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Abstract. In this note, we propose a new linear-algebraic method for the implication problem
among conditional independence statements, which is inspired by the factorization characterization
of conditional independence. First, we give a criterion in the case of a discrete strictly positive
density and relate it to an earlier linear-algebraic approach. Then, we extend the method to the
case of a discrete density that need not be strictly positive. Finally, we provide a computational
result in the case of six variables.
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1. Introduction

In this paper, we deal with the conditional independence (CI) implication problem,
that is, testing whether a CI statement can be derived from a set of other CI statements.

It is well-known that there is no finite axiomatic characterization for the CI implication
problem with general discrete probability distributions (Studený [14]). The situation is
different if we restrict the class of CI statements. It is well-known that there exists a finite
axiomatic characterization for each of the following restricted CI frames: unconditional
independence statements (Geiger et al. [4], Matúš [10]); saturated CI statements (Geiger
and Pearl [5], Malvestuto [8], Malvestuto and Studený [9]); CI statements represented by
Markov networks (Pearl and Paz [12]), and so forth. See Niepert et al. [11] and Studený [15]
for the comprehensive description.

Another way to approach the CI implication problem is based on algebra. The method
of imsets by Studený [15] provides a powerful linear-algebraic method for testing the CI
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implications. By using the method of imsets, the CI implication problem is translated
into relations among integer-valued vectors. In Bouckaert et al. [2], a method of linear
programming for computer testing CI implications has been proposed. In this paper, we
introduce another type of a linear-algebraic method for the CI implication problem which
is particularly suitable in the case when the distribution is strictly positive.

The structure of the paper is as follows. In Section 2, we recall the method of imsets and
formulate two lemmas. In Section 3, we give a criterion applicable in the case of a discrete
strictly positive density. We also give some examples there to illustrate how to use it
and discuss its relation to a former linear-algebraic sufficient condition for probabilistic CI
implications. In Section 4, we deal with the case where discrete densities are not necessarily
strictly positive. In Section 5, we present a computational example to demonstrate our
method. Finally, in Conclusions, we summarize our results and discuss a possible relation
of our approach to toric ideals.

2. Preliminaries

Throughout the paper, N is a finite indexing set for variables; to avoid the trivial case
we assume |N | ≥ 2. Given disjoint A,B ⊆ N the symbol AB will be a shorthand for their
union A ∪B.

2.1. Distributions and conditional independence

The sample space for our (discrete multivariate) probability distributions will be the
direct product X :=

∏
i∈N Xi, where Xi, i ∈ N are non-empty finite sets. Given a joint

configuration of values x ≡ [xi]i∈N ∈ X and A ⊆ N , the symbol xA will denote its marginal
configuration [xi]i∈A. The marginal sample space for A ⊆ N will be the collection XA of
marginal configurations for A. In particular, XN ≡ X . Observe that for A = ∅ and x ∈ X
the marginal configuration x∅ is the empty list [xi]i∈∅. Thus, the marginal space for the
empty set X∅ is also introduced: it is a one-element set containing the empty configuration.
Given x ∈ XA and y ∈ XB for disjoint A,B ⊆ N , the symbol [x, y] ∈ XAB will denote
their concatenation.

Any real-valued function on XA, for A ⊆ N , can formally be understood as a function
on X which only depends on the components in A. In this case we say it is a function of
A and denote the function as q(A; ∗), where ∗ ∈ X is the argument. Moreover, we will
take advantage of the following flexible notation: given x ∈ XD, where A ⊆ D ⊆ N , we
will write q(A;x) to denote the value of the function q (of A) for xA ∈ XA.

The density p of a probability distribution P on X is a function p : X → [0, 1] such
that

∑
x∈X p(x) = 1. It is strictly positive if p(x) > 0 for every x ∈ X . The marginal

density of p for A ⊆ N is a function on XA, usually denoted by p(A; ∗):

p(A;x) :=
∑

y∈XN\A

p([xA, y]) for x ∈ X .
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In particular, p(N ; ∗) ≡ p(∗). In our setting, conditional independence can be introduced
as follows.

Definition 1. For pairwise disjoint sets A,B,C ⊆ N and the density p of a probability
distribution P on X , we say that A and B are conditionally independent given C with
respect to P and write A⊥⊥B | C [P ] if the following equation holds:

∀x ∈ X p(C;x) · p(ABC;x) = p(AC;x) · p(BC;x) . (1)

2.2. Factorization characterization of conditional independence

Let A,B,C ⊆ N be a triplet of pairwise disjoint sets. A well-known characterization of
A⊥⊥B | C [P ] is in terms of factorization of the marginal density p(ABC; ∗) to functions
of AC and BC. We can formally extend this characterization to the case of functions of
ACD and BCD, where D denotes N \ABC. We give a straightforward proof.

Lemma 1. For a probability distribution P on X , A⊥⊥B | C [P ] is true if and only if there
exist functions q(ACD; ∗) and r(BCD; ∗) such that the marginal density decomposes as
follows:

∀x ∈ X p(ABC;x) = q(ACD;x) · r(BCD;x) . (2)

As the left-hand side of (2) only depends on the components in ABC, the right-hand
side of (2) does not depend on xD, despite its factors q(ACD;x) and r(BCD;x) may
depend on xD.

Proof. Assume that (1) holds and put:

q(ACD;x) =

{
p(AC;x)
p(C;x) if p(C;x) > 0,

0 if p(C;x) = 0,
r(BCD;x) = p(BC;x) for any x ∈ X .

Note that these particular functions q(ACD;x) and r(BCD;x) do not depend of xD. If
p(C;x) = 0, then p(ABC;x) = 0. Hence, (2) is valid. For the converse implication assume
that (2) holds. Fix some w ∈ XD and write for any x ∈ X :

p(ABC;x) = p(ABC; [xABC , w]) = q(ACD; [xAC , w]) · r(BCD; [xBC , w]),

p(AC;x) =
∑
y∈XB

p(ABC; [y, xAC , w]) = q(ACD; [xAC , w]) ·

∑
y∈XB

r(BCD; [y, xC , w])

 ,

p(BC;x) =
∑
z∈XA

p(ABC; [z, xBC , w]) = r(BCD; [xBC , w]) ·

∑
z∈XA

q(ACD; [z, xC , w])

 ,

p(C;x) =

∑
z∈XA

q(ACD; [z, xC , w])

 ·
∑
y∈XB

r(BCD; [y, xC , w])

 .

Hence, by substitution, we easily get (1), which was desired.
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2.3. Imsets

For S ⊆ N , the symbol P(S) will denote its power set {T : T ⊆ S}. We will mainly
deal with vectors in RP(N), respectively in RK for some K ⊆ P(N). The symbol 0 will
denote the zero vector. A well-known linear basis of RP(N) consists of the identifiers δT
for sets T ⊆ N :

δT (S) =

{
1 if S = T ,

0 if S 6= T .

Given L ⊆ P(N), we will denote the linear subspace of RP(N) spanned by {δT : T ∈ L} by
the symbol LL. Given u ∈ RP(N) and K ⊆ P(N), the restriction of u to the components
in K, which is an element of RK, will be denoted by the symbol u|K. The following
observation is evident.

Given L ⊆ P(N), u ∈ LL if and only if u|K = 0 , where K = P(N) \ L. (3)

An imset is a vector in RP(N) whose components are integers, that is, an element of
ZP(N). Any conditional independence statement over N corresponds to an ordered triplet
〈A,B |C〉 of pairwise disjoint sets A,B,C ⊆ N . Every such a triplet is assigned the
respective semi-elementary imset u〈A,B |C〉:

u〈A,B |C〉 := δABC − δAC − δBC + δC . (4)

The triplet is trivial if either A = ∅ or B = ∅, otherwise it is called non-trivial. Observe
that u〈A,B |C〉 = 0 if and only if 〈A,B |C〉 is trivial.

Definition 2. We say that u ∈ RP(N) is o-standardized if∑
S⊆N

u(S) = 0 and ∀i ∈ N
∑

S⊆N,i∈S
u(S) = 0 .

Apparently, every semi-elementary imset u〈A,B |C〉 is o-standardized. As the set of

o-standardized vectors is a linear subspace of RP(N), linear combinations of semi-elementary
imsets are also o-standardized. Below, we employ the following auxiliary observation.

Lemma 2. Let L ⊆ P(N) be a class of sets closed under subsets, which means that
S ∈ L, T ⊆ S ⇒ T ∈ L; put K = P(N) \ L. Then an o-standardized vector u ∈ RP(N)

satisfies u|K = 0 iff, for some non-negative integer J ,

u =
J∑
j=1

τj · u〈Ej ,Fj |Gj〉 with real coefficients {τj}Jj=1 and EjFjGj ∈ L.

Proof. It is obvious that if u is written as the sum above then u|K = 0. We prove the
converse by induction on ` = |L ∩ {S ⊆ N : |S| ≥ 2}|. If ` = 0 then u|K = 0 means
u = 0 due to the property of o-standardization and there is no non-trivial 〈Ej , Fj |Gj〉
with EjFjGj ∈ L. If ` > 0 choose inclusion maximal T ∈ L with |T | ≥ 2, find non-trivial
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〈Ej , Fj |Gj〉 with EjFjGj = T , put τj ≡ u(T ) and apply the induction hypothesis to L\{T}
and the vector u− τj · u〈Ej ,Fj |Gj〉. Note that u− τj · u〈Ej ,Fj |Gj〉 is o-standardized because
both u and u〈Ej ,Fj |Gj〉 are o-standardized. Moreover, the number of sets of cardinality at
least 2 in L\{T} is strictly less than `, the number of such sets in L. Thus, one can repeat
this induction step until ` decreases to 0.

3. The case of a strictly positive distribution

Let A,B,C ⊆ N , respectively Ai, Bi, Ci ⊆ N for i = 1, . . . , I, are triplets of pairwise
disjoint sets. We are dealing with the implication problem

{Ai⊥⊥Bi |Ci [P ]}Ii=1 ⇒ A⊥⊥B |C [P ], (5)

for any distribution P with a strictly positive density. The main observation is as follows.

Theorem 1. Let D denote N \ABC. If there exist real numbers {λi}Ii=1 such that

δABC +
I∑
i=1

λi · u〈Ai,Bi |Ci〉 ∈ LP(ACD)∪P(BCD) (6)

then the implication (5) holds for any distribution P with a strictly positive density.

Proof. By (6), there exist real numbers αS for S ∈ P(ACD) ∪ P(BCD) with

I∑
i=1

λi · u〈Ai,Bi |Ci〉 = −δABC +
∑

S∈P(ACD)∪P(BCD)

αS · δS . (7)

We show, for any distribution P with a strictly positive density satisfying the CI statements
{Ai⊥⊥Bi |Ci [P ]}Ii=1, that

∀x ∈ X p(ABC;x) =
∏

S∈P(ACD)∪P(BCD)

p(S;x)αS (8)

=
∏

S∈P(ACD)

p(S;x)αS

︸ ︷︷ ︸
q(ACD;x)

·
∏

S∈P(BCD)\P(ACD)

p(S;x)αS

︸ ︷︷ ︸
r(BCD;x)

,

which clearly implies, by Lemma 1, that A⊥⊥B |C [P ]. Since the density p of P is strictly
positive, for any fixed x ∈ X , one can write, by Ai⊥⊥Bi |Ci [P ] for i ∈ {1, . . . , I},[

∀ i 1 =
p(AiBiCi;x) · p(Ci;x)

p(AiCi;x) · p(BiCi;x)

]
=⇒ 1 =

I∏
i=1

(
p(AiBiCi;x) · p(Ci;x)

p(AiCi;x) · p(BiCi;x)

)λi
.



K. Tanaka, M. Studený, A. Takemura, T. Sei / J. Alg. Stat., 6 (2015), 150-167 155

The expression on the right-hand side there can be, by (7), re-written as

1 =

I∏
i=1

(
p(AiBiCi;x) · p(Ci;x)

p(AiCi;x) · p(BiCi;x)

)λi
=

I∏
i=1

∏
T⊆N

p(T ;x)u〈Ai,Bi |Ci〉(T )

λi

=
∏
T⊆N

p(T ;x)
∑I

i=1 λi·u〈Ai,Bi |Ci〉(T )
(7)
=

1

p(ABC;x)
·

∏
S∈P(ACD)∪P(BCD)

p(S;x)αS ,

and, since the term p(ABC;x) here is strictly positive, one gets (8) by multiplying it by
the factor p(ABC;x).

3.1. Equivalent formulations of the condition

In this section, we give two equivalent formulations of the sufficient condition (6) for
the implication (5) in the strictly positive case.

Lemma 3. Let A,B,C ⊆ N , respectively Ai, Bi, Ci ⊆ N for i = 1, . . . , I, be triplets of
pairwise disjoint sets; denote D ≡ N \ ABC. Given a collection of real numbers {λi}Ii=1

the following conditions are equivalent:

(a) the condition (6) holds, that is,

δABC +

I∑
i=1

λi · u〈Ai,Bi |Ci〉 ∈ LP(ACD)∪P(BCD) ,

(b) for K = P(N) \ {P(ACD) ∪ P(BCD)}, one has

(u〈A,B |C〉 +
I∑
i=1

λi · u〈Ai,Bi |Ci〉)|K = 0 , (9)

(c) there exist real numbers {κj}Jj=1, J ≥ 0 and pairwise disjoint triplets {〈Ej , Fj |Gj〉}Jj=1

such that, for any j ∈ {1, . . . , J}, EjFjGj ∈ P(ACD) ∪ P(BCD) and

u〈A,B |C〉 +
I∑
i=1

λi · u〈Ai,Bi |Ci〉 +
J∑
j=1

κj · u〈Ej ,Fj |Gj〉 = 0 . (10)

Proof. For the proof of (a)⇔(b) consider L ≡ P(ACD) ∪ P(BCD). Since evidently
−δAC−δBC+δC ∈ LL the condition in (a) means u ≡ u〈A,B |C〉+

∑I
i=1 λi ·u〈Ai,Bi |Ci〉 ∈ LL.

Thus, (a)⇔(b) follows from (3) applied to u. The equivalence (b)⇔(c) then follows from
Lemma 2, where one has κj = −τj for j = 1, . . . , J .
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3.2. Some examples

Let us discuss which of the well-known CI implications can be derived by our method.

Example 1. Consider the case |N | ≥ 3 and the CI implication, named contraction rule,

a⊥⊥ b | c, a⊥⊥ c | ∅ ⇒ a⊥⊥ bc | ∅ , (11)

where a, b, c are distinct elements of N . Since one has u〈a,bc | ∅〉− u〈a,b | c〉− u〈a,c | ∅〉 = 0 the
condition (9) is fulfilled for 〈A,B |C〉 = 〈a, bc | ∅〉, 〈A1, B1 |C1〉 = 〈a, b | c〉, 〈A2, B2 |C2〉 =
〈a, c | ∅〉 and λ1 = λ2 = −1. In particular, Lemma 3 and Theorem 1 imply that contraction
is valid for P with a strictly positive density. Another positive example is the so-called
weak union rule

a⊥⊥ bc | ∅ ⇒ a⊥⊥ b | c , (12)

in which case u〈a,b | c〉 − u〈a,bc | ∅〉 + u〈a,c | ∅〉 = 0 implies (10) is true for 〈A,B |C〉 = 〈a, b | c〉,
〈A1, B1 |C1〉 = 〈a, bc | ∅〉, λ1 = −1, 〈E1, F1 |G1〉 = 〈a, c | ∅〉 and κ1 = +1. Thus, we have
shown the weak union holds for the distributions with a strictly positive density.

The implications from Example 1 are valid for general discrete distributions. This is
not the case in the following example.

Example 2. Consider the case |N | ≥ 3 and the following CI implication case

a⊥⊥ b | c, a⊥⊥ c | b ⇒ a⊥⊥ c | ∅ . (13)

Thus, we have 〈A,B |C〉 = 〈a, c | ∅〉, 〈A1, B1 |C1〉 = 〈a, b | c〉, 〈A2, B2 |C2〉 = 〈a, c | b〉. To
verify (9) realize that K consists of supersets of ac and observe the choice λ1 = +1 and
λ2 = −1 reaches the goal. Thus, the implication (13) has been verified for any distribution
with a strictly positive density. Note that there exists a discrete distribution for which (13)
does not hold; see Example 2.3 of Studený [15]. In particular, (13) cannot be derived using
the method discussed in Bouckaert et al. [2] applicable to general discrete distributions.

The next example shows that the repeated application of our new method makes sense.

Example 3. Consider the case |N | ≥ 3. The decomposition rule

a⊥⊥ bc | ∅ ⇒ a⊥⊥ c | ∅ , (14)

is an example of a valid CI implication, whose validity cannot be verified directly by
means of our method. Here “directly” means that we only use our method once and do
not use any other rules. In this case for 〈A,B |C〉 = 〈a, c | ∅〉, 〈A1, B1 |C1〉 = 〈a, bc | ∅〉
the condition (9) is not fulfilled for any λ1 ∈ R. Indeed, assume for a contradiction
that such λ1 exists. Since abc, ac ∈ K, u〈a,bc | ∅〉(abc) = 1 and u〈a,c | ∅〉(abc) = 0 one has

0
(9)
= u〈a,c | ∅〉(abc)+λ1 ·u〈a,bc | ∅〉(abc) = λ1. Then, however, u〈a,c | ∅〉(ac)+λ1 ·u〈a,bc | ∅〉(ac) = 1

gives a contradiction with (9). Nevertheless, the decomposition rule (14) can be derived
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by repeated application of (6). That is, we first derive (12) and a⊥⊥ bc | ∅ ⇒ a⊥⊥ c | b in a
similar way, and then obtain a⊥⊥ c | ∅ using the result of (13).

Next, consider the well-known intersection rule

a⊥⊥ b | c, a⊥⊥ c | b ⇒ a⊥⊥ bc | ∅ . (15)

It cannot be derived directly using our condition (6). Indeed, this time one has 〈A,B |C〉 =
〈a, bc | ∅〉, 〈A1, B1 |C1〉 = 〈a, b | c〉, 〈A2, B2 |C2〉 = 〈a, c | b〉 and ab, ac, abc ∈ K. Assume for
a contradiction that (u〈a,bc | ∅〉 + λ1 · u〈a,b | c〉 + λ2 · u〈a,c | b〉)|K = 0 for λ1, λ2 ∈ R. Then the
facts u〈a,bc | ∅〉(ac) = u〈a,c | b〉(ac) = 0 and u〈a,b | c〉(ac) = −1 imply λ1 = 0. Analogously,
u〈a,bc | ∅〉(ab) = u〈a,b | c〉(ab) = 0 and u〈a,c | b〉(ab) = −1 implies λ2 = 0 and 1 = u〈a,bc | ∅〉(abc)
gives a contradiction. Nevertheless, (15) can be derived by repeated application of (6);
specifically, we first derive (13) and then obtain a⊥⊥ bc | ∅ using the result of (11).

3.3. Relation to an earlier method

A natural question is whether there is a relation of our new condition (6) to a former
imset-based sufficient condition for probabilistic CI implication proposed in § 6.2 of Stu-
dený [15]. That condition was a basis of linear-algebraic methods for computer testing CI
implications applied by Bouckaert et al. [2] and can be re-phrased as follows.

Lemma 4. If there exist pairwise disjoint triplets {〈Ej , Fj |Gj〉}Jj=1 and non-negative real

numbers {ιi}Ii=1 and {κj}Jj=1, that is, ιi, κj ≥ 0 for any i, j, such that

u〈A,B |C〉 −
I∑
i=1

ιi · u〈Ai,Bi |Ci〉 +
J∑
j=1

κj · u〈Ej ,Fj |Gj〉 = 0. (16)

then the implication (5) holds for any (discrete) distribution P .

The first main difference is that (16) forces the implication (5) for any discrete prob-
ability distribution P , not just for the ones with a strictly positive density. On the other
hand, the decomposition rule (14) from Example 3 shows that (16) need not imply (6).
To characterize the case when (16)⇒(6) we introduce the following terminology.

Definition 3. Given disjoint A,B ⊆ N we say a triplet 〈E,F |G〉 bridges between A and
B if both (EFG) ∩ A 6= ∅ and (EFG) ∩ B 6= ∅; otherwise, we say the triplet does not
bridge between A and B.

Equivalently, a triplet 〈E,F |G〉 does not bridge between sets A and B if and only if
EFG ∈ P(N \B) ∪ P(N \A). A consequence of Theorem 1 and Lemma 3 is as follows.

Corollary 1. If pairwise disjoint triplets {〈Ej , Fj |Gj〉}Jj=1 not bridging between A and

B and real numbers {ιi}Ii=1 and {κj}Jj=1 exist such that (16) holds, that is,

u〈A,B |C〉 −
I∑
i=1

ιi · u〈Ai,Bi |Ci〉 +
J∑
j=1

κj · u〈Ej ,Fj |Gj〉 = 0,
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then the condition (6) holds, implying that (5) holds for any (discrete) distribution P with
a strictly positive density.

Proof. This follows from the equivalence (a)⇔(c) in Lemma 3. We put λi = −ιi for
i = 1, . . . , I and observe that (16) turns into the condition (10). Then we apply Theorem 1.

Hence, the condition (16) implies our condition (6) under an additional technical as-
sumption that none of the additionally considered triplets {〈Ej , Fj |Gj〉}Jj=1 bridges be-
tween A and B. Note that the condition (16) in Lemma 4 requires the non-negativity
of the respective coefficients while the condition in Corollary 1 does not require the non-
negativity constraints. Of course, there are some cases when (6) can be applied to derive
(5) for any distribution P with a strictly positive density, despite (16) with non-negative
coefficients is not applicable. From the point of view of computation, the condition (16)
can be tested by linear programming tools as in Bouckaert et al. [2], while the conditions
(9) and (10), which are equivalent to the condition (6), can be tested by solely checking
the linear dependence among imsets.

3.4. Some interpretation

The observations in Lemma 4 and Corollary 1 allow one to interpret our new method
as an approach motivated by the idea of “adding extra CI statements”. Consider the im-
plication problem (5) and “add” extra CI statements {Ej ⊥⊥Fj |Gj}Jj=1 to the antecedents
in (5) such that none of the added triplets bridges between A and B and obtain

{Ai⊥⊥Bi |Ci}Ii=1 ∪ {Ej ⊥⊥Fj |Gj}Jj=1 ⇒ A⊥⊥B |C . (17)

Provided we are able to verify the implication (17) by the method from Lemma 4 we can
utilize the corresponding linear relation (16) in the context of Corollary 1. We may derive
more than just (17) because we have no restriction to having only non-negative coefficients
here. On the other hand, we only derive the validity of (5) for distributions with strictly
positive density.

Example 4. Consider the case |N | ≥ 4 and the following CI implication problem

a⊥⊥ b | cd, c⊥⊥ d | ab, c⊥⊥ d | a, c⊥⊥ d | b ⇒ c⊥⊥ d | ∅ , (18)

where a, b, c, d are distinct elements in N . Let us “add” some CI statements not bridging
between c and d, namely a⊥⊥ b | c, a⊥⊥ b | d and a⊥⊥ b | ∅ and get the implication problem

a⊥⊥ b | cd, c⊥⊥ d | ab, c⊥⊥ d | a, c⊥⊥ d | b, a⊥⊥ b | c, a⊥⊥ b | d, a⊥⊥ b | ∅ ⇒ c⊥⊥ d | ∅ .

The point is that even much stronger version of this implication can be derived by the
method from Lemma 4, namely

a⊥⊥ b | cd, c⊥⊥ d | a, c⊥⊥ d | b, a⊥⊥ b | ∅ ⇔ c⊥⊥ d | ab, a⊥⊥ b | c, a⊥⊥ b | d, c⊥⊥ d | ∅ .

In fact, this can be derived from the following linear relation of respective imsets:

u〈c,d | ∅〉 + u〈a,b | c〉 + u〈a,b | d〉 + u〈c,d | ab〉 − u〈a,b | ∅〉 − u〈c,d | a〉 − u〈c,d | b〉 − u〈a,b | cd〉 = 0 . (19)
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To verify (18) using Corollary 1 one can re-write (19) in the form

u〈c,d | ∅〉 +
[
−u〈a,b | cd〉 + u〈c,d | ab〉 − u〈c,d | a〉 − u〈c,d | b〉

]
+
{
u〈a,b | c〉 + u〈a,b | d〉 − u〈a,b | ∅〉

}
= 0 ,

where the four terms in the braces correspond to {Ai⊥⊥Bi |Ci}Ii=1 and the three terms in
curly brackets to {Ej ⊥⊥Fj |Gj}Jj=1.

Actually, by an analogous consideration, one can verify the validity of the implication

a⊥⊥ b | cd, c⊥⊥ d | ab, c⊥⊥ d | a, c⊥⊥ d | ∅ ⇒ c⊥⊥ d | b , (20)

for distributions with a strictly positive density. The same arguments can be used to verify

a⊥⊥ b | cd, c⊥⊥ d | a, c⊥⊥ d | b, c⊥⊥ d | ∅ ⇒ c⊥⊥ d | ab. (21)

Note that (18), (20) and (21) have been mentioned by Spohn [13] as special CI implications
valid for distributions with a strictly positive density. Specifically, they are gathered in the
property (S5) from [13]. The specialty of the implication (21) is that it holds even in the
case of a general discrete distribution; see Corollary 2.1 and Example 4.1 of Studený [15].

Remark 1. The example that (18) does not hold for general discrete distributions is
very simple: put N = {a, b, c, d}, Xi ≡ {0, 1} for i ∈ N , and define the density by
assigning the value 1/2 to the configurations of values [ 0, 0, 0, 0 ], [ 1, 1, 1, 1 ] and 0 to the
remaining configurations. As concerns the example that (20) does not hold in general put
N = {a, b, c, d}, Xa ≡ {0, 1, 2, 3}, Xi ≡ {0, 1} for i ∈ {b, c, d} and define the density by
assigning 1/4 to the configurations of values [ 0, 0, 0, 0 ], [ 1, 1, 0, 1 ], [ 2, 1, 1, 0 ], [ 3, 0, 1, 1 ]
and 0 to the remaining configurations.

Remark 2. This is to warn the reader not to misinterpret our motivational remark before
Example 4. We say there that to verify (5) we “turn” it into an extended implication
problem (17), where none of the “added” CI statements {Ej ⊥⊥Fj |Gj}Jj=1 bridges between
A and B. However, this extended implication problem is not equivalent to the original
one. A simple example is the following implication problem:

a⊥⊥ b | c ?⇒ a⊥⊥ b | ∅ .

This is not a valid CI implication even for distributions with a strictly positive density
despite the extended implication problem

a⊥⊥ b | c, a⊥⊥ c | ∅ ⇒ a⊥⊥ b | ∅

is a valid CI implication. The crucial argument to verify (5) is the linear relation (16) and
the fact that the only bridging triplets between A and B in (5) are of the form 〈Ai, Bi |Ci〉.
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4. The case of not necessarily positive densities

To cover the case of general discrete distributions such as the implication (21) is valid,
we use the following lemma. The difference from Lemma 3 is that D = N \ABC does not
appear here.

Lemma 5. Let A,B,C ⊆ N , respectively Ai, Bi, Ci ⊆ N for i = 1, . . . , I, are triplets of
pairwise disjoint sets. Given a collection of real numbers {λi}Ii=1 the following conditions
are equivalent:

(a) one has

δABC +
I∑
i=1

λi · u〈Ai,Bi |Ci〉 ∈ LP(AC)∪P(BC) ,

(b) for K = P(N) \ {P(AC) ∪ P(BC)}, one has

(u〈A,B |C〉 +
I∑
i=1

λi · u〈Ai,Bi |Ci〉)|K = 0 ,

(c) real numbers {κj}Jj=1 and pairwise disjoint triplets {〈Ej , Fj |Gj〉}Jj=1 exist such that
EjFjGj ∈ P(AC) ∪ P(BC) for j = 1, . . . , J , and

u〈A,B |C〉 +

I∑
i=1

λi · u〈Ai,Bi |Ci〉 +

J∑
j=1

κj · u〈Ej ,Fj |Gj〉 = 0 .

Proof. The proof is completely analogous to the proof of Lemma 3. The only difference
is that one has L ≡ P(AC) ∪ P(BC) instead.

Let A,B,C ⊆ N , respectively Ai, Bi, Ci ⊆ N for i = 1, . . . , I, are non-trivial triplets of
pairwise disjoint sets. Recall that we are dealing with the implication problem (5) for any
discrete distribution P . Given a triplet 〈A,B |C〉 of pairwise disjoint sets we introduce a
special notation

u†〈A,B |C〉 := δABC − δAC − δBC . (22)

The symbol [u]+ will denote the non-negative part of u ∈ RP(N). The main result of this
section is as follows.

Theorem 2. If there exist real numbers {λi}Ii=1 such that

δABC +
I∑
i=1

λi · u〈Ai,Bi |Ci〉 ∈ LP(AC)∪P(BC) (23)

and non-negative real numbers {ζ†i }Ii=1, that is, ζ†i ≥ 0 for any i, such that,[
δABC −

I∑
i=1

ζ†i · u
†
〈Ai,Bi |Ci〉

]+
∈ LP(AC)∪P(BC) (24)

holds, then the implication (5) is true for any discrete distribution P over N .
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Proof. The formula (23) implies there exist real numbers αS for S ∈ P(AC) ∪ P(BC)
such that one has

I∑
i=1

λi · u〈Ai,Bi |Ci〉 = −δABC +
∑

S∈P(AC)∪P(BC)

αS · δS . (25)

We are going to show, for any distribution P satisfying {Ai⊥⊥Bi |Ci [P ]}Ii=1, that

∀x ∈ X with p(ABC;x) > 0 p(ABC;x) =
∏

S∈P(AC)∪P(BC)

p(S;x)αS , (26)

∀x ∈ X with p(ABC;x) = 0 either p(AC;x) = 0 or p(BC;x) = 0 . (27)

This is enough to verify A⊥⊥B |C [P ] by Lemma 1: take there N = ABC and put

q(AC;x) =

{ ∏
S∈P(AC) p(S;x)αS if p(AC;x) > 0,

0 if p(AC;x) = 0,
and

r(BC;x) =

{ ∏
S∈P(BC)\P(AC) p(S;x)αS if p(BC;x) > 0,

0 if p(BC;x) = 0.

To verify (26) for a fixed x ∈ X with p(ABC;x) > 0 we basically repeat the consideration
from the proof of Theorem 1. First, we choose and fix x̃ ∈ X such that x̃ABC = xABC and
p(N ; x̃) > 0, which, of course, may differ from x. Now, we are sure that p(AiBiCi; x̃) > 0
for any i ∈ {1, . . . , I} and can write by Ai⊥⊥Bi |Ci [P ]:[

∀ i 1 =
p(AiBiCi; x̃) · p(Ci; x̃)

p(AiCi; x̃) · p(BiCi; x̃)

]
=⇒ 1 =

I∏
i=1

(
p(AiBiCi; x̃) · p(Ci; x̃)

p(AiCi; x̃) · p(BiCi; x̃)

)λi
.

The expression on the right-hand side there can be, by (25), re-written as

1 =
I∏
i=1

(
p(AiBiCi; x̃) · p(Ci; x̃)

p(AiCi; x̃) · p(BiCi; x̃)

)λi
=

I∏
i=1

∏
T⊆N

p(T ; x̃)u〈Ai,Bi |Ci〉(T )

λi

=
I∏
i=1

∏
T⊆N

p(T ; x̃)λi·u〈Ai,Bi |Ci〉(T ) =
∏
T⊆N

p(T ; x̃)
∑I

i=1 λi·u〈Ai,Bi |Ci〉(T )

(25)
=

1

p(ABC; x̃)
·

∏
S∈P(AC)∪P(BC)

p(S; x̃)αS =
1

p(ABC;x)
·

∏
S∈P(AC)∪P(BC)

p(S;x)αS .

Since the term p(ABC;x) above is strictly positive, multiplying by p(ABC;x) gives (26).
To verify (27) for a fixed x ∈ X with p(ABC;x) = 0 it is enough to find some set

S ∈ P(AC)∪P(BC) with p(S;x) = 0. Indeed, note that p(S;x) = 0 implies p(AC;x) = 0

or p(BC;x) = 0. Realize that (24) means δABC(T )−
∑I

i=1 ζ
†
i · u

†
〈Ai,Bi |Ci〉(T ) ≤ 0 for any
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T ⊆ N such that T 6∈ P(AC) ∪ P(BC). Hence, the non-negativity assumption ζ†i ≥ 0 for
any i and the definition (22) implies the following observation:

if T = ABC

or [T ⊆ N, T 6∈ P(AC) ∪ P(BC) & ∃ j ζ†j > 0 with u†〈Aj ,Bj |Cj〉(T ) = −1 ]

then [ ∃ i ζ†i > 0 & u†〈Ai,Bi |Ci〉(T ) = +1 ].

This observation then makes possible the following inductive consideration. Take T ⊆ N
such that T 6∈ P(AC)∪P(BC) and p(T ;x) = 0. Of course, the starting set T ⊆ N will be

T ≡ ABC. If i is such that ζ†i > 0 and u†〈Ai,Bi |Ci〉(T ) = +1 one has T = AiBiCi by (22).

Since Ai⊥⊥Bi |Ci [P ], by (1), either p(AiCi;x) = 0 or p(BiCi;x) = 0. Make a choice: put
either S ≡ AiCi or S ≡ BiCi so that we have p(S;x) = 0. If S ∈ P(AC) ∪ P(BC), then

the goal is reached. If S 6∈ P(AC) ∪ P(BC), then ζ†i > 0 and u†〈Ai,Bi |Ci〉(S) = −1 allows

one to apply the above observation again, this time to S. Since |S| < |T |, the process has
to stop at some point, which means one has to reach a set in P(AC)∪P(BC) in this way.
This completes the proof.

To deal with the general discrete case we modified in Theorem 2 the condition (6)
from Theorem 1: the right-hand side of (23) is LP(AC)∪P(BC), not LP(ACD)∪P(BCD) as in
(6). The second difference is that we need an additional condition (24) to cover the case
of the events of probability zero. The following example shows that both assumptions in
Theorem 2 are needed.

Example 5. To show that (24) cannot be omitted consider the CI implication problem

a⊥⊥ b | c, a⊥⊥ c | b, b⊥⊥ c | a ?⇒ ab⊥⊥ c | ∅ , (28)

and observe that (23) holds in this case N = {a, b, c} because

δabc + u〈a,b | c〉 − u〈a,c | b〉 − u〈b,c | a〉 ∈ LP(ab)∪P(c) .

However, there exists a discrete distribution such that (28) is not valid for it. To this end
put Xi = {0, 1} for any i ∈ N and assign the value 1/2 to the configurations [ 0, 0, 0 ],
[ 1, 1, 1 ] and 0 to the remaining ones. One can check that the condition (24) does not hold
in this case. To show that (23) cannot be omitted consider another implication problem

a⊥⊥ b | cd, c⊥⊥ d | a, c⊥⊥ d | b ?⇒ c⊥⊥ d | ab , (29)

and observe that (24) holds in this case for N = {a, b, c, d} because

( δabcd − u†〈a,b | cd〉 − u†〈c,d | a〉 − u†〈c,d | b〉 )|K = 0 for K = { cd, acd, bcd, abcd }. (30)

On the other hand, (29) is not probabilistically valid: put N = {a, b, c, d}, Xi = {0, 1} for
any i ∈ N and assign non-zero density values to the following 6 configurations [xa, xb, xc, xd]:

[ 0, 0, 0, 0 ] 7→ 1/6 , [ 1, 0, 0, 0 ] 7→ 1/6 , [ 0, 0, 0, 1 ] 7→ 1/6 ,
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[ 0, 0, 1, 0 ] 7→ 1/4 , [ 0, 0, 1, 1 ] 7→ 1/8 , [ 0, 1, 1, 1 ] 7→ 1/8 .

In particular, (23) does not hold in this case.

To illustrate Theorem 2 we show that it can be applied to a formerly mentioned CI
implication problem (21).

Example 6. We are going to show that (21), that is,

a⊥⊥ b | cd, c⊥⊥ d | a, c⊥⊥ d | b, c⊥⊥ d | ∅ ⇒ c⊥⊥ d | ab,

holds for any discrete distribution. Let us re-write the linear equality (19) in the form

u〈c,d | ab〉 +
[
−u〈a,b | cd〉 − u〈c,d | a〉 − u〈c,d | b〉 + u〈c,d | ∅〉

]
+
{
u〈a,b | c〉 + u〈a,b | d〉 − u〈a,b | ∅〉

}
= 0,

which is nothing but the condition (c) in Lemma 5, an equivalent version of the condition
(23) for (21), that is,

( δabcd − u〈a,b | cd〉 − u〈c,d | a〉 − u〈c,d | b〉 + u〈c,d | ∅〉 )|K = 0 for K = { cd, acd, bcd, abcd }.

In this special case, condition (24) also holds. Actually, it can be obtained by minor

modification of (23): it is enough to put ζ†i = [λi]
−, where [λ]− denotes the non-positive

part of λ ∈ R, and observe that the respective above relation (30) is valid, too.

Remark 3. Note that our new condition from Theorem 2 is neither stronger nor weaker
than the one used by Bouckaert et al. [2]. For example, the decomposition rule (14), that
is, a⊥⊥ bc | ∅ ⇒ a⊥⊥ c | ∅, is a valid CI implication in the general discrete case and can be
verified by the tools from Bouckaert et al. [2]. However, the validity of (14) for general
discrete distributions cannot be derived using Theorem 2, even if its repeated application
is allowed. Indeed, one can derive the weak union implications a⊥⊥ bc | ∅ ⇒ a⊥⊥ b | c and
a⊥⊥ bc | ∅ ⇒ a⊥⊥ c | b in this way (cf. Example 1), but if one tries to verify

a⊥⊥ bc | ∅, a⊥⊥ b | c, a⊥⊥ c | b ⇒ a⊥⊥ c | ∅ ,

by means of Theorem 2, then the respective condition (24) is not fulfilled in this case.
On the other hand, the implication (21) cannot be verified by the method in Bouckaert
et al. [2] (see Example 4.1 of Studený [14]), while it can be derived by our new method as
shown in Example 6. Hence, both methods have their strong and weak points.

5. A computational example

In this section, we present an example to demonstrate the methods described in the
paper. The following CI implication has been found as the result of computational search
experiments performed by the first author:

c⊥⊥ d | abef, a⊥⊥ f | bde, b⊥⊥ e | acf,
e⊥⊥ f | ac, e⊥⊥ f | bd, e⊥⊥ f | ab ⇒ e⊥⊥ f | abcd . (31)
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We found this example by a random search combined with some heuristics. In this search,
the set of CI statements in the left-hand side of (31) is given by adding CI statements
which may factorize a density of a, b, c, d, e, f to functions of a, b, c, d, e and a, b, c, d, f .
The above example involves six variables: N = {a, b, c, d, e, f}. While the CI structures
in case |N | ≤ 5 have been studied in detail in Studený et al. [16] and Hemmecke et al. [6],
only a little bit is known about the case |N | ≥ 6.

As we show below, the implication (31) is true. On the other hand, the method
presented by Bouckaert et al. [2] does not allow one to verify (31). Furthermore, using
the algorithm by Baioletti et al. [1], one can observe that (31) is not implied by the
graphoid properties, which are well-known valid CI implications in the case of strictly
positive distributions.

We consider the application of the method of Theorem 2. In case of (31), the class K
from Lemma 5(b) consists of the supersets of ef and the condition (23) is fulfilled because

( δabcdef − u〈c,d | abef〉 − u〈a,f | bde〉 − u〈b,e | acf〉 − u〈e,f | ac〉 − u〈e,f | bd〉 + u〈e,f | ab〉 )|K = 0. (32)

In particular, the implication (31) holds for any discrete distribution with a strictly positive
density. Nevertheless, one can also verify the condition (24) in this case, specifically:

( δabcdef − u†〈c,d | abef〉 − u†〈a,f | bde〉 − u†〈b,e | acf〉 − u†〈e,f | ac〉 − u†〈e,f | bd〉 )|K = 0. (33)

Therefore, by Theorem 2, the implication (31) is valid for any discrete distribution.

Remark 4. We can also verify (32) by means of Lemma 5(c). Specifically, one can
decompose a multiple by 10 of the respective imset as follows:

10 · u〈e,f | abcd〉
+[−10 · u〈c,d | abef〉 − 10 · u〈a,f | bde〉 − 10 · u〈b,e | acf〉
− 10 · u〈e,f | ac〉 − 10 · u〈e,f | bd〉 + 10 · u〈e,f | ab〉]

+
{

2 · u〈a,b | ∅〉 + 5 · u〈c,d | ∅〉 + u〈c,f | ∅〉 + 3 · u〈c,e | ab〉
+ 7 · u〈a,d | c〉 + 9 · u〈b,d | ac〉 + 7 · u〈b,e | ac〉 + u〈d,f | bc〉 + 10 · u〈d,e | abc〉 + 9 · u〈d,f | abc〉
+ 6 · u〈a,e | d〉 + 5 · u〈b,e | ad〉 + 10 · u〈a,f | bd〉 + u〈b,f | cd〉 + 5 · u〈b,c | e〉 + 3 · u〈c,d | ae〉
+ 2 · u〈c,d | be〉 + u〈a,d | bf〉 + u〈a,c | bdf〉

− 3 · u〈a,e | ∅〉 − 4 · u〈b,c | ∅〉 − u〈b,f | ∅〉 − u〈b,c | a〉 − 3 · u〈c,e | b〉 − u〈c,f | ab〉

− 5 · u〈d,e | ab〉 − 10 · u〈d,f | ab〉 − 5 · u〈d,e | c〉 − u〈a,c | d〉 − 3 · u〈a,e | cd〉
− 2 · u〈b,e | cd〉 − 8 · u〈b,d | e〉 − 8 · u〈a,d | be〉 − 2 · u〈a,b | de〉 − u〈b,d | cf〉

}
= 0, (34)

where the imsets in the curly brackets in the above equation (34) correspond to additional
conditional independence statements not bridging between e and f . Furthermore, from
(34) we have

10 · u〈c,d | abef〉 + 10 · u〈a,f | bde〉 + 10 · u〈b,e | acf〉 + 10 · u〈e,f | ac〉 + 10 · u〈e,f | bd〉
+ 3 · u〈a,e | ∅〉 + 4 · u〈b,c | ∅〉 + u〈b,f | ∅〉 + u〈b,c | a〉 + 3 · u〈c,e | b〉 + u〈c,f | ab〉
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+ 5 · u〈d,e | ab〉 + 10 · u〈d,f | ab〉 + 5 · u〈d,e | c〉 + u〈a,c | d〉 + 3 · u〈a,e | cd〉
+ 2 · u〈b,e | cd〉 + 8 · u〈b,d | e〉 + 8 · u〈a,d | be〉 + 2 · u〈a,b | de〉 + u〈b,d | cf〉

= 10 · u〈e,f | abcd〉 + 10 · u〈e,f | ab〉 + 2 · u〈a,b | ∅〉 + 5 · u〈c,d | ∅〉 + u〈c,f | ∅〉 + 3 · u〈c,e | ab〉
+ 7 · u〈a,d | c〉 + 9 · u〈b,d | ac〉 + 7 · u〈b,e | ac〉 + u〈d,f | bc〉 + 10 · u〈d,e | abc〉 + 9 · u〈d,f | abc〉
+ 6 · u〈a,e | d〉 + 5 · u〈b,e | ad〉 + 10 · u〈a,f | bd〉 + u〈b,f | cd〉 + 5 · u〈b,c | e〉 + 3 · u〈c,d | ae〉
+ 2 · u〈c,d | be〉 + u〈a,d | bf〉 + u〈a,c | bdf〉 . (35)

From (35) and the properties of structural imsets (Studený [15], Hemmecke et al. [6]),
we obtain the following implication as a byproduct of the result.

c⊥⊥ d | abef,
a⊥⊥ f | bde, b⊥⊥ e | acf, e⊥⊥ f | ac,

e⊥⊥ f | bd, a⊥⊥ e | ∅, b⊥⊥ c | ∅, b⊥⊥ f | ∅,
b⊥⊥ c | a, c⊥⊥ e | b,
c⊥⊥ f | ab, d⊥⊥ e | ab,

d⊥⊥ f | ab, d⊥⊥ e | c, a⊥⊥ c | d, a⊥⊥ e | cd,
b⊥⊥ e | cd, b⊥⊥ d | e, a⊥⊥ d | be, a⊥⊥ b | de,

b⊥⊥ d | cf

⇔

e⊥⊥ f | abcd,
e⊥⊥ f | ab, a⊥⊥ b | ∅, c⊥⊥ d | ∅,

c⊥⊥ f | ∅, c⊥⊥ e | ab, a⊥⊥ d | c, b⊥⊥ d | ac,
b⊥⊥ e | ac, d⊥⊥ f | bc,
d⊥⊥ e | abc, d⊥⊥ f | abc,

a⊥⊥ e | d, b⊥⊥ e | ad, a⊥⊥ f | bd, b⊥⊥ f | cd,
b⊥⊥ c | e, c⊥⊥ d | ae, c⊥⊥ d | be, a⊥⊥ d | bf,

a⊥⊥ c | bdf.

Conclusions

Let us summarize the contributions of this note. We have proposed a new linear-
algebraic method for derivation of (probabilistic) CI implications. The method mainly
applies in the case of strictly positive discrete distributions, but it is also extended to
the general case of discrete distributions. The method, which goes beyond the formerly
known methods, has been illustrated by a few examples. The most complicated one has
been obtained as the result of computational experiments.

The reader familiar with algebraic statistics knows that CI implication tasks can often
be re-formulated in terms of (ideals of) polynomial rings. For example, the conditional
independence ideal defined in § 3.1 of Drton et al. [3] consists of polynomials whose indeter-
minates correspond to configurations in the (fixed) joint sample space. Another approach
is applied in § 5 of Hemmecke et al. [6], where the respective toric ideal consists of poly-
nomials whose indeterminates correspond to elementary CI statements i⊥⊥ j |K. The
elements of the Markov basis for that toric ideal seem to correspond to CI implications
that can be derived by the method of structural imsets described in Bouckaert et al. [2].
Hemmecke et al. [6] obtained 75,889 instances of CI implications (= elements of a minimal
Markov basis) for |N | = 5, which decompose into 1,381 permutation equivalence classes
(Kashimura et al. [7]).

The reader may wonder whether the condition (b), respectively (c), of Lemma 3 can
also be modelled/represented in terms of polynomials, that is, by means of binomial re-
lations. Perhaps there is a way to do that if one somehow considers Laurent polyno-
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mials whose indeterminates correspond to subsets of the set of variables N . To illus-
trate this rough idea, consider the CI problem (13) from Example 2 and assume that
tabc, tbc, tac, tab, tc, tb, ta, t∅ are the indeterminates. Then the inputs a⊥⊥ b | c, a⊥⊥ c | b and
the output a⊥⊥ c | ∅ are represented as z〈a,b | c〉 ≡ tabctct

−1
ac t
−1
bc , z〈a,c | b〉 ≡ tabctbt

−1
ab t
−1
bc and

z〈a,c | ∅〉 ≡ tact∅t
−1
a t−1c , respectively. One can model the restriction to K = {ac, abc} in

the condition (b) of Lemma 3 by settings tbc = tab = tc = tb = ta = t∅ = 1. Thus, one
has z〈a,b | c〉|K = tabct

−1
ac , z〈a,c | b〉|K = tabc and z〈a,c | ∅〉|K = tac. Then one can introduce a

binomial relation (z〈a,b | c〉|K)−1 · z〈a,c | b〉|K − z〈a,c | ∅〉|K = 0, which can, perhaps, be viewed
as a kind of translation/interpretation of the condition (b) from Lemma 3 in the world of
polynomials.
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