6 0.8 1.0

−
9
4
3
.0

−
9
4
2
.5

−
9
4
2
.0

−
9
4
1
.5

−
9
4
1
.0

−
9
4
0
.5

−
9
4
0
.0

t

L
L
a

0.0 0.2 0.4 0.6 0.8 1.0

−
9
5
6

−
9
5
5

−
9
5
4

−
9
5
3

−
9
5
2

−
9
5
1

−
9
5
0

t

L
L
b

Figure 5: Log-likelihood values of QSt (upper) and QSIt (lower) with t ∈ [0, 1] for the data in Table 3 (a, left) and
(b, right). The straight line marks the saturated log-likelihood value.

model S in (1), where ‘closest’ refers the φ-divergence defined by

φ(u) = ft(u)− ft(1)− f ′t(1)(u− 1),

where ft(u) = (u+ 2t
1−t) log(u+ 2t

1−t).
(34)

Proof. We set Ft(u) = φ′(u) = log(u+ 2t
1−t)− `t, where `t = log(1 + 2t

1−t) is just a constant
for given t. This choice of constant ensures φ′(1) = 0. Then the inverse function to Ft is

F−1
t (x) = (

−2t

1− t
) + ex+`t .

With this, we can write

pij = sijF
−1
t (αi + γij) = sij(

−2t

1− t
+ eαi+γij+`t) = sij

( −2t

1− t
+
βi(

2(1+t)
1−t )

βi + βj

)
,

where
βi = eαi+`t and eγij =

2(1+t)
1−t

eαi+`t + eαj+`t
.

We next rewrite pij as

pij = sij
(
1 +
−(1 + t)

1− t
+
βi(

2(1+t)
1−t )

βi + βj

)
= sij

(
1 +

(1+t)
1−t (βi − βj)
βi + βj

)
.

Setting βi = 1 + (1 − t)ai and βj = 1 + (1 − t)aj , this translates into our parametrization (4).
Now the result follows from [7, Theorem 1]. For a probability table s with symmetry S, the
quantity Dφ(p, s) is minimized when p is the probability table satisfying QSt.

The fact that the QSt models are φ-divergence QS models implies that they share all the
desirable properties of the φ-divergence QS models [7]. This includes the properties that high-
light the physical interpretation issues of these models. As far as we know, the φ-divergence for
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the parametric φt function (34) has not been considered so far. Its study can be the subject of
further research. Such a future project has the potential to build a bridge between information
geometry [1] and algebraic statistics [5].
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