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Abstract. Exchange type chromosome aberrations (ETCAs) are rearrangements of the genome
that occur when chromosomes break and the resulting fragments rejoin with fragments from other
chromosomes or from other regions within the same chromosome. ETCAs are commonly observed
in cancer cells and in cells exposed to radiation. The frequency of these chromosome rearrangements
is correlated with their spatial proximity, therefore it can be used to infer the three dimensional
organization of the genome. Extracting statistical significance of spatial proximity from cancer
and radiation data has remained somewhat elusive because of the sparsity of the data. We here
propose a new approach to study the three dimensional organization of the genome using algebraic
statistics. We test our method on a published data set of irradiated human blood lymphocyte cells.
We provide a rigorous method for testing the overall organization of the genome, and in agreement
with previous results we find a random relative positioning of chromosomes with the exception of
the chromosome pairs {1,22} and {13,14} that have a significantly larger number of ETCAs than
the rest of the chromosome pairs suggesting their spatial proximity. We conclude that algebraic
methods can successfully be used to analyze genetic data and have potential applications to larger
and more complex data sets.
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1. Introduction

During the early stages of the cell cycle the mammalian genome is organized in chro-
mosome territories [16, 39] (for a review see [18]). When DNA damaging agents, such as
radiation, cross the cell nucleus they introduce double strand breaks that produce chro-
mosome fragments. These chromosome fragments need to be rejoined with their original
partners for the cell to survive. A small percentage of breaks however are incorrectly
rejoined introducing exchange type chromosome aberrations (ETCAs). ETCAs between
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non-homologue chromosomes can be detected in the laboratory by means of diverse chro-
mosome painting and sequencing techniques (see Figure 1 for an example of ETCAs de-
tected by the chromosome painting technique Spectral Karyotyping (SKY) [45]). It is
expected that chromosomes that are in close spatial proximity form ETCAs more often
than those that are far apart [6, 13, 37, 41, 50]. Therefore the frequency of ETCAs be-
tween non-homologous chromosomes is informative of their relative position and it can be
used to reconstruct the three dimensional structure of the genome.

Figure 1: Examples of ETCAs found in a tumor cell. Pairs of homologue chromosomes were painted the same
color using SKY. The arrows point to ETCAs. Figure kindly provided by J.L. Garćıa.

Chromosome painting techniques such Fluorescence in-situ Hybridization (FISH) or
its multicolor versions such as SKY and multiplex FISH (mFISH) [46, 45] paint every
pair of homologue chromosomes the same color (Figure 1). These techniques have shown
that the position of chromosome territories with respect to the center of the nucleus is
driven by gene density, chromosome size and/or local chromatin geometry [11, 29, 38].
In human lymphocytes gene-rich chromosomes such as {1, 19, 17, 22} are located near
the center of the nucleus [11, 18] while gene-poor chromosomes such as {2, 4, 13, 18} are
located closer to the periphery of the nucleus [11, 18]. Studies measuring the relative
position of chromosomes, using radiation induced ETCAs, on the other hand have shown
that chromosomes are randomly located with respect to each other with the exception
of a few chromosome clusters [15, 25, 43, 44]. Interestingly this overall random relative
organization has been corroborated by new sequencing techniques [33, 35, 50].

Quantitative analyses of the relative position of chromosome territories commonly
use tables whose entries are the number of ETCAs detected for any two non-homologue
chromosomes such as the one we use in Table 1. Several methods have been proposed
to study frequency tables of radiation induced ETCAs. In [9] tables of radiation induced
ETCAs detected by FISH were analyzed. In this type of studies frequency tables were
densely populated and with large entries, therefore chi-square statistics were used to find
significant clusters of chromosomes. In [2, 15] similar tables were generated employing
mFISH data. Although more accurate in some respects, the latter data were more sparse
and with small entries. In this case the proximity of chromosome territories was tested
by assigning p-values to clusters of previously reported chromosome territories. Here we
propose a model-based approach that builds a simple log-linear model to test the proximity



J. Arsuaga, I. Heskia, S. Hoşten, T. Maskalevich / J. Alg. Stat., 6 (2015), 133-149 135

of pairs of chromosome territories, referred to as chromosome pairs from now on, and we
use a Markov Chain Monte Carlo method based on the theory of algebraic statistics to
assign significance. The mFISH data we analyze have already appeared in the literature
[2, 15, 34].

In our study we test a no-proximity effect model and a single pair proximity model by
sampling tables that have the same sufficient statistic as those observed experimentally.
Sampling of the tables is performed by running a Markov Chain Monte Carlo algorithm
that uses a Markov basis [21, 22] for a second hypersimplex [20]. This kind of method is
one of the early contributions of algebraic statistics, hence “classical algebraic statistics” in
the title of this work. Our results indicate that we could not reject the hypothesis of ran-
dom relative arrangement of chromosome territories when radiation induced chromosome
aberrations were analyzed. This result is in qualitative agreement with previous studies
[2, 15, 34] and suggests that the specific positions of any two pairs of chromosomes do not
influence the frequency of aberrations observed. However, by assuming the existence of a
proximity biasing factor we found chromosome pairs {1, 22} and {13, 14} to be significant.
We conclude that methods develop in algebraic statistics are suitable for analyzing genetic
data of moderate size in which data sparsity or low numbers of measurements are present.

2. Data and Methods

To test for proximity of chromosome territories we used a radiation induced exchange
type chromosome aberration table published in [2, 49]. In these experiments cells from
healthy donors were irradiated with sparsely ionizing γ-rays at different doses, and mFISH
[46] was used to detect ETCAs. This table includes a total of 3585 records of human
peripheral blood lymphocytes irradiated with sparsely ionizing radiation at different doses.

The frequency of ETCAs was summarized by recording the number of cells in which at
least one exchange between two non-homologous chromosomes occurred. This quantity is
robust with respect to noise introduced by apparently incomplete aberrations (i.e. those
aberrations with not all fragments accounted for) and reduces false positives. Following
previous publications [2, 15] we denote these values by f(j, k) where j and k are the
chromosomes that participate in the exchange. These values are presented in Table 1 as
a 22× 22 upper-triangular table.

2.1. The No-proximity and Single-pair Proximity Effects as Log-Linear
Models

ETCAs between two non-homologous chromosomes j and k (j 6= k) were modeled by
a single discrete random variable X with

(
22
2

)
= 231 values corresponding to all possible

pairs of non-homologue chromosomes with a probability density function given by

p : {(j, k) : 1 ≤ j < k ≤ 22} −→ ∆231
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Table 1: Table of ETCAs in 3585 human lymphocytes as reported in [2, 49]. Each entry f(j, k) holds the
number of cells in which at least one exchange between chromosomes j and k was recorded. The total number
of cells in which a given chromosome was involved in at least one exchange appears in the ”sum” column.

Chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Sum

1 44 38 42 29 26 29 18 39 29 25 18 15 18 34 31 22 12 14 22 9 27 541

2 43 37 32 30 24 25 29 16 24 30 29 9 26 8 24 8 7 12 13 15 485

3 21 31 32 24 21 26 23 25 23 21 18 18 19 21 11 17 11 12 10 465

4 23 27 28 24 26 20 13 19 23 22 20 16 18 11 6 12 10 7 425

5 17 31 26 25 24 30 25 25 15 19 8 19 13 7 16 7 4 426

6 18 22 21 31 13 30 18 15 19 14 15 13 10 9 8 7 395

7 20 20 17 28 25 13 18 8 18 23 11 9 19 6 7 396

8 13 12 24 11 25 15 16 12 16 17 4 9 7 8 345

9 21 25 7 23 23 27 20 15 22 8 9 7 10 416

10 18 21 14 14 10 19 14 9 5 11 7 3 338

11 25 5 15 16 19 15 8 10 12 3 11 364

12 9 16 9 12 16 8 13 10 5 5 337

13 29 10 10 7 16 5 6 7 9 319

14 22 13 6 10 2 6 13 11 310

15 22 13 9 7 11 7 9 332

16 12 15 12 20 8 13 321

17 5 4 11 5 10 291

18 2 11 9 3 223

19 6 0 8 156

20 7 10 240

21 6 156

22 193

where the set

∆231 = {(p12, p13, . . . , p2122) ∈ R231 : pjk ≥ 0
∑
j,k

pjk = 1}

is the probability simplex in R231 and pjk = p(j, k). In this no-proximity effect model the
probability of observing an ETCA between the chromosomes j and k is

pjk = θjθk 1 ≤ j < k ≤ 22.

where θ1, θ2, . . . , θ22 are positive parameters. More precisely, the no-proximity effect model
is the image of R22

+ in ∆231 under the map φ(θ1, . . . , θ22) = (θjθk : 1 ≤ j < k ≤ 22). This
model can be linearized by applying logarithms to both sides of the equation, which gives
log(pjk) = log(θj) + log(θk) = βj +βk and shows that our model is a log-linear model [14].
Therefore the no-proximity effect model is given by a 22 × 231 design matrix, denoted
by A(22), whose columns are ej + ek with 1 ≤ j < k ≤ 22 where ej is the jth standard
unit vector in R22. The columns of A(22) are the vertices of the second hypersymplex in
R22 [20].

For a fixed pair {r, s} with r 6= s we define an extended model that we call a single-pair
proximity effect model. This model is given by the map φ′ : R23

+ → ∆231 defined as

pjk = φ′(θ1, .., θ22, µrs) =

{
θrθsµrs if j = r and k = s,
θjθk otherwise.

(1)

The parameter µrs is a bias factor for the frequency of an observed exchange between
chromosomes r and s. This bias factor corresponds to a proximity factor between the
territories of two chromosomes r and s. By taking the logarithm on both sides of the



J. Arsuaga, I. Heskia, S. Hoşten, T. Maskalevich / J. Alg. Stat., 6 (2015), 133-149 137

above equation we get the parametrization in logarithmic coordinates:

log(pjk) =

{
βr + βs + αrs if j = r, k = s,
βj + βk otherwise.

(2)

The single-pair proximity effect model for any pair of chromosomes {r, s} is also a
log-linear model which extends the no-proximity effect model since the set of probability
distributions in this model are those in the image of the map φ′ with αrs = 0. The design
matrix A[r, s] defining this model is a 23 × 231 matrix, identical to A(22) in its first 22
rows, and with an extra row of all zeros except a 1 in the column corresponding to prs.

In order to assign a p-value to the goodness-of-fit test we propose to sample tables that
are similar to those observed experimentally. More specifically we sample tables with the
same minimal sufficient statistic as the data table f . For each chromosome k we have the
marginal total

uk =
∑
j: j 6=k

f(j, k) for k = 1, . . . , 22.

This quantity is displayed in the Sum column of Table 1. The marginal total of a given
chromosome is a measure of the propensity of each individual chromosome to form ETCAs.
In radiation studies this quantity has been associated to the sensitivity of the chromosomes
to radiation [2, 15] and to repair mechanisms [51]. For the no-proximity effect model φ
the collection of marginal totals u = (uk : k = 1, . . . , 22) is the minimal sufficient statistic.
For the single-pair proximity effect model for the chromosome pair {r, s}, the minimal
sufficient statistic is the same marginal sums together with urs = f(r, s). The set of tables
with the same sufficient statistic is called the fiber of the experimentally observed table
and is denoted by F(u). It is well-known that F(u) consists of lattice points in a polytope.

2.2. Maximum Likelihood Estimation

The maximum likelihood estimator (MLE) tables of the data with respect to the no-
proximity effect and single-pair proximity models were computed by the standard numer-
ical algorithm Iterative Proportional Scaling [19]. For log-linear models, the algorithm
converges to the unique MLE table f̂ such that 1

N f̂ lies on the model where N is the

sample size and f̂ has the same sufficient statistic u as the data table f . The existence of
this unique table is guaranteed by Birch’s Theorem (see [22]).

2.3. Hypothesis testing and Monte-Carlo simulations

Our goodness-of-fit test for the no-proximity effect model uses the standard chi-square
statistic

χ2(F ) =
∑

1≤j<k≤22

(F (j, k)− f̂(j, k))2

f̂(j, k)
. (3)
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where f̂(j, k) are the entries of the MLE table with respect to the no-proximity effect
model given the data table f , and F (j, k) are the entries of tables F drawn from the fiber
F(u). Typically large χ2(F ) values would indicate that the data table f is “close” to f̂
providing no evidence for rejecting no-proximity effect model.

The fiber F(u) for the no-proximity effect model is very large while at the same time
the data table f has some small entries including a zero entry. These observations point
to using the well-established standard Markov Chain Monte Carlo method for running
the goodness-of-fit test. One might think that computing a Markov basis for the no-
proximity effect model (or equivalently the second hypersimplex A(22)) is intractable.
Luckily, a Markov basis (in fact a Gröbner basis) for this model is available, see [47,
Theorem 9.1] and [20]. Our Markov basis is defined by the following set of moves: For
each 1 ≤ i < j < k < ` ≤ 22 one defines two moves m[i, j; k, `] and m[i, `; j, k]. The first
move is a table where the (i, j) and (k, `) entries are set to equal 1, the (i, k) and (j, `)
entries are set to equal −1, and all the other entries are set to equal 0. The second move
is a table where the (i, `) and (j, k) entries are set to equal 1, the (i, k) and (j, `) entries
are set to equal −1, and all the other entries are set to equal 0. These tables together with
their negatives −m[i, j; k, l] and −m[i, `; j, k] comprise our Markov basis B. This Markov
basis contains 2 · 2 ·

(
22
4

)
= 29, 260 moves.

Using this MCMC we generated a set ofm random tables f1, . . . , fm using the Metropolis-
Hastings algorithm and estimated the p-value of goodness-of-fit test by

1

m

 ∑
χ2(fi)≥χ2(f)

1

 .

One important parameter of the Metropolis-Hastings algorithm is the number of steps it
requires between each selection of tables fi and fi+1. The rule of thumb is that one needs
sufficient number of steps so that the Markov chain can reach any table in F(u) starting
from an arbitrary table. We followed the method in [24] to heuristically determine this
number of steps: It is a consequence of the Gröbner basis theory that there is a unique
table Tunique in F(u) where none of the Gröbner basis moves can be applied, and every
table in F(u) is connected to Tunique table via the Markov basis moves. This table is
the unique reduced normal form of the data table with respect to the Gröbner basis from
which our Markov basis B is constructed. Empirically, the average number of steps one
needs to go from a randomly generated table in F(u) to Tunique using the moves in B is
about 15000. Hence, we estimate that the number of steps needed to connect two tables
in F(u) is bounded by 30000.

2.4. Log-Ratio Test

Since the single-pair proximity effect model contains the no-proximity effect model we
compared the relative fit of the two models by a likelihood ratio test . The likelihood ratio
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test statistic is defined as:

G2 = 2
∑

1≤j<k≤22
f̂1jk log

(
f̂1jk

f̂0jk

)
(4)

where f̂1jk is the MLE with respect to the single-pair proximity effect model and f̂0jk is
the MLE with respect to the no-proximity effect model. It is well known [14, Theorem
10.2.8] that, for large sample sizes N , if the null hypothesis is true (i.e. if the data fits
the no-proximity effect model better than it fits the single-pair proximity effect model)
then G2 has a χ2 distribution with degrees of freedom equal to the difference of the ranks
of the nested log-linear models. In our case, the rank of the no-proximity effect model is
equal to rankA(22) = 21 and the rank of the single-pair proximity effect effect model is
equal to rankA[r, s] = 22.

3. Numerical Results

Table 2: Maximum Likelihood Estimate for experimental Table 1 obtained from irradiated human lymphocytes.

Chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Sum

1 47 43 38 37 33 33 27 34 26 28 25 23 22 24 23 20 14 8.9 15 8.8 11 541

2 37 32 32 29 29 24 30 23 25 22 21 20 22 21 18 13 8.3 14 8.2 11 485

3 30 30 27 27 23 28 22 24 22 20 19 21 20 18 13 8.2 14 8.2 11 465

4 27 24 24 21 26 20 22 20 18 18 19 18 16 12 7.8 13 7.8 10 425

5 24 24 21 26 20 22 20 19 18 19 19 17 12 8 13 8 10 426

6 22 19 24 19 20 19 17 17 18 17 16 12 7.7 12 7.7 9.7 395

7 19 24 19 20 19 17 17 18 17 16 12 7.9 13 7.9 9.9 396

8 20 16 18 16 15 15 16 15 14 11 7.2 11 7.2 9 345

9 20 21 20 18 18 19 18 17 13 8.6 13 8.5 11 416

10 17 16 15 15 16 15 14 11 7.3 11 7.4 9.2 338

11 17 16 16 17 16 15 11 8 12 8 9.9 364

12 15 15 16 15 14 11 7.6 12 7.6 9.4 337

13 14 15 15 13 10 7.4 11 7.4 9.1 319

14 15 14 13 10 7.4 11 7.4 9 310

15 15 14 11 7.9 12 7.9 9.6 332

16 14 11 7.9 11 7.9 9.5 321

17 10 7.4 11 7.4 8.9 291

18 6 8.6 6 7.3 223

19 6.4 4.6 5.6 156

20 6.6 7.8 240

21 5.7 156

22 193

We first computed the MLE tables for the no-proximity effect and the single-pair
models as discussed in the previous section. This algorithm preserves the minimal sufficient
statistic which guarantees that the MLE table belongs to the fiber of the data table. The
MLE table for the no-proximity effect model is displayed above. Only two significant
digits are shown. The table for the no-proximity effect reveals some marked differences
with the experimentally observed table. Most notably, entries for each chromosome tend
to be more homogeneous than those in the experiment. This is particularly true for small
chromosomes 19 to 22.

Using the MCMC approach explained earlier we generated 3× 1010 tables which were
sampled every 3× 104 times to reduce the intrinsic correlation in the Markov Chain. We
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therefore obtained a sample size of 106 tables. The chi-square statistic for each of the
sampled table was computed. Interestingly, none of the 106 tables generated for Table
1 had a test statistic smaller than the experimentally observed. Hence the no-proximity
effect model could not be rejected. This result is somewhat surprising but can be explained
by estimating the number of tables that are contained in the ellipsoid defined by (3). We
will give the details of this estimation in the Appendix. These results show that the data
can be well fit by the no-proximity model and that the relative positions of chromosomes
are random. We used the MCMC approach since our data table has some small entries
– in fact, there is an entry with value 0. However, it is interesting to compare our result
to an asymtotic chi-square test. The chi-square statistic of Table 1 is equal to 346.63
and the degree of freedom for the χ2 distribution is

(
22
2

)
− 21 = 210 (the rank of the

design matrix is 21). The corresponding chance probability is < 0.0001. In other words,
from an asymptotic test we would have concluded that we reject the no-proximity effect
hypothesis. However, this is not warranted.

Figure 2: The resulting chi-squares of the randomly generated 1,000,000 tables in F(u) which give the p-value
of 1 to Table 1. The chi-square statistic of Table 1 is 346.63, which is less than any of the chi-square values of
the randomly generated tables. Image is taken from [24].

Microscopy observations however have shown that some groups of chromosomes tend
to be close to each other and form exchange type aberrations more frequently than what
one would predict using the no-proximity effect model [12]. These chromosomes include
those that are found in the center of the nucleus [2, 15] and those that form the nucleolus
[2]. This observation is further supported by the large positive deviations between entries
in the experimentally observed table and the MLE table. The differences between the
observed table and the MLE table are shown in Table 3. A positive entry indicates that
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Table 3: Table of deviations between observed and MLE counts. Each entry is the difference between the observed counts
and MLE for each pair of chromosomes j and k computed for Table 2.

Chr 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 -3.2 -5.5 4.2 -8.2 -7.2 -3.8 -9 5 3.3 -2.9 -7 -8.1 -4 10 8.4 2.2 -2 5.1 6.8 0.2 16

2 6.2 4.6 -0.1 1.2 -4.6 1.1 -0.9 -6.9 -0.9 7.6 8.2 -11 4.4 -13 5.9 -4.9 -1.3 -2.1 4.8 4.3

3 -9.4 0.8 4.7 -3.2 -1.8 -2.4 1.1 1.2 1.4 0.9 -1.3 -2.8 -0.9 3.4 -1.7 8.8 -2.8 3.8 -0.5

4 -3.9 2.5 3.6 3.3 0.3 0.0 -8.7 -0.8 4.5 4.2 0.8 -2.4 1.7 -0.9 -1.8 -0.9 2.2 -3

5 -7.5 6.6 5.2 -0.6 3.9 8.2 5.1 6.4 -3 -0.4 -11 2.5 0.9 -1 2.9 -1.0 -6.2

6 -4.4 2.8 -2.5 12 -7.2 11 0.6 -1.8 0.9 -3.4 -0.5 1.5 2.3 -3.5 0.3 -2.7

7 0.7 -3.5 -1.7 7.7 6.4 -4.5 1.1 -10 0.5 7.3 -0.7 1.1 6.3 -1.9 -2.9

8 -7.2 -4.3 6.4 -5.2 9.7 0.1 0.0 -3.5 2 6.5 -3.2 -2.4 -0.2 -1

9 1.2 3.7 -13 4.5 5.1 7.9 1.6 -1.6 9.5 -0.6 -4.5 -1.5 -0.7

10 0.8 5 -1.1 -0.7 -5.8 3.7 0.1 -1.6 -2.3 -0.4 -0.4 -6.2

11 7.8 -11 -0.9 -1.0 2.6 0.1 -3.4 2 -0.3 -5 1.1

12 -6.2 1.2 -6.8 -3.3 2 -2.8 5.4 -1.6 -2.6 -4.4

13 15 -5 -4.6 -6.4 5.6 -2.4 -5.2 -0.4 -0.1

14 7.3 -1.3 -7.1 -0.2 -5.4 -5 5.6 2

15 6.8 -0.9 -2 -0.9 -0.7 -0.9 -0.6

16 -1.6 4.2 4.1 8.5 0.1 3.5

17 -5 -3.4 0.3 -2.4 1.1

18 -4 2.4 3 -4.3

19 -0.4 -4.6 2.4

20 0.4 2.2

21 0.4

Table 4: Table of pairs of chromosomes with their corresponding Chi-squared value and p-value corresponding
to their extended interaction model and p-value adjusted with the Bonferroni correction. Significant p-values
are labeled in boldface.

p-value

Chromosome Pair Chi-squared p-value before correction Bonferroni corrected p-value

{1, 22} 17.27 0.00005 0.00138
{13, 14} 13.66 0.00022 0.01012
{3, 19} 7.87 0.00502 0.23092
{6, 10} 7.78 0.00527 0.24242
{6, 12} 6.85 0.00888 0.40848
{9, 18} 6.51 0.0107 0.4922
{16, 20} 5.73 0.01671 0.76866
{8, 13} 5.72 0.01673 0.76958

the observed table had more exchanges than the number predicted by the MLE table while
a negative entry shows cases where the MLE table had more exchanges than the observed
table. The largest positive entries in the table are those for chromosome pairs {1,22},
{13,14}, {1,15}, and {9,18}. We therefore tested all chromosome pairs on the single-pair
proximity effect model and performed the log-ratio tests considering the original log-linear
models against the modified models for all chromosome pairs. We found eight pairs of
chromosome pairs that were significant (Column 1 in Table 4). However only two of them
were significant after correction for multiple testing using Bonferroni [1] (Column 4 in
Table 4).
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4. Discussion

In this work we have presented a model-based approach to determine the relative
positioning of chromosome territories from ETCA frequency tables that are sparse and
with small entries. In previous work a method for dealing with small entries was reported
[15], however the assignment of p-values to specific clusters of chromosome territories was
based on groups of chromosomes previously found in the literature. Our method builds on
the techniques developed in classical algebraic statistics by Diaconis and Sturmfels [21].

Several theoretical models have been proposed for the large scale organization of the
human genome (e.g. [6, 7, 12, 23, 30, 33, 4]). These models are mostly based on ex-
perimental observations that measure either the radial position of chromosome territories
with respect to the center of the nucleus or the relative position of chromosome terri-
tories. Our results show that the overall distribution of chromosome exchanges can be
simply explained by a model in which the relative position of chromosome territories is
random. This finding does not quantitatively agree with the results reported in [2, 15] or
with the asymptotic results reported here since a small deviation from randomness was
found in those studies. However all studies agree upon a rather random organization of
chromosome territories. Several sources can be contributing to this apparently random or-
ganization of the genome. The first is imposed by the limitation of the data. Chromosome
painting techniques are limited by the fact that homologue chromosomes are painted the
same color, and this evidently introduces unavoidable noise since territories of homologous
chromosomes can be positioned in very different environments (i.e. with different neigh-
boring chromosome territories). It is also possible that cell to cell variation is very large in
these samples or that there is a severe reorganization of the chromosome territories after
the radiation insult. The fact that new sequencing analysis is consistent with this overall
picture suggest that radiation has a small repositioning effect [35].

Clustering of chromosome territories, on the other hand, is a consistent observation
and it is believed to have functional significance, both in the form of gene expression
regulation and in the form of chromosome aberration formation in genetic diseases. Our
study shows that a small fraction of chromosome pairs deviate from this picture of random
positioning of chromosome territories and aberration formation. We identified eight pairs
of chromosome territories that were significant prior to multiple testing correction (Table
4). The first two pairs of chromosome territories (ie. {13, 14} and {1, 22}) were also
significant in [2, 15, 49]. There is an explanation for the significance of these pairs although
their true functional significance remains to be determined [6] . The pair {13, 14} is part
of the cluster of chromosomes in the nucleolus {13, 14, 15, 21, 22}, an organelle that brings
chromosome territories together for specific needs of the cell. The second pair {1, 22} has
been found to be part of a cluster of chromosome territories {1, 16, 17, 19, 22} located in
the center of the nucleus of lymphocyte cells. We used a Bonferroni correction method
for multiple testing. This method is known to be very conservative and it is possible that
we rejected some informative pairs. In fact all the pairs that were not significant after
Bonferroni correction have been reported in blood malignancies suggesting that proximity
of these pairs of chromosome territories may be somewhat common and furthermore may
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have an important role in the development of these diseases [5, 10, 26, 27, 36, 52].
It is our intention to improve our results by including better outlier detection tools that

help identify other chromosome pairs [31, 40] and by incorporating these results into the
developent of biophysical models. These models are based on different properties of the
genome that can obtained from basic physical priciples such as the radial organization of
chromosomes using overlapping sphere or ellipsoid packings [17, 28, 48] , gene density [30]
or DNA decondensation processes [42] or through the folding of chromatin fibers [4, 8, 33]
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5. Appendix

In this last section we return to our remark that none of the 106 tables generated for
Table 1 in our MCMC procedure had a test statistic smaller than χ2(f). In order to give a
heuristic explanation for this behavior we will estimate the size of F(u) and also estimate
the size of the set of the tables F where χ2(F ) ≤ χ2(f).

We first give a lower bound for the cardinality of F(u), which is the set of lattice
points in a polytope. A standard computational tool such as Latte [3] cannot compute the
cardinality of this immensely large set. Instead we employ a divide-and-conquer approach
where we consider the subtables consisting of the chromosomes 1 through 8 (Subtable A),
chromosomes 8 through 15 (Subtable B), chromosomes 15 through 22 (Subtable C) in
Table 5.

Table 5: Subtables A-C
Chr 2 3 4 5 6 7 8 Sum
1 44 38 42 29 26 29 18 226
2 43 37 32 30 24 25 235
3 21 31 32 24 21 210
4 23 27 28 24 202
5 17 31 26 189
6 18 22 172
7 20 174
8 156

Chr 9 10 11 12 13 14 15 Sum
8 13 12 24 11 25 15 16 116
9 21 25 7 23 23 27 139
10 18 21 14 14 10 110
11 25 5 15 16 128
12 9 16 9 98
13 29 10 115
14 22 134
15 110

Chr 16 17 18 19 20 21 22 Sum
15 22 13 9 7 11 7 9 78
16 12 15 12 20 8 13 102
17 5 4 11 5 10 60
18 2 11 9 3 54
19 6 0 8 39
20 7 10 76
21 6 42
22 59

The jth entry in the Sum column in each subtable refers to the sum of f(j, k) over all
chromosomes k 6= j included in the subtable. See for instance 1 − 8 in Subtable A in
Table 5. The remaining entries of Table 1 were subdivided into six rectangular subtables.
Each of these subtables are indexed by two subsets of chromosomes J and K: Subtable
1 (J = 1 − 4, K = 9 − 15), Subtable 2 (J = 5 − 7, K = 9 − 15), Subtable 3 (J = 1 − 4,
K = 16−22), Subtable 4 (J = 5−7, K = 16−22), Subtable 5 (J = 8−11, K = 16−22),
Subtable 6 (J = 12− 14, K = 16− 22) in Table 6.
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Table 6: Subtables 1-6
Chr 9 10 11 12 13 14 15 RSum
1 39 29 25 18 15 18 34 178
2 29 16 24 30 29 9 26 163
3 26 23 25 23 21 18 18 154
4 26 20 13 19 23 22 20 143
CSum 120 80 87 90 88 67 98

Chr 9 10 11 12 13 14 15 RSum
5 25 24 30 25 25 15 19 163
6 21 31 13 30 18 15 19 147
7 20 17 28 25 13 18 8 129
CSum 66 72 71 80 56 48 46

Chr 16 17 18 19 20 21 22 RSum
1 31 22 12 14 22 9 27 137
2 8 24 8 7 12 13 15 87
3 19 21 11 17 11 12 10 101
4 16 18 11 6 12 10 7 80
CSum 74 85 42 44 57 44 59

Chr 16 17 18 19 20 21 22 RSum
5 8 19 13 7 16 7 4 74
6 14 15 13 10 9 8 7 76
7 18 23 11 9 19 6 7 93
CSum 40 57 37 26 44 21 18

Chr 16 17 18 19 20 21 22 RSum
8 12 16 17 4 9 7 8 73
9 20 15 22 8 9 7 10 91
10 19 14 9 5 11 7 3 68
11 19 15 8 10 12 3 11 78
CSum 70 60 56 27 41 24 32

Chr 16 17 18 19 20 21 22 RSum
12 12 16 8 13 10 5 5 69
13 10 7 16 5 6 7 9 60
14 13 6 10 2 6 13 11 61
CSum 35 29 34 20 22 25 25

In the above tables, the jth entry in the RSum column refers to the sum of the numbers
in the jth row in the corresponding table, and the kth entry in the CSum row refers to the
sum of the numbers in the kth column in the corresponding table. Any table that has
been subdivided in a total of 9 subtables where subtables A−C have same Sum column as
in the subtables A−C of the data table and where subtables 1−6 have the same RSum and
CSum columns/rows as in subtables 1−6 of the data table is in F(u). So a lower bound for
the cardinality of F(u) can be obtained by the product of the number of subtables of type
A,B,C and 1, . . . , 6 with the given Sum and RSum/CSum columns/rows. The total number
of such subtables range from 1034 for Table A to 1014 for Table 6. The exact number of
tables calculated by Latte [3] are shown in Table 7.

Table 7: Total number subtables associated to subtables A-C and 1-6

Subtable Size

A 2952470953799239962752797659386190
B 252762217255461089482462934497
C 242451808378958740321921
1 384937707376563538670706387547
2 11636397863410272633
3 51895845228141509162048464
4 5538280355961059
5 336625602844011493310899
6 777971438252448

The product of these numbers is in the order of 10214. This estimate however can be
improved by the following arguments. Most of the 29, 260 Markov moves can be applied
to Table 1 without changing the Sum column. The few moves that cannot be applied are
those that make the (19, 21) entry negative. In addition, only 1554 moves will not change
the Sum or RSum/CSum entries of the above 9 Subtables since the moves occur completely
inside each of the subtables. The remaining 27, 706 Markov moves will alter at least two of
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these subtables so that their Sum and/or RSum/CSum entries will change. If we repeat the
above Latte calculations for the nine subtables obtained after the application of each one
of these 27, 706 Markov moves (in other words those that change Sum and/or RSum/CSum)
we will find that the number of these new tables will be again of the order 6 × 10214.
We can repeat the same argument when two or more Markov moves are considered. For
instance if we applied exactly 30 Markov moves of the 27706 possible moves in sequence
then we would obtain a total number of new tables in F(u) given by 6× 10214 times(

27706

30

)
≈ 7× 10100.

This is approximately 4× 10315. This calculation however may have some tables that are
counted more than once because two distinct sequences of moves starting from Table 1
can lead to the same table. This overcounting should be more than compensated by tables
that could be reached with more or fewer than 30 moves. In conclusion we estimate that
a lower bound of 4× 10315 possible tables is justified, but to be on the safe side we adopt
10300 as a very conservative estimation of the possible size of F(u).

Now we provide a very liberal upper bound on the number of tables whose χ2 value
is smaller than the χ2 value of the data table (346.63). The volume V of the ellipsoid
defined by equation (3) is bounded above by 1.1×10266 using the volume formula for mul-
tidimensional ellipsoids. It is known that the number of lattice points in an n-dimensional
ellipsoid defined by ∑

1≤j<k≤n
ajkxjk ≤ r2

is approximately equal to V +O(rn/2) [32] and in our case r2 = 346.63 and n = 231, and
we arrive at 1.8 × 10293 as an upper bound on the number of tables which are inside the
ellipsoid defined by (3). We note that this must be a gross estimate, since we should be
counting the tables in the ellipsoid that are also in the fiber F(u). For this we should be
counting the lattice points in another ellipsoid of lower dimension 209. We conclude that
a very conservative estimate of proportion of tables F where χ2(F ) ≤ χ2(f) = 346.63 in
F(u) is extremely small:

≤ 1.8× 10293

10300
≈ 1.8× 10−7.

We believe that the true proportion is much smaller.
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[1] H. Abdi. Bonferroni and šidák corrections for multiple comparisons. In N. J. Salkind,
editor, Encyclopedia of Measurement and Statistics, pages 598 – 605, 2007.

[2] J. Arsuaga, K. M. Greulich-Bode, M. Vazquez, M. Bruckner, P. Hahnfeldt, D. J. Bren-
ner, R. K. Sachs and L. Hlatky. Chromosome spatial clustering inferred from radio-



REFERENCES 146

genic aberrations. International Journal of Radiation Biology , 80(7): 507 – 515,
2004.

[3] V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Köppe, G. Pinto, M. Vergne,
and J. Wu. A User’s Guide for Latte integrale v1.7.1, 2013, software package Latte
is available at http://www.math.ucdavis.edu/∼latte/.

[4] M. Barbieri, M. Chotalia, J. Fraser, L. M. Lavitas,J. Dostie, A. Pombo, and
M. Nicodemi. Complexity of chromatin folding is captured by the strings and binders
switch model. Proc Natl Acad Sci U S A, 109(40): 16173-16178, 2012.

[5] H. Ben-Bassat, Z. Shlomai, G. Kohn, and M. Prokocimer. Establishment of a human
T-acute lymphoblastic leukemia cell line with a (16;20) chromosome translocation.
Cancer Genet Cytogenet, 49(2): 241–248, 1990.

[6] W. A. Bickmore and P. Teague. Influences of chromosome size, gene density and
nuclear position on the frequency of constitutional translocations in the human pop-
ulation. Chromosome Res, 10: 707–715, 2002.

[7] W. A. Bickmore and B. van Steensel. Genome architecture: domain organization of
interphase chromosomes. Cell. 152(6): 1270–1284, 2013

[8] T. Blackstone ,R. Scharein, B. Borgo, R. Varela, Y. Diao , and J. Arsuaga. Modeling
of chromosome intermingling by partially overlapping uniform random polygons. J
Math Biol, 62(3): 371–389, 2011.

[9] J. J. Boei, J. Fomina, F. Darroudi, N. J. Nagelkerke, L. H. Mullenders. Interphase
chromosome positioning affects the spectrum of radiation-induced chromosomal aber-
rations. Radiat. Res., 166(2): 319–326, 2006.

[10] D. Bossi, F. Carlomagno, I. Pallavicini, G. Pruneri, M. Trubia, P. R. Raviele,
A. Marinelli, S. Anaganti, M. C. Cox, G. Viale, M. Santoro, P. P. Di Fiore, and
S. Minucci. Functional characterization of a novel FGFR1OP-RET rearrangement in
hematopoietic malignancies. Mol Oncol., 8(2): 221–231, 2014.

[11] S. Boyle, S. Gilchrist, J. M. Bridger, N. L. Mahy, J. A. Ellis, and W. A. Bickmore.
The spatial organization of human chromosomes within the nuclei of normal and
emerin-mutant cells. Human Molecular Genetics, 10(3): 211–219, 2001.

[12] M. R. Branco and A. Pombo. Intermingling of chromosome territories in interphase
suggests role in translocations and transcription-dependent associations. PLoS Biol.,
4(5): 780–788, 2006.

[13] A. M. Chen, J. N. Lucas, F. S. Hill, D. J. Brenner, and R. K. Sachs. Proximity effects
for chromosome aberrations measured by FISH. Int. J. Radiat. Biol., 69: 411–420,
1996.



REFERENCES 147

[14] R. Christensen. Log-linear models and logistic regression 2nd ed. Springer-Verlag, New
York, 1997.

[15] M. N. Cornforth, K. M. Greulich-Bode, B. D. Loucas, J. Arsuaga, M. Vázquez, R. K.
Sachs, M. Brückner, M. Molls, P. Hahnfeldt, L. Hlatky, and D. J. Brenner. Chromo-
somes are predominantly located randomly with respect to each other in interphase
human cells. Journal of Cell Biology, 159(2): 237–244, 2002.

[16] T. Cremer, C. Cremer, H. Baumann, E. K. Luedtke, K. Sperling, V. Teuber, and
C. Zorn. Rabl’s model of the interphase chromosome arrangement tested in Chinise
hamster cells by premature chromosome condensation and laser-UV-microbeam ex-
periment. Human Genetics, 60(1): 46–56, 1982.

[17] C. Cremer, C. Münkel, M. Granzowd et al. Nuclear architecture and the induction of
chromosomal aberrations. Mutation Research/Reviews in Genetic Toxicology, 366(2):
97-116, 1996.

[18] T. Cremer and M. Cremer. Chromosome terri’tories. Cold Spring Harb Perspect Biol.,
2(3): 1–22, 2006.

[19] J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics, 43(5): 1470–1480, 1972.

[20] J. A. De Loera, B. Sturmfels and R. Thomas. Gröbner bases and triangulations of
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