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Abstract. The points of a moment variety are the vectors of all moments up to some order, for a given
family of probability distributions. We study the moment varieties for mixtures of multivariate Gaussians.
Following up on Pearson’s classical work from 1894, we apply current tools from computational algebra
to recover the parameters from the moments. Our moment varieties extend objects familiar to algebraic
geometers. For instance, the secant varieties of Veronese varieties are the loci obtained by setting all
covariance matrices to zero. We compute the ideals of the 5-dimensional moment varieties representing
mixtures of two univariate Gaussians, and we offer a comparison to the maximum likelihood approach.
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1. Introduction

The n-dimensional Gaussian distribution can be defined by the moment generating function

∑
i1,i2,...,in≥0

mi1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · t

in
n = exp(t1µ1 + · · ·+ tnµn) · exp

(
1

2

n∑
i,j=1

σijtitj

)
. (1)

The model parameters are the entries of the mean µ = (µ1, . . . , µn) and of the covariance matrix
Σ = (σij). The unknowns µi have degree 1, and the unknowns σij have degree 2. The moment
mi1i2···in is a homogeneous polynomial of degree i1+i2+ · · ·+in in these n+

(
n+1
2

)
unknowns.

Let PN be the projective space of dimension N =
(
n+d
d

)
− 1 whose coordinates are all N + 1

moments mmi1i2···in
with i1 + i2 + · · · + in ≤ d. The closure of the image of the map given by

(1) is a subvariety Gn,d of PN , called the Gaussian moment variety of order d. Its dimension
equals n+

(
n+1
2

)
. In Section 2 we discuss this variety and its defining polynomials.

The main object of study in this paper is the secant variety σk(Gn,d) of the Gaussian moment
variety. That variety is the Zariski closure of the set of vectors of moments of order ≤ d of any
distribution on Rn that is the mixture of k Gaussians, for k = 2, 3, . . .. In short, σk(Gn,d) is the
projective variety that represents mixtures of k Gaussians. Since such mixtures are identifiable
[13], this secant variety eventually has the expected dimension:

dim(σk(Gn,d)) = k ·
[
n+

(
n+ 1

2

)]
+ k − 1 for d� 0. (2)

At present we do not know for which values of d this is guaranteed to hold; see Problem 4.
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The parametrization of the secant variety σk(Gn,d) is given by replacing the right hand side
of (1) with a convex combination of k such expressions. The number of model parameters is
the right hand side of (2). If the moments mi1i2···in are derived numerically from data, then
one obtains a system of polynomial equations whose unknowns are the model parameters. The
process of solving these equations is the method of moments for Gaussian mixtures.

For a concrete example, consider the case n = 1 and d = 6. The Gaussian moment variety
G1,6 is a surface of degree 15 in P6 that is cut out by 20 cubics. These cubics will be explained
in Section 2. For k = 2 we obtain the variety of secant lines, here denoted σ2(G1,6). This
represents mixtures of two univariate Gaussians. It has the parametric representation

m0 = 1
m1 = λµ+ (1− λ)ν
m2 = λ(µ2 + σ2) + (1− λ)(ν2 + τ2)
m3 = λ(µ3 + 3µσ2) + (1− λ)(ν3 + 3ντ2)
m4 = λ(µ4 + 6µ2σ2 + 3σ4) + (1− λ)(ν4 + 6ν2τ2 + 3τ4)
m5 = λ(µ5 + 10µ3σ2 + 15µσ4) + (1− λ)(ν5 + 10ν3τ2 + 15ντ4)
m6 = λ(µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6) + (1− λ)(ν6 + 15ν4τ2 + 45ν2τ4 + 15τ6)

(3)

Here and throughout we use the standard notation σ2 for the variance σ11 when n = 1. The
expressions in (3) come from the first seven coefficients in the moment generating function

∞∑
i=0

mi

i!
ti = λ · exp(µt+

1

2
σ2t2) + (1− λ) · exp(νt+

1

2
τ2t2).

The variety σ2(G1,6) is five-dimensional, so it is a hypersurface in P6. In Section 3 we derive:

Theorem 1. The defining polynomial of σ2(G1,6) is a sum of 31154 monomials of degree 39.
This polynomial has degrees 25, 33, 32, 23, 17, 12, 9 in m0,m1,m2,m3,m4,m5,m6 respectively.

We see in particular that m6 can be recovered from m1,m2,m3,m4 and m5 by solving a
univariate equation of degree 9. This number is of special historic interest. The 1894 paper [12]
introduced the method of moments. In our current view, this was the first paper in Algebraic
Statistics. Pearson analyzed phenotypic data from two crab populations, and he showed how
to find the five parameters in (3) by solving an equation of degree 9 if the first five moments
are given. The two occurrences of the number 9 are equivalent, in light of Lazard’s result [10]
that the parameters λ, µ, ν, σ, τ are rational functions in the first six moments m1, . . . ,m6.

The hypersurface in P6 described in Theorem 1 contains a familiar threefold, namely the
determinantal variety σ2(ν6(P1)) defined by the 3× 3-minors of the 4× 4-Hankel matrix

m0 m1 m2 m3

m1 m2 m3 m4

m2 m3 m4 m5

m3 m4 m5 m6

 . (4)

This can be seen by setting σ = τ = 0 in the parametrization (3). Indeed, if the variances tend
to zero then the Gaussian mixture converges to a mixture of the point distributions, supported
at the means µ and ν. The first d+ 1 moments of point distributions form the rational normal
curve in Pd, consisting of Hankel matrices of rank 1. Their kth mixtures specify a secant variety
of the rational normal curve, consisting of Hankel matrices of rank k.

The last four sections of this paper are organized as follows. In Sections 3 and 4 we focus
on mixtures of univariate Gaussians. We derive Pearson’s hypersurface σ2(G1,6) in detail, and
we examine the varieties σ2(G1,d) for d > 6 and σk(G1,3k) for k = 3, 4. In Section 5 we apply
the method of moments to the data discussed in [1, §3], and we offer a comparison to maximum
likelihood estimation. In Section 6 we explore some cases of the moment varieties for Gaussian
mixtures with n = 2, and we discuss directions for future research.
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2. Gaussian Moment Varieties

In this section we examine the Gaussian moment varieties Gn,d, starting with the case n = 1.
The moment variety G1,d is a surface in Pd. Its defining polynomial equations are as follows:

Proposition 1. Let d ≥ 3. The homogeneous prime ideal of the Gaussian moment surface G1,d
is minimally generated by

(
d
3

)
cubics. These are the 3× 3-minors of the 3× d-matrix

Hd =

 0 m0 2m1 3m2 4m3 · · · (d− 1)md−2
m0 m1 m2 m3 m4 · · · md−1
m1 m2 m3 m4 m5 · · · md

 .

Proof. Let Id = I(G1,d) be the vanishing ideal of the moment surface, and let Jd be the ideal
generated by the 3× 3-minors of Hd. A key observation, checked using integration by parts, is
that the moments of the univariate Gaussian distribution satisfy the recurrence relation

mi = µ mi−1 + (i− 1)σ2mi−2 for i ≥ 1. (5)

Hence the row vector (σ2, µ,−1) is in the left kernel of Hd. Thus rank(Hd) = 2, and this means
that all 3× 3-minors of Hd indeed vanish on the surface G1,d. This proves Jd ⊆ Id.

From the previous inclusion we have dim(V (Jd)) ≥ 2. Fix a monomial order such that the
antidiagonal product is the leading term in each of the 3×3-minors of Hd. These leading terms
are the distinct cubic monomials in m1,m2, . . . ,md−2. Hence the initial ideal satisfies

〈m1,m2, . . . ,md−2〉3 ⊆ in(Jd). (6)

This shows that dim(V (Jd)) = dim(V (in(Jd))) ≤ 2, and hence V (Jd) has dimension 2 in Pd.
We next argue that V (Jd) is an irreducible surface. On the affine space Ad = {m0 = 1}

this clearly holds, even ideal-theoretically, because the minor indexed by 1, 2 and i expresses
mi as a polynomial in m1 and m2. Consider the intersection of V (Jd) with Pd−1 = {m0 = 0}.
The matrix Hd shows that m1 = m2 = · · · = md−2 = 0 holds on that hyperplane at infinity, so
V (Jd)∩ {m0 = 0} is a curve. Every point on that curve is the limit of points in V (Jd)∩ {m0 =
1} = V (Id) ∩ {m0 = 1}, obtained by making (µ, σ) larger in an appropriate direction. This
shows that V (Jd) is irreducible, and we conclude that V (Jd) = V (Id).

At this point we only need to exclude the possibility that the ideal Jd has lower-dimensional
embedded components. However, there are no such components because the ideal of maximal
minors of a 3 × d-matrix of unknowns is Cohen-Macaulay (see Theorem 18.18 in [8]), and our
surface V (Jd) has the expected dimension for an intersection of that general determinantal
variety with our Pd. This shows that Jd is a Cohen-Macaulay ideal. Hence Jd has no embedded
associated primes, and we conclude that Jd = Id as desired.

Corollary 1. The 3× 3-minors of the matrix Hd form a Gröbner basis for the prime ideal of
the Gaussian moment surface G1,d ⊂ Pd with respect to the reverse lexicographic term order.

Proof. The ideal Jd of G1,d is generated by the 3 × 3-minors of Hd. Our claim states that
equality holds in (6). This can be seen by examining the Hilbert series of both ideals.

Next, one checks that the ideal of r×r-minors of a generic r×d-matrix has the same numer-
ator of the Hilbert series as the r-th power of the monomial prime ideal 〈m1,m2, . . . ,md−r+1〉.
Since that ideal is Cohen-Macaulay, this numerator remains unchanged under transverse linear
sections. Hence our ideal Jd has the same Hilbert series numerator as 〈m1,m2, . . . ,md−2〉3.
This implies that the two ideals in (6) have the same Hilbert series, so they are equal.

The argument above tells us that our surface has the same degree as 〈m1,m2, . . . ,md−2〉3:

Corollary 2. The Gaussian moment surface G1,d has degree
(
d
2

)
in Pd.
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It is natural to ask whether the nice determinantal representation extends to the varieties
Gn,d when n ≥ 2. The answer is no, even in the first nontrivial case, when n = 2 and d = 3:

Proposition 2. The 5-dimensional variety G2,3 has degree 16 in P9. Its homogeneous prime
ideal is minimally generated by 14 cubics and 4 quartics, and the Hilbert series equals

1 + 4t+ 10t2 + 6t3 − 4t4 − t5

(1− t)6
.

Starting from four of the cubics, the ideal can be computed by a saturation as follows:

〈2m3
10 − 3m00m10m20 +m2

00m30 , 2m01m
2
10−2m00m10m11−m00m01m20+m

2
00m21,

2m2
01m10−m00m02m10−2m00m01m11+m

2
00m12, 2m

3
01−3m00m01m02+m

2
00m03 〉:〈m00〉∞.

(7)

The four special cubics in (7) above are the cumulants k30, k21, k12, k03 when expressed in
terms of moments. The same technique works for all n and d, and we shall now explain it.

We next define cumulants. These form a coordinate system that is more efficient than the
moments, not just for Gaussians but for any probability distribution on Rn that is polynomial
in the sense of Belkin and Sinha [3]. A general reference for the use of cumulants in statistics
is Chapter 4 in McCullagh’s book [11]. We introduce two exponential generating functions

M =
∑

i1,i2,...,in≥0

mi1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · t

in
n and K =

∑
i1,i2,...,in≥0

ki1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · t

in
n .

Fixing m00···0 = 1 and k00···0 = 0, these are related by the identities of generating functions

M = exp(K) and K = log(M). (8)

The coefficients are unknowns: the mi1i2···in are moments, and the ki1i2...in are cumulants. The
integer i1 + i2 + · · ·+ in is the order of the moment mi1i2···in or the cumulant ki1i2...in .

The identity (8) expresses moments of order ≤ d as polynomials in cumulants of order ≤ d,
and vice versa. Either of these can serve as an affine coordinate system on the PN whose
points are inhomogeneous polynomials of degree ≤ d in n variables. To be precise, the affine
space AN = {m00···0 = 1} consists of those polynomials whose constant term is nonzero. Hence
the formulas (8) represent a non-linear change of variables on AN . This was called Cremona
linearization in [5]. We agree with the authors of [5] that passing from m-coordinates to k-
coordinates usually simplifies the description of interesting varieties in PN .

We define the affine Gaussian moment variety to be the intersection of Gn,d with the the
affine chart AN = {m00···0 = 1} in PN . The transformation (8) between moments and cumulants
is an isomorphism. Under this isomorphism, the affine Gaussian moment variety is the linear
space defined by the vanishing of all cumulants of orders 3, 4, . . . , d. This implies:

Remark 1. The affine moment variety Gn,d ∩ AN is an affine space of dimension n+
(
n+1
2

)
.

For instance, the 5-dimensional affine variety G2,3 ∩ A9 is isomorphic to the 5-dimensional
linear space defined by k30 = k21 = k12 = k03 = 0. This was translated into moments in (7).

For the purpose of studying mixtures, the first truly interesting bivariate case is d = 4. Here
the affine moment variety G2,4 ∩ A14 is defined by the vanishing of the nine cumulants

k03 = 2m3
01 − 3m01m02 +m03

k12 = 2m2
01m10 − 2m01m11 −m02m10 +m12

k21 = 2m01m
2
10 −m01m20 − 2m10m11 +m21

k30 = 2m3
10 − 3m10m20 +m30

k04 = −6m4
01 + 12m2

01m02 − 4m01m03 − 3m2
02 +m04

k13 = −6m3
01m10 + 6m2

01m11 + 6m01m02m10 − 3m01m12 − 3m02m11m03m10 +m13

k22 = −6m2
01m

2
10+2m2

01m20+8m01m10m11+2m02m
2
10−2m01m21−m02m20−2m10m12−2m2

11+m22

k31 = −6m01m
3
10 + 6m01m10m20 + 6m2

10m11 −m01m30 − 3m10m21 − 3m11m20 +m31

k40 = −6m4
10 + 12m2

10m20 − 4m10m30 − 3m2
20 +m40
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The ideal of the projective variety G2,4 is obtained from these nine polynomials by saturating
with a new unknown m00. The result of that computation is as follows.

Proposition 3. The 5-dimensional variety G2,4 has degree 102 in P14. Its prime ideal is mini-
mally generated by 99 cubics, 41 quartics, and one quintic. The Hilbert series equals

1 + 9t+ 45t2 + 66t3 − 27t4 + 13t5 − 8t6 + 4t7 − t8

(1− t)6
.

We note that the moment variety G2,4 contains the quartic Veronese surface ν4(P2). This
surface is defined by 75 binomial quadrics in P14. These are minimal generators of the ideal of
2× 2-minors of the matrix 

m00 m01 m02 m10 m11 m20

m01 m02 m03 m11 m12 m21

m02 m03 m04 m12 m13 m22

m10 m11 m12 m20 m21 m30

m11 m12 m13 m21 m22 m31

m20 m21 m22 m30 m31 m40

 . (9)

As observed in [5, Section 4.3], this is just a linear coordinate space in cumulant coordinates:

ν4(P2) ∩ A14 = V (k20, k11, k02, k30, k21, k12, k03, k40, k31, k22, k13, k04) = V (k20, k11, k02) ∩ G2,4.

The secant variety σ2(ν4(P2)) comprises all ternary quartics of tensor rank ≤ 2. It has
dimension 5 and degree 75 in P14, and its homogeneous prime ideal is minimally generated
by 148 cubics, namely the 3 × 3-minors of the 6 × 6 Hankel matrix in (9). Also this ideal
becomes much simpler when passing from moments to cumulant coordinates. Here, the ideal of
σ2(ν4(P2)) ∩ A14 is generated by 36 binomial quadrics, like k231 − k22k40 and k30k31 − k21k40,
along with seven trinomial cubics like 2k320 − k230 + k20k40 and 2k11k

2
20 − k21k30 + k11k40.

Remark 2. The Gaussian moment variety G2,5 has dimension 5 in P19, and we found its degree
to be 332. This was computed using Gröbner bases and confirmed using the numerical software
Bertini. However, at present, we do not know a generating set for its prime ideal.

We close this section by reporting the computation of the first interesting case for n = 3.

Proposition 4. The Gaussian moment variety G3,3 has dimension 9 and degree 130 in P19.
Its prime ideal is minimally generated by 84 cubics, 192 quartics, 21 quintics, 15 sextics, 36
septics, and 35 octics. The Hilbert series equals

1+10t+55t2+136t3−26t4−150t5+139t6−127t7+310t8−449t9+360t10−160t11+32t12−t13

(1− t)10
.

Remark 3. The Hilbert series in Propositions 3 and 4 show that the coordinate rings of the
Gaussian moment varieties Gn,d are generally not Cohen-Macaulay for n ≥ 2. By contrast, the
moment surface G1,d ⊂ Pd was seen to be arithmetically Cohen-Macaulay in Corollary 1.

3. Pearson’s Crabs: Algebraic Statistics in 1894

The method of moments in statistics was introduced by Pearson in his 1894 paper [12]. In
our view, this can be regarded as the beginning of Algebraic Statistics. In this section we revisit
Pearson’s computation and related work of Lazard [10], and we extend them further.
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The first six moments were expressed in (3) in terms of the parameters. The equation
K = log(M) in (8) writes the first six cumulants in terms of the first six moments:

k1 = m1

k2 = m2 −m2
1

k3 = m3 − 3m1m2 + 2m3
1

k4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1

k5 = m5 − 5m1m4 − 10m2m3 + 20m2
1m3 + 30m1m

2
2 − 60m3

1m2 + 24m5
1

k6 = m6 − 6m1m5 − 15m2m4 + 30m2
1m4 − 10m2

3 + 120m1m2m3 − 120m3
1m3

+30m3
2 − 270m2

1m
2
2 + 360m4

1m2 − 120m6
1

(10)

Pearson’s method of moments identifies the parameters in a mixture of two univariate Gaus-
sians. Suppose the first five moments m1,m2,m3,m4,m5 are given numerically from data. Then
we obtain numerical values for k1, k2, k3, k4, k5 from the formulas in (10). Pearson [12] solves
the corresponding five equations in (3) for the five unknowns λ, µ, ν, σ, τ . The crucial first step
is to find the roots of the following univariate polynomial of degree 9 in p.

Proposition 5. The product of normalized means p = (µ−m1)(ν −m1) satisfies

8p9 + 28k4p
7 + 12k23p

6 + (24k3k5 + 30k24)p5 + (148k23k4 − 6k25)p4

+(96k43 + 9k34 − 36k3k4k5)p
3 + (−21k23k

2
4 − 24k33k5)p

2 − 32k43k4p− 8k63 = 0.
(11)

Proof. We first prove identity (11) under the assumption that the empirical mean is zero:

m1 = λµ+ (1− λ)ν = 0. (12)

In order to work modulo the symmetry that switches the two Gaussian components, we replace
the unknown means µ and ν by their first two elementary symmetric polynomials:

p = µν and s = µ+ ν. (13)

In [12], Pearson applies considerable effort and cleverness to eliminating the unknowns µ, ν, σ, τ, λ
from the constraints (3), (10), (13). We here offer a derivation that can be checked easily in a
computer algebra system. We start by solving (12) for λ. Substituting

λ =
−ν
µ− ν

. (14)

into k2 = λ(µ2 + σ2) + (1− λ)(ν2 + τ2), we obtain the relation k2 = −R1 − p, where

R1 =
σ2ν − τ2µ
µ− ν

. (15)

This the first of a series of semi-invariants Ri that appear naturally when trying to write the
cumulant expressions in terms of p and s. In the next instance, by letting

R2 =
σ2 − τ2

µ− ν
(16)

we can write k3 = −(3R2 + s)p. In a similar way, we obtain

k4 = 3R3 + p(p− s2)− 3k22
k5 = 5R4p− sp(s2 − 2p)− 10k2k3
k6 = 15R5 − p(s4 − 3s2p+ p2)− 15k32 − 15k2k4 − 10k23

(17)

where
R3 = (µσ4 − ντ4 + 2µν2τ2 − 2µ2νσ2)/(µ− ν)
R4 = (3τ4 − 3σ4 + 2ν2τ2 − 2µ2σ2)/(µ− ν)
R5 = (µ4νσ2 − µν4τ2 + 3µ2νσ4 − 3µν2τ4 + νσ6 − µτ6)/(µ− ν).

(18)
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It turns out that R3, R4, R5 are not independent of R1, R2. Namely, we find

R3 = R2
1 + 2pR1 − 2spR2 − pR2

2

R4 = 2sR1 + 6R1R2 + 2(p− s2)R2 − 3sR2
2

R5 = −R3
1 − 3pR2

1 + (s2p− p2)R1 + 6spR1R2 + 3pR1R
2
2

+(2sp2 − s3p)R2 + (3p2 − 3s2p)R2
2 − spR2

2.

(19)

We now express the three right hand sides in terms of p, s, k2, k3 using the relations

R1 = −k2 − p and R2 = −s
3
− k3

3p
. (20)

Plugging the resulting expressions for R3 and R4 into the first two equations of (17), we get

−2p2s2 − 4spk3 + 6p3 + 3k4p+ k23 = 0,
−2p2s3 + 4p3s+ 5sk23 − 20p2k3 + 3k5p = 0.

(21)

Pearson’s polynomial (11) is the resultant of these two polynomials with respect to s.
The proof is completed by noting that the entire derivation is invariant under replacing the

parameters for the means µ and ν by the normalized means ν −m1 and ν −m2.

Remark 4. Gröbner bases reveal the following consequence of the two equations in (21):

(4p3k3 − 4k33 − 6pk3k4 − 2p2k5)s+ 4p5 + 14p2k23 + 8p3k4 + k23k4 + 3pk24 − 2pk3k5 = 0. (22)

This furnishes an expression for s as rational function in the quantities k3, k4, p. Note that (11)
and (22) do not depend on k2 at all. The second moment m2 is only involved via k4.

We next derive the equation of the secant variety that was promised in the Introduction.

Proof. [of Theorem 1] Using (19) and (20), the last equation in (17) translates into

−144p5 + (72s2 − 270k2)p
4 + (90s2k2 + 180sk3 − 4s4)p3 +

(−135k2k4 + 180sk2k3 − 30s3k3 − 90k23 − 9k6)p
2 − 30k23(s2 + 3

2k2)p+ 5sk33 = 0.
(23)

We now eliminate the unknowns p and s from the three equations in (21) and (23). After
removing an extraneous factor k33, we obtain an irreducible polynomial in k3, k4, k5, k6 of degree
23 with 195 terms. This polynomial is also mentioned in [10, Proposition 12].

We finally substitute the expressions in (10) to get an inhomogeneous polynomial in m1,m2,
. . . ,m6 of degree 39 with 31154 terms. At this point, we check that this polynomial vanishes
at the parametrization (3). To pass from the affine space A6 to the projective space P6, we
introduce the homogenizing variable m0, by replacing mi with mi/m0 for i = 1, 2, 3, 4, 5, 6 and
clearing denominators. The degree in each moment mi is read off by inspection.

Remark 5. The elimination in the proof above can be carried out by computing a Gröbner
basis for the ideal that is obtained by adding (23) to the system (21). Such a Gröbner basis
reveals that both p and s can be expressed as rational functions in the cumulants. This confirms
Lazard’s result [10] that Gaussian mixtures for k = 2 and n = 1 are rationally identifiable from
their moments up to order six. We stress that Lazard [10] does much more than proving rational
identifiability: he also provides a very detailed analysis of the real structure and special fibers
of the map (λ, µ, ν, σ, τ) 7→ (m1,m2,m3,m4,m5,m6) in (3).

We close this section by stating the classical method of moments and by revisiting Pearson’s
application to crab measurements. For k = 2, n = 1, the method works as follows. From the
data, compute the empirical moments m1, . . . ,m5, and derive the cumulants k3, k4, k5 via (10).
Next compute the nine complex zeros of the Pearson polynomial (11). We are only interested
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in zeros p that are real and non-positive, because (µ −m1)(ν −m1) ≤ 0. All other zeros get
discarded. For each non-positive zero p of (11), compute the corresponding s from (22). By
(13), we obtain µ and ν as the two zeros of the equation x2−sx+p = 0. The mixture parameter
λ is given by (14). Finally, since R1 and R2 are now known by (20), we obtain σ2 and τ2 by
solving an inhomogeneous system of two linear equations, (15) and (16).

The algorithm in the previous paragraph works well when m1,m2,m3,m4,m5 are general
enough. For special values of the empirical moments, however, one might encounter zero de-
nominators and other degeneracies. Extra care is needed in those cases. We implemented a
complete method of moments (for n = 1, k = 2) in the statistics software R. Note that what we
described above computes µ−m1, ν −m1, so we should add m1 to recover µ and ν.

Pearson [12] applied his method to measurements taken from crabs in the Bay of Naples,
which form different populations. His data set is the histogram shown in blue in Figure 1.
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Figure 1: The crab data in the histogram is approximated by the mixture of two Gaussians. Pearson’s method leads
to the parameter estimates µ = 0.633, σ = 0.018, ν = 0.657, τ = 0.012, λ = 0.414.

Pearson computes the empirical moments from the crab data, and he takes these as the
numerical values for m1,m2,m3,m4,m5. The resulting nonic polynomial (11) has three real
roots, two of which are non-positive. One computes the model parameters as above. At this
point, Pearson has two statistically meaningful solutions. To choose between them, he computes
m6 in each case, and selects the model that is closest to the empirical m6. The resulting
probability density function and its mixture components are shown in Figure 1.

4. Mixtures of Univariate Gaussians

Our problem is to study the higher secant variety σk(G1,d) of the moment surface G1,d ⊂ Pd

whose equations were given in Proposition 1. The hypersurface σ2(G1,6) was treated in Theorem
1. In the derivation of its equation in the previous section, we started out with introducing the
new unknowns s = µ + ν and p = µν. After introducing cumulant coordinates, the defining
expressions for the moments m4,m5,m6 in (3) turned into the three equations (21),(23) in
k2, k3, k4, k5, k6, s, p, and from these we then eliminated s and p.
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The implicitization problem for σ2(G1,d) when d > 6 can be approached with the same
process. Starting from the moments, we derive polynomials in k2, k3, . . . , kd, s, p that contain
kd linearly. The extra polynomial that contains k7 linearly and is used for σ2(G1,7) equals

16p3s5 − 126k2p
3s3 + 42k3p

2s4 − 148p4s3 + 252k2p
4s− 126k3p

3s2

+216p5s+ 315k2k
2
3ps− 1260k2k3p

3 − 35k33s
2 + 210k23p

2s− 378k3p
4

+189k2k5p
2 + 35k33p+ 315k3k4p

2 + 9k7p
2.

(24)

The extra polynomial that contains k8 linearly and is used for σ2(G1,8) equals

20p4s6 + 336k2p
4s4 − 112k3p

3s5 + 124p5s4 − 3780k22p
4s2 + 2520k2k3p

3s3 − 6048k2p
5s2

−420k23p
2s4 + 2128k3p

4s3 − 2232p6s2 − 7560k22k3p
3s+ 11340k22p

5 + 2520k2k
2
3p

2s2

−15120k2k3p
4s+ 12096k2p

6 − 280k33ps
3 + 2940k23p

3s2 − 7056k3p
5s+ 3564p7

+1890k22k
2
3p

2 + 5670k22k4p
3 − 420k2k

3
3ps+ 7560k2k

2
3p

3 + 35k43s
2 + 280k33p

2s
−1260k23p

4 + 756k2k6p
3 − 35k43p+ 1512k3k5p

3 + 945k24p
3 + 27k8p

3.

(25)

Proposition 6. The ideals of the 5-dimensional varieties σ2(G1,7) ∩ A7 and σ2(G1,8) ∩ A8 in
cumulant coordinates are obtained from (21), (23), (24) and (25) by eliminating s and p.

The polynomials above represent a sequence of birational maps σ2(G1,d) 99K σ2(G1,d−1),
which allow us to recover all cumulants from earlier cumulants and the parameters p and s.
In particular, by solving the equation (11) for p and then recovering s from (22), we can
invert the parametrization for any of the moment varieties σ2(G1,d) ⊂ Pd. If we are given
m1,m2,m3,m4,m5 from data then we expect 18 = 9 × 2 complex solutions (λ, µ, ν, σ, τ). The
extra factor of 2 comes from label swapping between the two Gaussians. In that sense, the
number 9 is the algebraic degree of the identifiability problem for n = 1 and k = 2.

We next move on to k = 3. There are now eight model parameters. These are mapped to
P8 with coordinates (m0 : m1 : · · · : m8), and we are interested in the degree of that map.

Working in cumulant coordinates as in Section 3, and using the Gröbner basis package FGb

in maple, we computed the degree of that map. It turned out to be 1350 = 3! · 225.

Theorem 2. The mixture model of k = 3 univariate Gaussians is algebraically identifiable
from its first eight moments. The algebraic degree of this identifiability problem equals 225.

We also computed a generalized Pearson polynomial of degree 225 for k = 3. Namely, we
replace the three means µ1, µ2, µ3 by their elementary symmetric polynomials e1 = µ1+µ2+µ3,
e2 = µ1µ2 +µ1µ3 +µ2µ3 and e3 = µ1µ2µ3. This is done by a derivation analogous to (16)-(21).
This allows us to eliminate all model parameters other than e1, e2, e3.

We compute a lexicographic Gröbner basis G for the above equations in R[e1, e2, e3], with
generic numerical values of the eight moments m1, . . . ,m8. It has the expected shape

G =
{
f(e1), e2 − g(e1), e3 − h(e1)

}
.

Here f, g, h are univariate polynomials of degrees 225, 224, 224 respectively. In particular, f is
the promised generalized Pearson polynomial of degree 225 for mixtures of three Gaussians.

For general k, the mixture model has 3k− 1 parameters. Based on what we know for k = 2
and k = 3, we offer the following conjecture concerning the identifiability of Gaussian mixtures.
Recall that the double-factorial is the product of the smallest odd positive integers:

(2k − 1)!! = 1 · 3 · 5 · · · · (2k − 1).

Conjecture 3. The mixture model of k univariate Gaussians is algebraically identifiable by the
moments of order ≤ 3k − 1, and the degree of this identifiability problem equals

(
(2k − 1)!!

)2
.

Moreover, this model is rationally identifiable by the moments of order ≤ 3k.
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Geometrically, this conjecture states that the moment variety σk(G1,3k−1) fills the ambient
space P3k−1, and that σk(G1,3k) is a hypersurface in P3k whose secant parametrization is bira-
tional. As explained in the Introduction, a priori we only know that the dimension of σk(G1,d)
is equal to 3k−1 for d� 0. What Conjecture 3 implies is that this already holds for d = 3k−1,
so that the secant varieties always have the expected dimension. We know this result for k = 2
by the work of Pearson [12] and Lazard [10], as discussed in Section 3.

We verified the first claim in Conjecture 3 computationally for k ≤ 7. This was done by
checking the corresponding Jacobian matrix for the system has full rank. But we do not yet
know whether rational identifiability holds in these cases. Also, we do not know the degree of
the hypersurface σ3(G1,9) ⊂ P9. The double-factorial part of the conjecture is a wild guess.

Computations for k = 4 appear currently out of reach for Gröbner basis methods. If our
wild guess is true then the expected number of complex solutions for the 11 moment equations
whose solution identifies a mixture of k = 4 univariate Gaussians is 1052 × 4! = 264, 600.

5. Method of Moments versus Maximum Likelihood

In [1, Section 3], the sample consisting of the following N = 2K data points was examined:

1, 1.2, 2, 2.2, 3, 3.2, 4, . . . ,K, K + 0.2 (for K > 1). (26)

Its main purpose was to show that, unlike most models studied in Algebraic Statistics, there is
no notion of maximum likelihood degree (or ML degree; see [6]) for a mixture of two Gaussians.
Indeed, the particular sample in (26) has the property that, as K increases, the number of
critical points of the log-likelihood function grows without any bound. More precisely, for each
‘cluster’ or pair (k, k+0.2), one can find a non-trivial critical point (λ̂, µ̂, ν̂, σ̂, τ̂) of the likelihood
equations such that the mean estimate µ̂ lies between them.

In this section we apply Pearson’s method of moments to this sample. The special nature of
the data raises some interesting considerations. As we shall see, the even spacing of the points
in the list (26) implies that all empirical cumulants of odd order ≥ 3 vanish:

k3 = k5 = k7 = k9 = · · · = 0. (27)

Let us analyze what happens when applying the method of moments to any sample that satisfies
(27). Under this hypothesis Pearson’s polynomial (11) factors as follows:

8p9 + 28p7k4 + 30p5k24 + 9p3k34 = 8p3
(
p2 +

3

2
k4

)2(
p2 +

1

2
k4

)
= 0. (28)

Recall that p represents p = (µ − m1)(ν − m1). The first root of the Pearson polynomial is
p = 0. This implies m1 = µ or m1 = ν. Since m1 is the mean of µ and ν, we conclude that
the means are equal: m1 = µ = ν. However, the equal-means model cannot be recovered from
the first five moments. To see this, note that the equations for cumulants k1 = 0, k3 = 0 and
k5 = 0 become 0 = 0, yielding no information on the remaining three parameters.

If we assume that also the sixth moment m6 is known from the data, then the parameters
can be identified. The original system (3) under the equal-means model µ = ν = 0 equals

m2 = λσ2 + (1− λ)τ2

m4 = 3λσ4 + 3(1− λ)τ4

m6 = 15λσ6 + 15(1− λ)τ6.
(29)

After some rewriting and elimination:

λ(σ2 − τ2) = k2 − τ2
5k4(σ

2 + τ2) = 10k2k4 + k6
15k4(σ

2τ2) = 3k2k6 + 15k22k4 − 5k24.
(30)
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Assuming k4 6= 0, this system can be solved easily in radicals for λ, σ, τ .
If k4 ≥ 0 then p = 0 is the only real zero of (28). If k4 < 0 then two other solutions are:

p = −
√
−3

2
k4 and p = −

√
−1

2
k4. (31)

Note that p must be negative because it is the product of the two normalized means.
The mean of the sample in (26) is m1 = K/2 + 3/5. The central moments are

mr =
1

2K
·
( K∑

i=1

(
i−m1

)r
+

K∑
i=1

(
i−m1 +

1

5

)r)
for r = 2, 3, 4, . . . . (32)

This expression is a polynomial of degree r in K. That polynomial is zero when r is odd. Using
(10), this implies the vanishing of the odd sample cumulants (27). For even r, we get

m2 = 1
12K

2 − 11
150 , m4 = 1

80K
4 − 11

300K
2 + 91

3750 , m6 = 1
448K

6 − 11
800K

4 + 91
3000K

2 − 12347
656250 .

These polynomials simplify to binomials when we substitute the moments into (10):

k1 = m1 =
K

2
+ 0.6, k2 =

K2

12
− 11

150
, k4 = −K

4

120
+

61

7500
, k6 =

K6

252
− 7781

1968750
. (33)

These are the sample cumulants. We keep using sample moment estimates to stay true to
Pearson’s original method of moments. Our use of cumulants is just a notational convenience.
However, one could also directly estimate the cumulants, in which case k-statistics would be
preferable, given that they are minimal variance unbiased estimators (cf. [11, Chapter 4]).

Since K ≥ 1, we have k4 < 0 in (33). Hence the Pearson polynomial has three distinct real
roots. For p = 0, substituting (27) and (33) into (30) shows that, for every value of K, there
are no positive real solutions for both σ and τ . Thus the method of moments concludes that
the sample does not come from a mixture of two Gaussians with the same mean.

Next we consider the two other roots in (31). To recover the corresponding values of s, we
use the system (21) with all odd cumulants replaced by zero:

p(6p2 − 2s2p+ 3k4) = 0
2sp2(2p− s2) = 0

(34)

For p = −
√
−3
2 k4, the first equation gives s 6= 0, and the second yields a non-real value for s,

so this is not viable. For p = −
√
−1
2 k4, we obtain s = 0, and this is now a valid solution.

In conclusion, Pearson’s method of moments infers a non-equal-means model for the data
(26). Using central moments, i.e. after subtracting m1 = K/2 + 3/5 from each data point, we

find µ = −ν = 4

√
−k4
2 . These values lead to λ = 1

2 and σ = τ . The final estimate is

(λ, µ, σ2, ν, τ2) =

(
1

2
, m1 −

4

√
−k4

2
, k2 −

√
−k4

2
, m1 +

4

√
−k4

2
, k2 −

√
−k4

2

)
. (35)

We are now in a position to compare this estimate to those found by maximum likelihood.

Example 1. (Example 2 of [1] with K = 7) The sample consists of the 14 data points
1,1.2,2,2.2,3,3.2,4,4.2,5,5.2,6,6.2,7,7.2. The method of moments estimator (35) evaluates to

(λ, µ, σ, ν, τ) =

(
1

2
,

41− 4
√

100001

10
,

√
401−

√
100001

10
,
41 + 4

√
100001

10
,

√
401−

√
100001

10

)
.
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For general k3, k4, k5, Pearson’s equation (11) of degree 9 cannot be solved for p in radicals,
as its roots are algebraic numbers with Galois group S9 over the rationals Q. We verified this
for k3 = k4 = k5 = 1 using the galois command in maple. However, for our special data, the
algebraic degree of the solution drops, and we could write the estimate in radicals.

The situation is dramatically different for likelihood inference. It was shown in [1] that the
critical points for the likelihood function of the mixture of two Gaussians with data (26) have
transcendental coordinates, and that the number of these critical points grows with K.

It is thus interesting to assess the quality of our solution (35) from the likelihood perspective.
The probability density function for the Gaussian mixture with these parameters is shown in
Figure 2. The corresponding value of the log-likelihood function is −28.79618895.

If the estimate (35) is used as starting point in the EM algorithm, then it converges to the
nearby stationary point (λ, µ, σ, ν, τ) = (0.500000, 2.420362, 1.090329, 5.77968, 1.090329). That
point has a log-likelihood value of −28.43415.... Comparing to Table 1 of [1], this value is only
beaten by the critical points associated to the endpoints k = 1 and k = 7.
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Figure 2: The sample data for K = 7 (in blue) is approximated by a mixture of two Gaussians via the method of
moments. The parameter values are derived in Example 1.

We also made the following observation: of all the critical points listed in [1, Table 1], the
middle clusters get the lowest log-likelihood. Hence an equal-means model is not very likely for
this sample. This is further confirmed by the method of moments (MOM) since, as mentioned
above, the equal-means model is inconsistent with our polynomial equations.

Behavior similar to Example 1 is observed for all K ≥ 2. The MOM estimate separates the
sample into two halves, and assigns the same variance to both Gaussian components. The exact
parameter estimates are obtained by substituting m1, k2, k4 from (33) into (35). For K = 20,
the estimate computed by the EM algorithm with the MOM estimate as starting point beats in
likelihood value all K critical points listed in [1]. For K > 20, the likelihood value of the MOM
estimate itself appears to be already better than the critical points listed in [1]. This suggests
that MOM produces good starting points for maximum likelihood.
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6. Higher Dimensions, Submodels and Next Steps

At present we know little about the moment varieties of Gaussian mixtures for n ≥ 2. We
view this as an excellent topic for future investigations. A guiding question is the following:

Problem 4. Which order d of cumulants/moments is needed to make the mixture model σk(Gn,d)
algebraically identifiable? Which order d is needed to obtain rational identifiability?

A natural conjecture is that the dimension of the variety σk(Gn,d) always coincides with the
expected number (2), unless that number exceeds the dimension N of the ambient projective
space. It is important to note that the analogous statement would not be true for the submodels
where all covariance matrices are zero. These are the secant varieties of Veronese varieties, and
there is a well-known list of exceptional cases, due to Alexander and Hirschowitz (cf. [4]), where
these secant varieties do not have the expected dimension. However, none of these cases is
relevant in the case of Gaussian mixtures discussed here.

The following is the first bivariate instance of the varieties σk(Gn,d) for Gaussian mixtures.

Example 2. Let k = 2, n = 2, d = 4. The variety σ2(G2,4) lives in the P14 whose coordinates
are the moments up to order 4. This is the variety of secant lines for the 5-dimensional variety
featured in Proposition 3. We checked that σ2(G2,4) has the expected dimension, namely 11.

We found it difficult to compute polynomials that vanish on our moment varieties, including
σ2(G2,4). One fruitful direction to make progress would be to first compute subvarieties that
correspond to statistically meaningful submodels. Such submodels arise naturally when the
parameters satisfy various natural constraints. We illustrate this for a small case.

Fix k = 2, n = 2, d = 3. The variety σ2(G2,3) is equal to its ambient space P9. We consider
the two submodels: that given by equal variances and that given by equal means. The number
of parameters are 8 and 9 respectively. Both of these models are not identifiable.

Proposition 7. The equal-means submodel of σ2(G2,3) has dimension 5 and degree 16. It is
identical to the Gaussian moment variety G2,3 in Proposition 2 so the mixtures add nothing new
in P9. The equal-variances submodel of σ2(G2,3) has dimension 7 and degree 15 in P9. Its ideal
is Cohen-Macaulay and is generated by the maximal minors of the 6× 5-matrix

0 0 m00 m10 m01

0 m10 m20 m30 m21

m01 0 m02 m12 m03

0 m00 2m10 2m20 2m11

m00 0 2m01 2m11 2m02

m10 m01 2m11 2m21 2m12

 . (36)

This proposition is proved by a direct computation. That the equal-means submodel of
σ2(G2,3) equals G2,3 is not so surprising, since the parametrization of the latter is linear in the
variance parameters s11, s12, s22. This holds for all moments up to order 3. The same is no
longer true for d ≥ 4. On the other hand, it was gratifying to see an occurrence, in the matrix
(36), of the Hilbert-Burch Theorem for Cohen-Macaulay ideals of codimension 2.

We already noted that secant varieties of Veronese varieties arise as the submodels where
the variances are zero. On the other hand, we can also consider the submodels given by zero
means. In that case we get the secant varieties of varieties of powers of quadratic forms. The
following concrete example was worked out with some input from Giorgio Ottaviani.

Example 3. Consider the mixture of two bivariate Gaussians that are centered at the origin.
This model has 7 parameters: there is one mixture parameter, and each Gaussian has a 2 × 2
covariance matrix, with three unknown entries. We consider the variety V that is parametrized
by all moments of order exactly d = 6. This variety has only dimension 5. It lives in the P6
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with coordinates m06,m15, . . . ,m60. This hypersurface has degree 15. Its points are the binary
octics that are sums of the third powers of two binary quadrics. Thus, this is the secant variety
of a linear projection of the third Veronese surface from P9 to P6.

The polynomial that defines V has 1370 monomials of degree 15 in the seven unknowns
m06,m15, . . . ,m60. In fact, this is the unique (up to scaling) invariant of binary sextics of
degree 15. It is denoted I15 in Faa di Bruno’s book [7, Table IV 10], where a determinantal
formula was given. A quick way to compute V by elimination is as follows. Start with the
variety σ2(ν3(P2)) of symmetric 3× 3× 3-tensors of rank ≤ 2. This is defined by the maximal
minors of a Hankel matrix of size 3×6. It has degree 15 and dimension 5 in P9. Now project
into P6. This projection has no base points, so the image is a hypersurface of degree 15.

In Example 3 we fixed the order of the moments. For certain applications, also taking
moments of two orders makes sense. For instance, the tensor power method in machine learning
[2, 9] uses the moments of order d = 2 and d = 3. It would be interesting to determine the
algebraic relations for these restricted moments. Geometrically, we should obtain interesting
varieties, even for k = 2. Here is a specific example from machine learning.

Example 4. Ge, Huang and Kakade [9] focus on mixtures of Gaussians with zero mean, and
they show how to identify them numerically using the moments of order d = 4 and d = 6.
We examine the corresponding variety for n = k = 2. This lives in P12 with coordinates
m00,m40,m31,m22,m13,m04,m60,m51,m42,m33,m24,m15,m06. We start with the variety X
that is parametrized by the 4th and 6th powers of binary quadrics. This variety has dimension
three and degree 27 in P12. We are interested in the secant variety σ2(X). This secant variety
has the expected dimension 7, so the model is algebraically identifiable. We do not know
whether σ2(X) is rationally identifiable. A relation of lowest degree is the following quartic:

6m15m22m
2
31 − 10m13m24m

2
31 − 2m06m

3
31 + 10m04m

2
31m33 − 9m15m

2
22m40 + 15m13m22m24m40

+2m13m15m31m40 + 3m06m22m31m40 − 5m04m24m31m40 − 10m2
13m33m40 −m06m13m

2
40

+m04m15m
2
40 + 10m2

13m31m42 − 15m04m22m31m42 + 5m04m13m40m42 − 6m2
13m22m51

+9m04m
2
22m51 − 2m04m13m31m51 −m2

04m40m51 + 2m3
13m60 − 3m04m13m22m60 +m2

04m31m60

In summary, the study of moments of mixtures of Gaussians leads to many interesting
projective varieties. Their geometry is still largely unexplored, and offers a fertile ground for
investigations by algebraic geometers. On the statistical side, it is most interesting to understand
the fibers of the natural parameterization of the variety σk(Gn,d). Problem 4 serves as the guiding
question. In the case of algebraic identifiability, we are always interested in finding the algebraic
degree of the parametrization, and in effective methods for solving for the model parameters.
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