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Algebraic geometry of Poisson regression
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Abstract. Designing experiments for generalized linear models is difficult because optimal designs
depend on unknown parameters. Here we investigate local optimality. We propose to study for a
given design its region of optimality in parameter space. Often these regions are semi-algebraic and
feature interesting symmetries. We demonstrate this with the Rasch Poisson counts model. For any
given interaction order between the explanatory variables we give a characterization of the regions of
optimality of a special saturated design. This extends known results from the case of no interaction.
We also give an algebraic and geometric perspective on optimality of experimental designs for the
Rasch Poisson counts model using polyhedral and spectrahedral geometry.
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1. Introduction

Generalized linear models are a mainstay of statistics, but optimal experimental designs
for them are hard to find, as they depend on the unknown parameters of the model. A
common approach to this problem is to study local optimality, that is, determine an optimal
design per fixed set of parameters. In practice, this means that appropriate parameters
have to be guessed a priori, or fixed by other means. Here we approach the problem from
a different, more global, direction. Our goal is to partition parameter space into regions of
optimality, such that in each region the optimal design is (at least structurally) constant. Our
key observation is that, by means of general equivalence theorems, the regions of optimality
are often semi-algebraic, that is, defined by polynomial inequalities. This opens up the toolbox
of real algebraic geometry to the analysis of optimality of experimental designs.

We discuss the phenomenon on the Rasch Poisson counts model, a certain generalized
linear model that appears in Poisson regression, for example in tests of mental speed in
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psychometry [7]. The parameterization of the intensities of the Poisson distribution is akin to
the toric models in algebraic statistics. The view from experimental design, however, is new,
and the resulting mathematical questions have not been considered in algebraic statistics. Our
main result is a characterization of optimality of a particular saturated design in Theorem 1.
This approach differs from classical experimental design methodology in that we fix a design
and then look for parameter regions where this design is optimal. Nonetheless, the solution is
useful for experimental design, as it gives large regions where the optimal design is constant.
This can be used to incorporate a priori knowledge about practically relevant parameter
ranges.

Beyond the concrete statements about saturated designs, we also demonstrate how to
approach the problem from a geometric point of view. In particular, in Section 4 we describe
the problem of determining regions of optimality in the language of mathematical optimization.
We are convinced that interesting mathematical structures can be found when studying the
polynomial inequalities that arise from the different equivalence theorems in the theory of
optimal experimental design.

Notation

We switch freely between a binary vector x = (xi) ∈ {0, 1}k and a subset A ⊂ {1, . . . , k}.
If confusion can arise, the subset corresponding to x ∈ {0, 1}k is written A(x) = {i : xi = 1},
and conversely, the binary vector for a given A is x(A) with components xi(A) = 1 if i ∈ A
and xi(A) = 0 otherwise.

2. The Rasch Poisson counts model

When testing mental speed, psychometrists often present series of questions and count the
number Y of correctly solved items in a fixed time. One example of such a test is the Münster
Mental Speed Test [7]. In such a setting it is natural to model the response Y as Poisson
distributed with parameter λ > 0, often called the intensity. According to the basic principle
of statistical regression, the mean of the response Y (which is just λ) is a deterministic
function of the factors of influence. Rasch’s idea was to make λ = θσ multiplicative in the
ability θ of a test person and the easiness σ of the tasks. Due to the multiplicative structure,
an absolute estimation of either ability or easiness is only possible if the other quantity is
fixed. For the mathematics, the distinction between θ and σ is not relevant, because we make
another multiplicative ansatz for σ below, and θ may well be subsumed there.

Rule based item generation is a computer driven mechanism to generate questions to
present to the subjects. One question’s easiness σ(x) depends on a rule setting x. We think
of the rules as discrete switches that can be on or off and that influence the difficulty of the
question. In practice, we often assume that each additional rule makes the task harder and
thus decreases the intensity. Throughout the paper, the number of rules is fixed as k ∈ N.
The possible experimental settings are thus the binary vectors x = (x1, . . . , xk) ∈ {0, 1}k (but
see our Notation section).



T. Kahle, K.-F. Oelbermann, R. Schwabe / Journal of Algebraic Statistics, 29-44 31

The natural choice for the influence of rule settings on the intensity λ is exponential:

λ(x) = θσ(x) = exp(f(x)Tβ) (2.1)

for a vector of regression functions f : {0, 1}k → Rp, and a vector of parameters β ∈ Rp. A
concrete model is specified by means of the integers k, p, and the regression functions f .

Definition 1. The interaction model of order d is specified by the regression function

fk,d(x) = (all squarefree monomials of degree at most d in x1, . . . , xk) (2.2)

We omit the subscript indices if k, d are fixed or clear from the context.

Remark 1. If our rule settings x were not binary, then in Definition 1 there would be a
difference between using all monomials and all squarefree monomials. For binary x there is
none since x2i = xi for all i.

Example 1. The most interesting model from a practical perspective is the independence
model which arises for d = 1. In this case f(x) = (1, x1, . . . , xk) and p = 1 + k. The
pairwise interaction model arises for d = 2, where f(x) = (1, x1, . . . , xk, x1x2, . . . , xk−1xk)
and p = 1 + k +

(
k
2

)
. Somewhat confusingly this second situation is sometimes called first

order interaction.

Definitions (2.1) and (2.2) lead to a product structure for the intensity λ(x) as follows.
Let d ≥ 1. There is a parameter βA for each A ⊂ {1, . . . , k} with |A| ≤ d. Then

λ(x, β) =
∏

A⊂A(x)
|A|≤d

eβA . (2.3)

Hence, the more rules are applied, the more terms eβA enter the product (2.3). In the d = 1
case, there is one term eβ{i} for each i ∈ {1, . . . , k} and one global term β∅. The intensity
is then proportional to the product over those terms for which the corresponding rule is
active and there is no interaction among the rules. For higher interaction order d, if, for
example, rules 1, 2 are active, the corresponding factor is eβ{1}eβ{2}eβ{1,2} , etc. If all singleton
parameters β{i} have the same sign, then having a parameter βA, |A| ≥ 2 with the same sign
is sometimes called synergetic interaction, while βA with a different sign is called antagonistic
interaction.

The case d = 1 is particularly well-behaved (and very relevant for practitioners). Graßhoff,
Holling, and Schwabe have investigated this case in depth in [10, 11, 12]. In Section 3 we
generalize some of their results to the general interaction case.

Remark 2. In (2.2) we chose all squarefree monomials of bounded degree. Therefore, if there
is a parameter βA for some set A of rules, then there also are parameters βB for all subsets
B of A. In the language of combinatorics, the indices of the parameters form a simplicial
complex, and one could conversely define a model for each simplicial complex, by letting the
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regression function consist of squarefree monomials corresponding to the faces of the complex.
This puts our parametrizations of possible intensities λ in the context of hierarchical log-linear
models [8, Section 1.2], certain hierarchically structured exponential families that also arise
in the theory of information processing systems [14]. For a general overview of generalized
linear models see [20]. For the class of log-linear models see [4] and for log-linear models with
underlying combinatorial structures (such as graphs), see [18].

Remark 3. In (2.1), not all vectors λ ∈ R2k have corresponding parameters β. Obviously, λ
needs to have positive entries, but there are further restrictions. For the simplest example, in
the case k = 2, d = 1, there are four possible rule settings {(00), (01), (10), (11)}. Independent
of the parameters β, it holds that

λ(00)λ(11)− λ(10)λ(01) = 0,

since both terms equal e2β∅eβ1eβ2 . As a function R4 → R, this 2×2 determinant vanishes iden-
tically on the image of the parametrization and it can be seen that this vanishing characterizes
points in the image. For any k and d, there is a finite set of binomials (that is, polynomials
with only two monomials) in λ that characterizes the image of the parameterizations. In
commutative algebra these are known as the generators of certain toric ideals [24, Chapter 4],
while in algebraic statistics they are called Markov bases [6]. In principle, after fixing k
and d, all binomials can be computed with the help of computer algebra (the fastest software is
4ti2 [1]), but this is hard already for d = 2 and k > 7. Many special cases have been dealt
with in algebraic statistics, though. See [2] and references therein.

2.1. Optimal experimental design

The estimation problem is to determine the values of the parameters β given observations
(Y (i),x(i)), i = 1, . . . , N which are pairs of experimental settings x(i) and responses Y (i). In
practice, when designing an experiment to estimate β, we can choose which settings x(i) to
present. This choice should be made so that the result of the experiment is most informative
about β. Doing so, we may also choose to test a particular setting x multiple times. This
quickly leads to an idea of Kiefer: An approximate design is a vector (wx)x∈{0,1}k ∈ [0, 1]2

k

of non-negative weights with
∑

xwx = 1. In the following we only work with approximate
designs as our choices of experimental settings.

How is the quality of a design to be measured? Quite generally, one uses the Fisher
information matrix, defined as

M(w, β) =
∑

x∈{0,1}k
wxλ(x, β)f(x)f(x)T . (2.4)

This choice can be motivated by large sample asymptotics: asymptotically the maximum-
likelihood-estimator of the parameters is normal and its standardized covariance matrix is the
inverse of the Fisher information [9]. An optimality criterion is any function that produces a
real number from the Fisher information. Here we choose the popular D-optimality criterion
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which declares a maximal determinant as optimal. We view the design problem for the Poisson
counts model as the determination of descriptions of the regions in β-space where certain
designs are optimal. Given a particular design, however, there may be no parameters β for
which this design is optimal.

Remark 4. When the global parameter β∅ changes, the determinant of M(w, β) is globally
scaled. For all question regarding optimal design we may therefore assume β∅ = 0.

Example 2. If βA = 0 for all A, one can check that the design problem reduces to that of a
k-factorial ANOVA model. A folklore result in optimal design is that, for any d, a D-optimal
experimental design is then given by the full factorial design, that is the uniform weight vector
wx = 1

2k
, for all x ∈ {0, 1}k.

2.2. Symmetry

The regions of optimality show a high degree of symmetry. We use only basic facts about
symmetric designs. Corresponding statements can be made in more general settings [22]. Let
G be a finite group acting on the set of design points {0, 1}k. Two natural symmetries result
from G = Sk, the symmetric group permuting rules, and G = Zk2 whose elements exchange
the roles of 0 and 1 for some rules. The action ◦ of G on approximate designs is defined by
(g ◦ w)x = wg◦x. A crucial assumption for the exploitation of symmetry in design theory is
that the action of G induces a linear action on regression functions, that is, for each g ∈ G
there is a matrix Qg such that f(g ◦ x) = Qgf(x). It is not difficult to assert this assumption
in our case. From this one can define a corresponding action (also denoted ◦) on parameter
space via the requirement f(g ◦ x)T (g ◦ β) = f(x)Tβ that the response be invariant. It is
obvious that g ◦ β = Q−Tg β is a possible choice. By linearity, and since the intensity λ(x, β)

only depends on the response f(x)Tβ, information matrices transform as

M(g ◦ w, g ◦ β) = QgM(w, β)QTg .

Since G is finite, Qg is unimodular and the determinant is unchanged. This proves that any
optimal design w for parameters β yields the optimal design g ◦ w for parameters g ◦ β: if
a better value was possible in the optimization problem for parameters g ◦ β, then a better
value of the determinant could also be achieved in the problem for β. In total we have the
following proposition.

Proposition 1. The regions of optimality are symmetric in the sense that if w is a D-optimal
approximate design for parameters β, then for all g ∈ G, g ◦ w is a D-optimal approximate
design for parameters g ◦ β.

Example 3. If d = 1, and G = Zk2 consists of 0/1 exchanges, then it is easy to check that
the matrices Qg correspond to sign changes on the parameters β. In particular, the regions of
optimality are point symmetric around the origin.
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Another way to study the symmetry in this optimization problem is to compute the
determinant of the information matrix explicitly. For example, if d = 1, exchanging βi by
−βi replaces λi by 1/λi so that homogeneity of the determinant can be exploited to see the
symmetry. For d = 1, k = 2, the determinant is equal to the elementary symmetric polynomial
of degree three in the products wxλ(x). For d = 1 and higher values k, the determinant
is not an elementary symmetric polynomial (it misses monomials) but it still has a nice
combinatorial description. It is an interesting challenge to work out the relation between the
determinant and the matrices Qg from above also for d > 1.

3. Semi-algebraic regions of optimality for saturated designs

The number of parameters of the interaction model of order d equals p =
∑d

i=0

(
k
i

)
. The

Fisher information matrix in (2.4) is of format p× p. For fixed β, Carathéodory’s theorem
applied to the polytope P (β) in Definition 4, yields that every Fisher information matrix is
realized by a design w which has at most 1

2p(p− 1) + 2 support points. Indeed, information
matrices are symmetric and their diagonal equals their first row. Therefore they span a
linear space of dimension at most 1

2p(p − 1) + 1. Both the support points of a design and
the corresponding weights are in general not unique, but in certain situations the optimal
experimental design is quite rigid. A design is saturated if it is supported on exactly p points.
It is clear from (2.4) that this is the minimal number of points, since a convex combination of
less than p rank one matrices has rank at most p− 1. For saturated designs it is well-known
that D-optimal weights are uniform, that is, all weights wx, x ∈ supp(wx) are equal to 1/p
(see [21, Corollary 8.12]). Hence, optimization in the class of saturated designs reduces to the
choice of p experimental settings x appearing in the support of w. We now define a special
design whose optimality we can characterize. Its support points correspond exactly to the
terms in the regression function.

Definition 2. The corner design w∗k,d is the saturated design with equal weights wx = 1/p

for all x ∈ {0, 1}k with |x|1 ≤ d.

Example 4. For k = 3 rules and interaction order d = 2 the regression function is
f(x1, x2, x3) = (1, x1, x2, x3, x1x2, x1x3, x2x3) and there are p = 7 parameters. The corner
design has weight 1/7 on the seven binary 3-vectors not equal to (1, 1, 1):

w∗3,2 : w(0,0,0) = w(1,0,0) = w(0,1,0) = w(0,0,1) = w(1,1,0) = w(1,0,1) = w(0,1,1) = 1/7.

We introduce the shorthand notation µA := eβA and µi = µ{i}, µij = µ{i,j}, etc. The
region of optimality of the corner design is described in the following theorem. Its proof is a
translation of the inequalities in the Kiefer-Wolfowitz equivalence theorem [21, Section 9.4]
and appears in Section 3.1 after some discussion of consequences and relations to existing
work.
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Theorem 1. The corner design w∗k,d is optimal if and only if for all C ⊆ {1, . . . , k} with
|C| > d

∑
B⊂C
|B|≤d

(
|C| − |B| − 1

d− |B|

)2 ∏
A⊂C,|A|≤d

A 6=B

µA ≤ 1. (3.1)

The inequalities in Theorem 1 can always be satisfied. Indeed by making parameters βA
sufficiently negative, the left hand side of (3.1) can be made as small as desired. This has the
interpretation that, if the rules make the problem hard enough, not testing particularly hard
settings becomes eventually optimal. Stated geometrically: The region of optimality of the
corner design is non-empty, independent of the interaction order and the number of rules.

We can always assume d ≤ k. If d = k, then the corner design w∗k,d degenerates to the full

factorial design which contains all 2k possible settings. This design is saturated and optimal
regardless of the parameters since the condition in Theorem 1 is vacuous.

In the case d = 1, Graßhoff et al. have shown that almost all of the inequalities in
Theorem 1 are redundant. Specifically, [11, Theorem 1] shows that if

µiµj + µi + µj ≤ 1

for all pairs of 1 ≤ i < j ≤ k then the corner design w∗k,1 is D-optimal. In (3.1), these
inqualities correspond to |C| = 2. The remaining inequalities are all redundant and can be
omitted. This is not the case if d > 1 as illustrated by the following example.

Example 5. Let d = 2. For k = 4, fixing µ∅ = 1 with Remark 4, the Rasch Poisson
counts model has 10 remaining parameters µ1, . . . , µ4, µ12, . . . , µ34. Theorem 1 stipulates
five inequalities that characterize optimality of the corner design. Four of the inequalities
correspond to the four subsets of size three. For example, the inequality for C = {1, 2, 3} has
terms of degrees six and five:

µ1µ2µ3µ12µ13µ23 + µ2µ3µ12µ13µ23 + · · ·+ µ1µ2µ3µ12µ13 ≤ 1. (3.2)

The inequality corresponding to C = {1, 2, 3, 4} has non-trivial binomial coefficients and terms
of degrees ten and nine:

9
∏
|A|≤2

µA + 4
∑
|B|=1

∏
|A|≤2
A 6=B

µA +
∑
|B|=2

∏
|A|≤2
A 6=B

µA ≤ 1. (3.3)

To confirm that the final inequality is not redundant, we are searching for a point that satisfies
all four inequalities in (3.2), but not that in (3.3). To reduce dimension, we restrict to
parameter values invariant under the symmetric group Sk permuting rules. For singletons i,
let µi = s and for pairs {i, j}, i 6= j, let µij = t. In this two-dimensional set of parameter
values, the inequalities take the form

s3t3 + 3s2t3 + 3s3t2 ≤ 1, 9s4t6 + 16s3t6 + 6s4t5 ≤ 1.
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It is easy to verify that s = 5/9, t = 4/5 satisfies the first inequality, but violates the second.
Figure 1 is a plot of the resulting inequalities for k = 10. The region of optimality consists of
all points that lie below all of the curves.

Figure 1: The curves in this plot consist of the points for which the inequalities (3.1) are attained. The region
of optimality of the corner design in Example 5 is the region below any of the curves. On the right hand side of
the picture, |C| = 3 is the lowermost curve, then |C| = 4, and so on. Consequently, the red, blue, green curves
correspond to |C| = 3, 4, 5, respectively. In the region where s, t ≤ 1 (that is, βA ≤ 0), inequalities corresponding to
|C| > 5 are redundant and plotted in black. The inset shows a tiny region where the |C| = 5 inequality is necessary.
The region above the dotted line corresponds to antagonistic interaction: Two rules being active at the same time
make the problem easier. In this case also inequalities for |C| > 5 are tight.

For fixed d, as k grows larger, more inequalities arise from Theorem 1. We conjecture that
when βA < 0 for all A, |A| ≤ d, as k grows, a finite number of them suffices to characterize
the region of optimality of w∗k,d.

Conjecture 1. Fix d and assume all parameters have negative values: βA < 0, |A| ≤ d.
There exists a constant c(d) such that in Theorem 1 the inequalities corresponding to C with
|C| > c(d) are redundant given the remaining ones. In particular, c(2) = 5.
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Remark 5. The inequalities (3.1) are restrictions on the parameters. For d = 1 it hap-
pens that they can be rewritten as inequalities in the intensities λ(x, β), but in general
this is not the case. In principle a semi-algebraic description in parameter space can com-
puted. With φ the parametrization mapping coordinates µ to intensities λ, consider the set
{(µ, λ) : λ = φ(µ), µ satisfies (3.1)}. According to the Tarski–Seidenberg theorem the projec-
tion of this semi-algebraic set to the λ coordinates is again semi-algebraic. Actual computation,
however, relies on quantifier elimination. Therefore even the best algorithms are for now
unable to solve simple examples. See [3] for the theory of such computations.

We finish the discussion with a question regarding other saturated designs.

Question 1. When βA < 0, for all A, |A| ≤ d, is the corner design the only saturated design
that admits D-optimal parameter values?

The Kiefer-Wolfowitz theorem gives a system of inequalities for any saturated design and
this system characterizes parameter values for optimality. In the case d = 1, k = 3 Graßhoff
et al. have shown that, up to fractional factorial designs at β = 0, only the corner design
yields a feasible system [12]. We have used numerical moment relaxations and semi-definite
programming to numerically confirm the case d = 1, k = 4. Everything beyond this is
computationally out of reach at the moment.

3.1. Proof of Theorem 1

The Kiefer-Wolfowitz theorem characterizes regions of optimality of a fixed saturated
design w by means of inequalities in parameters µA (or equivalently βA). We apply it to
the corner design and make these inequalities explicit. To do so, a 0/1-matrix needs to be
inverted.

Definition 3. For fixed k, d, the model matrix Fk,d is the matrix whose rows are the regression
vectors {fk,d(x) : x ∈ supp(w∗k,d)}.

Example 6. For k = 3 and d = 2 the model matrix is

F3,2 =



1 x1 x2 x3 x1x2 x1x3 x2x3

000 1 0 0 0 0 0 0
100 1 1 0 0 0 0 0
010 1 0 1 0 0 0 0
001 1 0 0 1 0 0 0
110 1 1 1 0 1 0 0
101 1 1 0 1 0 1 0
111 1 0 1 1 0 0 1


.

The rows and columns of Fk,d may also be indexed by subsets of A ⊆ {1, . . . , k} with
|A| ≤ d so that Fk,d is lower triangular. We omit the subscript indices if k, d are fixed or clear
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from the context. In the general setup of k rules and interaction order d the entries FA,B of
F are

FA,B =

{
1 if B ⊆ A
0 otherwise,

where A,B ⊂ {1, . . . , k}, |A| ≤ d, |B| ≤ d.

Lemma 1. The matrix inverse of F has entries

F−1A,B =

{
(−1)|A|−|B| if B ⊆ A
0 otherwise.

Proof. Consider the poset of subsets of size at most d in [k]. Its zeta function takes values
ζ(B,A) = FA,B . Its Möbius function takes values µ(B,A) = F−1A,B . Since ζ and µ are inverses
in the incidence algebra [23, Sections 3.6 and 3.7], the lemma follows.

If |x| ≤ d, then there is a row with index B in F that may be identified with x via
F (x)B = (1,x, . . .). For this x we have

(
F−T f(x)

)
A

= (ex)A :=

{
1 A = B

0 otherwise.

This is a special case of the following lemma.

Lemma 2. Let x ∈ {0, 1}k then

(F−T f(x))A =

{
(−1)d−|A|

(|A(x)|−|A|−1
d−|A|

)
if A ⊂ A(x)

0 otherwise.

Proof. We compute

(F−T f(x))A =
∑
|B|≤d

(−1)|B|−|A|1A⊂B1B⊂A(x).

If A 6⊂ A(x) then all summands are zero. Therefore we can reindex the summands by sets B′

disjoint from A such that B = A ∪B′. This yields

(F−T f(x))A =
∑

B′⊂A(x)\A
|B′|≤d−|A|

(−1)|A|+|B
′|−|A|.

The result now follows with n = |A(x) \A| = |A(x)| − |A|, l = |B′|, and L = d− |A| from the
following known formula (which is also easy to prove by induction)

L∑
l=0

(−1)l
(
n

l

)
= (−1)L

(
n− 1

L

)
.
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Proof. [Proof of Theorem 1]
By the Kiefer-Wolfowitz theorem, a saturated design is optimal if and only if the following

inequality holds for all settings x ∈ {0, 1}k

λ(x)(F−T f(x))TΨ−1(F−T f(x)) ≤ 1,

where Ψ = diag(1, (µA)|A|≤d). The inequalities corresponding to x with |x| ≤ d are automati-
cally satisfied with equality:

λ(x)(F−T f(x))TΨ−1(F−T f(x)) = λ(x)eTxΨ−1ex =
∏
A⊂x,
|A|≤d

µA
∏
A⊂x,
|A|≤d

µ−1A = 1.

When |x| ≥ d+ 1, using Lemma 2, we get the inequalities

∑
B⊂A(x)
|B|≤d

(
|A(x)| − |B| − 1

d− |B|

)2 ∏
A⊂A(x),|A|≤d

A 6=B

µA ≤ 1.

Remark 6. In the proof of Theorem 1, when |x| = d+1, by Lemma 2, the entries (F−T f(x))A
are zero if A 6⊂ A(x) and equal to ±1 if A ⊂ A(x), since in this case the binomial coefficient

is
(d−|A|
d−|A|

)
. We then find inequalities of the form∑

B⊂A(x)
|B|≤d

∏
A⊂A(x),|A|≤d

A 6=B

µA ≤ 1.

4. A geometric perspective on D-optimal designs

For each x, the matrix f(x)f(x)T is a positive-semidefinite rank one matrix with entries
zero and one. They are the vertices of the optimization domain which turns out to be a
polytope:

Definition 4. The information matrix polytope is

P (β) = conv
{
λ(x, β)f(x)f(x)T : x ∈ {0, 1}k

}
.

All points of which the convex hull is taken are also vertices of P (β), since any affine
combination of them has rank at least two. Each point in P (β) is an information matrix
M(w, β) for some approximate design w. In the case β = 0 (which implies λ(x) = 1 for all x),
the arising polytopes are well-known in the combinatorial optimization literature.
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Example 7. When d = 1 and β = 0, P (β) is the correlation polytope. To make this obvious,
one needs to omit the constant entry 1 from the beginning of the regression function f . The
correlation polytope is well-known in combinatorial optimization and its complexity provides
lower complexity bounds there [15]. It is affinely equivalent to the even better known cut
polytope via the covariance mapping [5, Chapter 5]. For higher d, and β = 0, the polytope
P (β) is called an inclusion polytope in [13, Section 2.4.1]. It is affinely equivalent (via
a generalization of the covariance mapping) to the marginal polytope of a corresponding
hierararchical model.

The problem of determining an optimal experimental design has two steps

1. Determine an optimal information matrix M∗.

2. Determine weights w that write the optimal matrix M∗ as a convex combination of
vertices λ(x, β)f(x)f(x)T of the information matrix polytope.

The possible solutions to the second problem are dealt with using convex geometry. In
particular Carathéodory’s theorem applies and gives bounds for support sizes of weight
vectors w.

In the case of D-optimality, the optimization problem in step 1 is to maximize the
determinant over P . The determinant vanishes at the vertices of P , and since it is a log-
concave function, a unique maximum with positive value is attained in the interior, as soon as
there are full rank matrices in the interior. All matrices in the information matrix polytope
are positive semidefinite. This motivates the linear matrix inequality (LMI) relaxation of
P (β). For this, the optimization domain P (β) is replaced by the spectrahedron arising as
the intersection of the cone of positive semidefinite matrices with the affine space spanned
by P (β).

Maximization of the determinant over a spectrahedron is a well-known convex optimization
problem [25]. The unique point where the determinant is maximal is known as the analytic
center of the semidefinite program. If the analytic center of the linear matrix inequality lies
inside P (β), then it gives the optimal experimental design. It is therefore an interesting
problem to give a fully geometric description of the case that the analytic center lies outside
of P .

Question 2. For fixed k, d, as a function of β, what is the difference between P (β) and its
LMI relaxation? Through which faces can the analytic center leave P (β) when β changes?

Example 8. Let k = 2 and d = 1. Setting again β∅ = 0, the two parameters of the Rasch
Poisson counts model are λi = eβi , i = 1, 2. By symmetry considerations from Section 2.2 we
restrict ourselves to βi ≤ 0, which corresponds to λi ∈ (0, 1]. The information matrix polytope
is

P = conv


1 0 0

0 0 0
0 0 0

 ,

λ1 λ1 0
λ1 λ1 0
0 0 0

 ,

λ2 0 λ2
0 0 0
λ2 0 λ2

 ,

λ1λ2 λ1λ2 λ1λ2
λ1λ2 λ1λ2 λ1λ2
λ1λ2 λ1λ2 λ1λ2

 .
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Independent of the values λ1, λ2, the polytope P is a 3-dimensional simplex. Its LMI re-
laxation is the intersection of the cone of (3 × 3) positive-semidefinite matrices with the
affine space spanned by P . This yields the following linear matrix inequality (� 0 means
positive-semidefinite), using the first vertex as the base point and variables x, y, z:(x, y, z) :

1 + x(λ1 − 1) + y(λ2 − 1) + z(λ1λ2 − 1) λ1x+ λ1λ2z λ2y + λ1λ2z
λ1x+ λ1λ2z λ1x+ λ1λ2z λ1λ2z
λ2y + λ1λ2z λ1λ2z λ2y + λ1λ2z

 � 0

 .

Figure 2 contains plots of the resulting spectrahedra “along the diagonal” λ := λ1 = λ2. Each

Figure 2: Vanishing surfaces of the determinant in Example 8. In each plot, the bounded region is the spectrahedron.
As the parameter moves from λ = 1 (left) through λ = 0.45 (middle) to λ = 0.2 (right) it elongates. The ear-shaped
cones emerging from the vertices do not touch in the left-most picture. As soon as λ < 1, they do touch: Even in
the middle picture, the cone going off to the bottom and the sheet emerging from the three remaining vertices are
connected in codimension one (outside of the pictured area). If λ1 = 1, but λ2 < 1, then exactly three of the four
vertex cones meet eventually.

of the three spectrahedra has four vertices, although this is hardly visible in the rightmost
picture. These are also the vertices of P . In fact, when λ is close to 1, the spectrahedron
looks like a bloated version of P . The analytic center of the LMI is the point (x, y, z) where
the determinant is maximal. Numerical approximations can be computed efficiently with
semidefinite optimization (we used yalmip [19] in Matlab). Some values are given in
Table 1. Interestingly, the mosek solver that we used declares the spectrahedron as unbounded

λ analytic center

1 (0.250, 0.250, 0.250)
0.8 (0.254, 0.254, 0.217)
0.5 (0.300, 0.300, 0.094)√
2− 1 (0.333, 0.333, 0.000)
0.4 (0.343, 0.343,−0.023)
0.2 (1.580, 1.580,−2.976)

Table 1: Coordinates of the analytic center as a function of λ.

for parameter values λ < 0.171. The transition of the D-optimal design to a saturated design
at
√

2 − 1 found in [10] is visible here as the analytic center leaves the polytope P at that
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parameter value. In this sense, the optimality of certain designs can be understood in terms
of the geometry of deforming spectrahedra.

We close by mentioning another connection between polyhedral and spectrahedral geometry.
The elliptope is the spectrahedron consisting of all positive semi-definite matrices with entries
one on the diagonal (so-called correlation matrices). It is a well-known relaxation of the
correlation polytope and its polyhedral faces have received considerable attention (see [16, 17]).
Example 8 motivates the study of the deformation of the linear matrix inequalities arising
from affine hulls of information polytopes. Each such deformation starts at an elliptope when
β = 0. As β becomes more negative, the spectrahedron deforms and eventually its analytic
center leaves the information matrix polytope. A thorough understanding of this phenomenon
would probably yield new insights about optimality of experimental designs, in particular
Question 1.
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