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Abstract. To evaluate the goodness-of-fit of a statistical model to given data, calculating a con-
ditional p value by a Markov chain Monte Carlo method is one of the effective approaches. For
this purpose, a Markov basis plays an important role because it guarantees the connectivity of the
chain, which is needed for unbiasedness of the estimation, and therefore is investigated in various
settings such as incomplete tables or subtable sum constraints. In this paper, we consider the
two-way change-point model for the ladder determinantal table, which is an extension of these two
previous works, i.e., works on incomplete tables by Aoki and Takemura (2005, J. Stat. Comput.
Simulat.) and subtable some constraints by Hara, Takemura and Yoshida (2010, J. Pure Appl.
Algebra). Our main result is based on the theory of Gröbner basis for the distributive lattice. We
give a numerical example for actual data.
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1. Introduction

In the analysis of contingency tables, computing conditional p values by a Markov chain
Monte Carlo method is one of the common approaches to evaluate a fitting of a statistical
model to given data. In this method, a key notion is a Markov basis that guarantees the
connectivity of the chain for unbiasedness of the estimation. In Diaconis and Sturmfels
([7]), a notion of a Markov basis is presented with algebraic algorithms to compute it.
This first work is based on a discovery of the relation between a Markov basis and a set
of binomial generators of a toric ideal of a polynomial ring, which is the first connection
between commutative algebra and statistics. After this first paper, Markov bases are
studied intensively by many researchers both in the fields of commutative algebra and
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statistics, which yields an attractive new field called computational algebraic statistics.
See [15] for the first textbook of this field, and [2] for various theoretical results and
examples on Markov bases.

The first result on the Markov bases in the setting of two-way contingency tables is a
Markov basis for the independence model. For two-way contingency tables with fixed row
sums and column sums, which is the minimal sufficient statistics under the independence
model, the set of square-free moves of degree 2 forms a Markov basis. This result is
generalized to the decomposable models of higher dimensional contingency tables by [8].
The reader can find various results on the structure of Markov bases of decomposable
models in Chapter 8 of [2].

On the other hand, it is known that the structure of a Markov basis becomes compli-
cated under various additional constraints to the two-way setting. One of such cases is
the incomplete two-way contingency table, i.e., a contingency table with structural zeros,
considered in [3]. Another case is the subtable sum problem considered in [9] and [14]. In
these works, it is shown that moves of higher degrees are needed for Markov bases. The
problem we consider in this paper is two-way contingency tables with both structural zeros
and subtable sum constraints.

We consider the two-way contingency tables with specific types of structural zeros
called ladder determinantal tables, with specific types of subtable sums called two-way
change-point model. The two-way change-point model is considered in [13] for exponential
families, including the Poisson distribution for complete two-way contingency tables. We
also consider the Poisson distribution and two-way change-point model for incomplete
cases in this paper. The purpose of this paper is to show that a Markov basis for this
setting is constructed as the set of square-free degree 2 moves.

This paper is organized as follows. In Section 2, we illustrate the Markov chain Monte
Carlo methods for the subtable sum problem of incomplete two-way contingency tables
and the two-way change-point models of ladder determinant tables. In Section 3, we give
the structure of the minimal Markov bases for our problems, which is the main result of
this paper. The arguments and the proof of our main theorem are based on the theory
of Gröbner bases for distributive lattices, which is summarized in Section 3. A numerical
example for actual data is given in Section 4.

2. Preliminaries

2.1. Markov chain Monte Carlo methods for subtable sum problem of
incomplete contingency tables

First we illustrate the Markov chain Monte Carlo methods for the subtable sum prob-
lem of incomplete two-way contingency tables. Though we only consider the two-way
change-point model in this paper, we describe the methods in the setting of general sub-
table sum problems considered in [9]. Note that a specification of the subtable reduces to
the two-way change-point model.

Let N = {0, 1, 2, . . .} be the set of nonnegative integers. To consider I ×J contingency
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tables with structural zeros, let S ⊂ {(i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J} be the set of cells that
are not structural zeros. Let q = |S| be the number of the cells. Let x = {xij} ∈ Nq be an
incomplete contingency table with the set of cells S, where xij ∈ N is an entry of the cell
(i, j) ∈ S. Similarly to the ordinary (i.e., complete) two-way contingency tables, denote
the row sums and column sums of x by

xi+ =
∑

{j : (i,j)∈S}

xij , i = 1, . . . , I,

x+j =
∑

{i : (i,j)∈S}

xij , j = 1, . . . , J.

We assume that there is at least one (i, j) ∈ S in each row and each column. Let B be a
subset of S. We also define the subtable sum xB by

xB =
∑

(i,j)∈B

xij .

Denote the set of the row sums, column sums and the subtable sum xB by an (I +J + 1)-
dimensional column vector

t = (x1+, . . . , xI+, x+1, . . . , x+J , xB)′ ∈ NI+J+1, (1)

where ′ is the transpose. We also treat x as a q-dimensional column vector as x =
(x11, x12, . . . , xIJ)′, by lexicographic ordering of the cells in S. Then the relation between
x and t is written by

Ax = t, (2)

where A is an (I + J + 1)× p matrix consisting of 0’s and 1’s. We call A a configuration
matrix. Though we specify S and B in Section 2.2, we show an example here.

Example 1. Consider a 4 × 4 incomplete contingency table with 6 structural zeros as
follows.

x11 x12 x13 [0]

[0] x22 x23 x24
[0] [0] x33 x34
[0] [0] x43 x44

In this paper, we denote a structural zero as [0] to distinguish it from a sample zero
described as 0. Then the set S is

S = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 3), (4, 4)}

and p = 10. Suppose a subset B ⊂ S is given by

B = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)}.
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Then the configuration matrix is the following 9× 10 matrix.

A =



1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1
1 1 1 1 1 0 0 0 0 0


As we see in Section 2.2, the configuration matrix considered in this paper satisfies the
homogeneity assumption, i.e., the row vector (1, . . . , 1) is in the real vector space spanned
by the rows of A. This is a natural assumption for statistical models. See Lemma 4.14 of
[16] for the algebraic aspect of the homogeneity. �

To clarify the statistical meaning of the configuration matrix A and the relation (2),
consider the cell probability p = {pij} ∈ ∆q−1, where

∆q−1 =

{pij} ∈ Rq≥0 :
∑

(i,j)∈S

pij = 1


is called a (q − 1)-dimensional probability simplex, and R≥0 is the set of nonnegative real
numbers. The probability simplex ∆q−1 is a statistical model called a saturated model.
In statistical data analysis, our interest is in a statistical model that is a subset of ∆q−1.
The two-way change-point model we consider in this paper is written in general form by

M = {p = (pij) ∈ ∆q−1 : log pij = αi + βj + γ1B(i, j) for some (αi), (βj), γ}, (3)

where 1B(i, j) is an indicator function given by

1B(i, j) =

{
1, (i, j) ∈ B
0, (i, j) ∈ S \B.

Here the term γ1B(i, j) represents a departure from the independence structure of the
log-linear model. The model M becomes a quasi-independence model for the cells S
by γ = 0. The quasi-independence model is a fundamental statistical model for the
incomplete contingency tables (see Chapter 5 of [5] for detail). Sometimes, the term
“quasi-independence” is also used for the model of independence except for the diagonal
cells. In this paper, we use the term “quasi-independence” for a larger class of models.
Markov bases for the quasi-independence model are considered in [3]. Also, the modelM
for the case that there are no structural zeros, i.e., S = {1, . . . , I}×{1, . . . , J}, corresponds
to the setting considered in [9]. The two-way change-point model we consider corresponds
to the case

B = {(i, j) ∈ S : i ≤ i∗, j ≤ j∗} (4)



S. Aoki, T. Hibi / J. Alg. Stat., 8 (2017), 56-73 60

for a fixed (i∗, j∗) ∈ S.
In this paper, we consider the fitting of the modelM by the statistical hypothesis test

H0 : p ∈M,
H1 : p ∈ ∆p−1.

(5)

Under the null hypothesis H0, (αi), (βj), γ in (3) are nuisance parameters. For testing a
null hypothesis in the presence of nuisance parameters, a common approach is to base
the inference on the conditional distribution given a minimal sufficient statistics for the
nuisance parameters. This approach is also known as the Rao-Blackwellization of the test
statistics. Using this conditional distribution, the conditional p value is defined. See [1]
or Chapter 1 of [2] for detail. For our case, the minimal sufficient statistics under the null
model (3) is t = Ax in (1), that is the statistical meaning of the configuration matrix A.
Therefore the conditional distribution under H0, called a null distribution, is written by

f(x | Ax = t) = C−1
∏

(i,j)∈S

1

xij !
,

where C is the normalizing constant written by

C =
∑
y∈Ft

 ∏
(i,j)∈S

1

yij !

 ,

where
Ft = {y ∈ Nq : Ay = t} .

Ft, called a t-fiber, is the set of contingency tables with given values of row sums, column
sums and subtable sum. For the observed contingency table xo, the conditional p value
for the test (5) based on a test statistic T (x) is defined by

p =
∑

x∈FAxo

φ(x)f(x | Ax = Axo),

where φ(x) is the test function of T (x) given by

φ(x) =

{
1, T (x) ≥ T (xo),
0, otherwise.

To evaluate the conditional p value, a Monte Carlo approach is to generate samples from
the null distribution f(x | Ax = Axo) and calculate the null distribution of the test
statistics. In particular, if a connected Markov chain over FAxo is constructed, the chain
can be modified to give a connected and aperiodic Markov chain with stationary dis-
tribution f(x | Ax = Axo) by a Metropolis procedure, and we can use the transitions
x(M+1),x(M+2), . . . ∈ FAxo of the chain after a large number of steps M , called burn-in
steps, as samples from the null distribution. This is a Markov chain Monte Carlo method.
See Chapter 2 of [2] or [10] for detail.
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To construct a connected Markov chain over FAxo , one of the common approaches is
to use a Markov basis introduced in [7]. An integer array z ∈ Zp satisfying Az = 0 is
called a move for the configuration A, where Z is the set of integers. Let

F0(A) = {z ∈ Zp : Az = 0}

denote the set of moves for A.

Definition 1 ([7]). A Markov basis for A is a finite set of moves B = {z1, . . . , zL} ⊂ F0(A)
such that, for any t ∈ NI+J+1 and x,y ∈ Ft , there exist N > 0, (ε1, z`1), . . . , (εN , z`N ) ∈ B
with εn ∈ {−1, 1} such that

y = x +

N∑
s=1

εsz`s and x +

n∑
s=1

εsz`s ∈ FA for 1 ≤ n ≤ N.

We also define the minimality and uniqueness of the Markov basis.

Definition 2. A Markov basis B is minimal if no proper subset of B is a Markov basis.
A minimal Markov basis is unique if all minimal Markov bases differ only by sign changes
of the elements.

The fundamental results on uniqueness and minimality of Markov bases are given in
Chapter 5 of [2]. For the independence model of the complete I × J contingency tables,
where the minimal sufficient statistics Ax is the row sums and column sums, it is known
that the set of square-free moves of degree 2,

B = {z(i1, i2; j1, j2), 1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J},

where z(i1, i2; j1, j2) = {zij} ∈ F0(A) is given by

zij =


1, (i, j) = (i1, j1), (i2, j2),
−1, (i, j) = (i1, j2), (i2, j1),

0, otherwise
(6)

is a unique minimal Markov basis. The square-free moves of degree 2 above, displayed as

j1 j2
i1 1 −1
i2 −1 1

,

is called a basic move. In the presence of the structural zeros, the set of the basic moves
is not a Markov basis in general. For example, as shown in [3], incomplete tables with
structural zeros as the diagonal elements, moves of degree 3 displayed as

[0] +1 −1

−1 [0] +1

+1 −1 [0]
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are needed for Markov bases. Also, as shown in [9], if the subtable sum xB is fixed for the
patterns such as

(i1, j1), (i2, j2) ∈ B, (i1, j2), (i1, j3), (i2, j1), (i2, j3) 6∈ B,

moves such as
j1 j2 j3

i1 +1 +1 −2
i2 −1 −1 +2

are needed for Markov bases. In this paper, we consider a pattern of structural zeros S,
called a ladder determinantal table, and a subtable pattern (4) corresponding to a two-way
change-point model and show that the set of basic moves forms a unique minimal Markov
basis for this setting.

2.2. Two-way change-point models of ladder determinantal tables

Now we specify S considered in this paper.

Definition 3. A ladder determinantal table is an incomplete contingency table with the
set of cells S ⊂ {1, . . . , I} × {1, . . . , J} satisfying

(1, 1), (I, J) ∈ S

and has the form

S =

I⋃
i=1

{(i, j), `i ≤ j ≤ ui}, (7)

where `i ≤ `i+1, ui ≤ ui+1 and ui ≥ `i+1 hold for i = 1, . . . , I − 1.

Clearly the condition (7) is also written by

S =
J⋃
j=1

{(i, j), `′j ≤ i ≤ u′j},

where `′j ≤ `′j+1, u
′
j ≤ u′j+1 and u′j ≥ `′j+1 hold for j = 1, . . . , J − 1. Figure 1 illustrates

examples of incomplete contingency tables. Figure 1(a) and (b) are examples of the ladder
determinantal tables, whereas (c) is not. Figure 1(c) does not satisfy the condition u3 ≥ `4
of Definition 3 because u3 = 3 < 4 = `4.

Remark 1. The ladder determinantal table above is a special case of a block-stairway
incomplete table. As we see in Chapter 5 of [5], an incomplete table is called a block-
stairway table if it is a ladder determinantal table after permutation of rows and columns.
In this paper, we do not consider permutations of rows and columns because we consider
ordered categorical tables. The terminology “ladder determinantal” is used in algebraic
fields. We see the relation between ladder determinantal tables and distributive lattices in
Section 3.
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1 2 3 4 5
1
2
3
4
5

(a)

1 2 3 4 5
1
2
3
4
5

(b)

1 2 3 4 5
1
2
3
4
5

(c)

Figure 1: Examples of incomplete contingency tables. (a) and (b) are ladder determinantal tables, whereas (c)
is not.

Remark 2. The condition ui ≥ `i+1 for i = 1, . . . , I−1 in Definition 3 corresponds to the
inseparability of incomplete tables. See Chapter 5 of [5]. We leave this condition because
the inseparability is also a natural condition in our change-point models. However, it is
not essential condition in our result, i.e., Theorem 2 also holds for separable incomplete
tables.

For the ladder determinantal tables x, we consider a two-way change-point model,
i.e., the model (3) with a subtable B of the form (4). Though the two-way change-point
model is considered in [13] for complete contingency tables, it can be also considered for
incomplete cases. We see an example in Section 4.

3. Markov bases of two-way change-point models for ladder
determinantal tables

In this section we show the minimal Markov basis for two-way change-point models
for ladder determinantal tables and its uniqueness. Note that the set of the basic moves,
i.e, square-free moves of degree 2, is written by

B∗ =

z(i1, i2; j1, j2)

∣∣∣∣∣∣∣∣
(i1, j1), (i1, j2), (i2, j1), (i2, j2) ∈ B

or (i1, j1), (i1, j2) ∈ B, (i2, j1), (i2, j2) ∈ S \B
or (i1, j1), (i2, j1) ∈ B, (i1, j2), (i2, j2) ∈ S \B
or (i1, j1), (i1, j2), (i2, j1), (i2, j2) ∈ S \B

 ,

where z(i1, i2; j1, j2) ∈ F0(A) is given by (6). To show the set B∗ constitutes a Markov
basis, we use the arguments of distributive lattice.

Recall that a partial order on a set P is a binary relation ≤ on P such that, for all
a, b, c ∈ P , one has

• a ≤ a (reflexivity);

• a ≤ b and b ≤ a ⇒ a = b (antisymmetric);

• a ≤ b and b ≤ c ⇒ a ≤ c (transitivity).

A partially ordered set (“poset” for short) is a set P with a partial order ≤. When P is a
finite set, we call P a finite poset. A lattice is a poset L for which any two elements a and
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b belonging to L possess a greatest lower bound (“meet”) a ∧ b and a least upper bound
(“join”) a ∨ b.

Example 2. Let Bn denote the set of subsets of [n] = {1, 2, . . . , n} and define the partial
order ≤ on Bn by setting X ≤ Y if X ⊂ Y (⊂ [n]). Then, in Bn, one has X ∩ Y = X ∧ Y
and X ∪Y = X ∨Y . Thus Bn is a finite lattice, which is called the boolean lattice of rank
n.

A lattice L is called distributive if, for all a, b, c ∈ L one has

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

For example, the boolean lattice of rank n is a distributive lattice.
Let P be a finite poset. A poset ideal of P is a subset α ⊂ P such that

a ∈ α, b ∈ P, b ≤ a ⇒ b ∈ α.

In particular P itself as well as the empty set ∅ is a poset ideal of P . Furthermore, if α
and β are poset ideals of P , then both α ∩ β and α ∪ β are poset ideals of P .

Given a finite poset P , we write L = J (P ) for the set of all poset ideals of P . We then
define a partial order ≤ on L by setting α ≤ β if α ⊂ β, where α and β are poset ideals
of P . It follows that L = J (P ) is a finite distributive lattice.

A totally ordered subset of a finite poset P is a subset C of P such that, for a, b ∈ C,
one has either a ≤ b or b ≤ a. A totally ordered subset of P is also called a chain of P .

Now, a finite distributive lattice L = J (P ) is called planar if

(i) P itself is not a chain of P ;

(ii) P can be decomposed into the disjoint union of two chains of P .

Example 3. Let P = {a, b, c, d} be a finite poset with a < c, b < c, b < d. Then P is the
disjoint union of chains C = {a, c} and D = {b, d}. The finite planar distributive lattice
L = J (P ) is Figure 2.

Suppose that L = J (P ) is a planar distributive lattice for which P is the disjoint
union of chains C = {a1, . . . , an} and D = {b1, . . . , bm} of P with a1 < · · · < an and
b1 < · · · < bm, where n ≥ 1 and m ≥ 1. Let

K[x,y, s, t] = K[x1, . . . , xn, y1, . . . , ym, s, t]

denote the polynomial ring in n+m+2 variables over a field K. We fix a poset ideal S of L
with S 6= ∅ and S 6= L. Given α ∈ L with i0 = max{i : ai ∈ α} and j0 = max{j : bj ∈ α},
one can associate the monomial uα ∈ K[x,y, s, t] with

uα =

{
xi0yj0s if α ∈ S,
xi0yj0t if α ∈ L \ S.
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Figure 2: Distributive lattice L = J (P )

We write RK [L;S] (⊂ K[x,y, s, t]) for the toric ring generated by those monomials uα
with α ∈ L.

Let K[L] = K[zα : α ∈ L] denote the polynomial ring in |L| variables over K and
fix the reverse lexicographic order <rev on K[L] induced by an ordering of the variables
of K[L] with the property that zα < zβ if α < β in L. We define the surjective ring
homomorphism π : K[L] → RK [L;S] by setting π(zα) = uα with α ∈ L. Let I(L;S)
(⊂ K[L]) denote the kernel of π, which will be called the toric ideal of RK [L;S]. We refer
the reader to, e.g., [12] for the foundation of Gröbner bases and toric ideals.

LetA be the set of those 2-element subsets {α, β} of L, where α and β are incomparable
in L, satisfying one of the following:

• {α, β, α ∨ β} ⊂ S;

• {α, β, α ∧ β} ⊂ L \ S;

• α ∈ S and β ∈ L \ S.

It then follows that, for each {α, β} ∈ A, the binomial

fα,β = zαzβ − zα∧βzα∨β (8)

belongs to I(L;S).

Example 4. Consider the distributive lattice for Table 1 we will consider in Section 4.
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The set of the cells of Table 1 displayed as follows.

1 2 3 4 5 6 7
1 (1, 1)
2 (2, 1) (2, 2)
3 (3, 1) (3, 2) (3, 3)
4 (4, 1) (4, 2) (4, 3) (4, 4)
5 (5, 2) (5, 3) (5, 4) (5, 5)
6 (6, 3) (6, 4) (6, 5) (6, 6)
7 (7, 4) (7, 5) (7, 6) (7, 7)

Hereafter we ignore the cells (1, 1) and (7, 7) because the frequencies x11 and x77 are fixed
under the model. Then the corresponding planar distributive lattice L is displayed in Figure
3(a). In Figure 3(a), the set of black vertices • represents a corresponding poset P where
L = J (P ), which is also displayed in Figure 3(b). Note that each vertex ◦ or • in Figure
3(a) represents a poset ideal of the poset consisting of all •’s under or equal to it. For
example, the vertex ◦ at (5, 4) in Figure 3(a) represents a poset ideal

{(2, 2), (3, 1), (3, 3), (4, 1), (4, 4), (5, 2)},

of P . The poset ideal S ⊂ L of Figure 3(c) corresponds to the two-way change-point model
we have considered in Section 4.
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Figure 3: The planar distributive lattice for Table 1 (a), the corresponding poset (b) and the poset ideal for the
two-way change-point model (c).

The poset P is written by the disjoint union of chains

C = {(3, 1), (4, 1), (5, 2), (6, 3), (7, 4)} = {a3, a4, a5, a6, a7}

and
D = {(2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} = {b2, b3, b4, b5, b6}.
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Note here that we are shifting the indices of {ai}, {bj}, so as to correspond ai to i-th row,
and bj to j-th column, respectively. Then for (i, j) ∈ L, we see that i0 = i and j0 = j, and
the ring homomorphism π is written by π(zij) = xiyjs for (i, j) ∈ S and π(zij) = xiyjt
for (i, j) ∈ L \ S, respectively.

For the planar distributive lattice L displayed in Figure 3(a) and for the poset ideal
S ⊂ L displayed in Figure 3(c), there are 14 incomparable 2-element subsets in the set A
as follows.

• {α, β, α ∨ β} ⊂ S;

{(2, 2), (3, 1)}, {(2, 2), (4, 1)}, {(3, 2), (4, 1)}, {(3, 3), (4, 1)}, {(3, 3), (4, 2)},
{(3, 3), (5, 2)}, {(4, 3), (5, 2)},

• {α, β, α ∧ β} ⊂ L \ S;

{(5, 5), (6, 4)}, {(5, 5), (7, 4)}, {(6, 5), (7, 4)}, {(6, 6), (7, 4)}, {(6, 6), (7, 5)},

• α ∈ S and β ∈ L \ S:
{(4, 4), (5, 2)}, {(4, 4), (5, 3)}.

The set of the corresponding binomials (8) for these 14 pairs coincides the set of 14 square-
free degree 2 moves of (9). �

Theorem 1. Let G be the set of those binomials fα,β with {α, β} ∈ A. Then G is the
reduced Gröbner basis of I(L;S) with respect to <rev.

The proof of this theorem is in Appendix. From this theorem, we have the following
result on the Markov basis for our problem.

Theorem 2. B∗ is an unique minimal Markov basis for A of two-way change-point models
for ladder determinantal tables.

The uniqueness of the minimal Markov basis is from the following known result.

Lemma 1 (Corollary 5.2 of [2]). The unique minimal Markov basis exists if and only if
the set of indispensable moves forms a Markov basis. In this case, the set of indispensable
moves is the unique minimal Markov basis.

(Proof of Theorem 2.) We show B∗ corresponds to the reduced Gröbner basis of the corre-
sponding toric ideal, and therefore a Markov basis, in Theorem 1. Because each element
of B∗ is an indispensable move, i.e., a difference of 2-element fiber, B∗ is a unique minimal
Markov basis from Lemma 1. �
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4. Example

Table 1 is an example of the ladder determinantal tables from Table 4.4-13 of [5]. In
this experiment, annuli from donor hydra was grafted to host hydra and observed for foot
formation. The object of this experiment is to evaluate the influence of donor and grafted
annulus positions on foot generation. The frequencies are the cases of foot formation out
of 25 trials, and the row and column indicate the positions 1, . . . , 7 from foot (position 1)
to head (position 7) of hydra. For this data, though it is more natural to consider binomial

Table 1: Basal disc regeneration in hydra from Table 4.4-13 of [5]

Donor annulus position
1 2 3 4 5 6 7

1 4
2 4 0

Position of graft 3 19 5 1
in host 4 24 15 4 5

5 19 18 18 8
6 24 21 16 5
7 23 22 8 1

sampling model, we assume Poisson sampling model here to illustrate our method. Then
we consider the fitting of the two-way change-point model of

B = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}.

The configuration matrix A is 15× 22 matrix written by

A =



1000000000000000000000
0110000000000000000000
0001110000000000000000
0000001111000000000000
0000000000111100000000
0000000000000011110000
0000000000000000001111
1101001000000000000000
0010100100100000000000
0000010010010010000000
0000000001001001001000
0000000000000100100100
0000000000000000010010
0000000000000000000001
1111101100000000000000



.
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The fitted value of the two-way change-point model is displayed in Table 2. As a test

Table 2: Fitted value of the two-way change-point model (i∗, j∗) = (4, 2) for Table Table 4.4-13 of 1

Donor annulus position
1 2 3 4 5 6 7

1 4.00
2 2.81 1.19

Position of graft 3 15.94 6.78 2.28
in host 4 28.26 12.03 4.05 3.67

5 19.00 17.17 15.54 11.29
6 23.50 21.27 15.45 5.79
7 26.52 19.26 7.21 1.00

statistic, we use Pearson’s goodness-of-fit χ2

χ2 =
∑

(i,j)∈S

(xij −mij)
2

mij
,

where m = (mij) is the fitted value in Table 2. We have χ2 = 7.814 with 8 degrees of
freedom. From Theorem 2, a unique minimal Markov basis is the set of 14 square-free
degree 2 moves below,

z(2, 3; 1, 2), z(2, 4; 1, 2), z(3, 4; 1, 2), z(3, 4; 1, 3), z(3, 4; 2, 3),
z(4, 5; 3, 4), z(4, 6; 3, 4), z(5, 6; 3, 4), z(5, 6; 3, 5), z(5, 6; 4, 5),
z(5, 7; 4, 5), z(6, 7; 4, 5), z(6, 7; 4, 6), z(6, 7; 5, 6),

(9)

where z(i1, i2; j1, j2) is given by (6). Using the above Markov basis, we calculate the
conditional p value by the Markov chain Monte Carlo method. Starting from the observed
data, after discarding 50000 burn-in samples, we generate 100000 samples from the Markov
chain and have the estimate p̂ = 0.46. Note that the asymptotic p value based on the
asymptotic χ2

8 distribution of the test statistics is 0.452, which means good fitting of the
asymptotic distribution for Table 1. Figure 4 is a histogram of Pearson’s goodness-of-fit
χ2 generated by the Markov chain, which also shows the good fitting of the asymptotic
distribution. Similarly, we check the goodness-of-fits of all the two-way change-point
models for each (i∗, j∗), and find that the model with (i∗, j∗) = (4, 2) is the best two-way
change-point model for Table 1, i.e., the model with the maximal estimated p value.

5. Discussion

In this paper, we give a unique minimal Markov basis for two-way change-point models
of ladder determinantal tables. Our setting is an extension of two papers, [3] and [9]. The
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Figure 4: A histogram of Pearson’s goodness-of-fit χ2 generated by the Markov chain. Dotted line is the
asymptotic χ2

8 distribution.

two-way change-point model is an example of subtable sum problems considered in [9], and
the ladder determinantal table is an example of incomplete contingency tables considered
in [3]. We consider both constraints at once in this paper.

Our main result is based on the theory of Gröbner bases for the distributive lattice.
As we see in Section 3, the ladder determinantal table is treated as the distributive lattice.
One important point is that we can consider any poset ideal as the two-way change-point
models, even if it is not a rectangular shape as (4). Therefore our method is also used for
any B as long as it corresponds to a poset ideal of the distributive lattice.

In the analysis of two-way contingency tables, several extensions of the independence
model are considered from the viewpoint of algebraic statistics. For example, a weakened
independence model by [6] is constructed from the set of 2× 2 adjacent minors.

A. Proof of Theorem 1

Proof. Once we know that G is a Gröbner basis of I(L;S) with respect to <rev, it follows
immediately that G is reduced. The initial monomial in<rev(fα,β) of fα,β is in<rev(fα,β) =
zαzβ. Let in<rev(G) denote the ideal of K[L] generated by those monomials in<rev(fα,β)
with fα,β ∈ G. Clearly in<rev(G) ⊂ in<rev(I(L;S)), where in<rev(I(L;S)) is the initial ideal
of I(L;S) with respect to <rev. In order to show that G is a Gröbner basis of I(L;S) with
respect to <rev, by virtue of the technique [4, Lemma 1.1], what we must prove is that, for
monomials u and v, where u 6= v, belonging to K[L] with u 6∈ in<rev(G) and v 6∈ in<rev(G),
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one has π(u) 6= π(v). One can assume that u and v are relatively prime and, furthermore,

u = zα1 · · · zαpzβ1 · · · zβq , v = zα′1 · · · zα′pzβ′1 · · · zβ′q ,

where each αi ∈ S, each α′i ∈ S, each βj ∈ L\S and each β′j ∈ L\S. Since zαzβ ∈ in<rev(G)
if α and β are incomparable in L with α ∈ S and β ∈ L \ S, the condition that

(]) for each i and for each j, one has αi < βj and α′i < β′j
is satisfied.

If αi ∨ αi′ ∈ S, then αi and αi′ must be comparable in L. Thus in particular, if
αi∨αi′ ∈ S for each i and for each i′ with 1 ≤ i < i′ ≤ p, then {α1, . . . , αp} is a multichain
of L. On the other hand, suppose that there exist 1 ≤ i < i′ ≤ p with αi ∨ αi′ ∈ L \ S.
Then, by (]), for each j and for each j′ with 1 ≤ j < j′ ≤ q, one has βj ∧ βj′ ∈ L \ S, so
that βj and βj′ must be comparable in L. Hence {β1, . . . , βq} is a multichain of L.

Now, suppose that

(i) for each i and for each i′ with 1 ≤ i < i′ ≤ p, one has αi ∨ αi′ ∈ S;

(ii) there exist 1 ≤ k < k′ ≤ p for which α′k ∨ α′k′ ∈ L \ S.

Then each of {α1, . . . , αp} and {β′1, . . . , β′q} is a multichain of L. Ignoring the variables
s and t, the toric ring RK [L] introduced in [11] arises. Working in the frame of [11], if
u∗ = zγ1 · · · zγp+q is the standard monomial expression of u and v∗ = zγ′1 · · · zγ′p+q

is that

of v, then again by (]) one has |{i : γi ∈ S}| ≥ p and |{j : γ′j ∈ S}| < p. Hence u∗ 6= v∗.
Thus π(u) 6= π(v).

The same argument as above shows that if we suppose

(i’) for each j and for each j′ with 1 ≤ j < j′ ≤ q, one has βj ∧ βj′ ∈ L \ S;

(ii’) there exist 1 ≤ ` < `′ ≤ q for which β′` ∧ β′`′ ∈ S,

then π(u) 6= π(v).
Let π(u) = π(v). Then one can assume one of the following conditions:

(♣) for each i and for each i′ with 1 ≤ i < i′ ≤ p, one has αi ∨ αi′ ∈ S and α′i ∨ α′i′ ∈ S;

(♠) for each j and for each j′ with 1 ≤ i < i′ ≤ q, one has βj ∧ βj′ ∈ L \ S and
β′j ∧ β′j′ ∈ L \ S.

Suppose (♣). Then each of {α1, . . . , αp} and {α′1, . . . , α′p} is a multichain of L. Hence,
by (]) together with [11], one has {α1, . . . , αp} = {α′1, . . . , α′p} as multichains of L. Since
u and v are relatively prime, one has p = 0.

Let p = 0 and q ≥ 2. Let π(zβj ) = xξjyζj t for 1 ≤ j ≤ q. Set ξ = min{ξj : 1 ≤ j ≤ q}
and write ζ for the smallest integer for which there is 1 ≤ j0 ≤ q with π(zβj0 ) = xξyζt.
Then there exist β′j1 and β′j2 such that π(β′j1) = xξyj∗t and π(β′j2) = xi∗yζt. One has
i∗ > ξ and j∗ > ζ. Hence β′j1 ∧ β

′
j2

= βj0 . Since βj0 ∈ L \ S and since β′j1 and β′j2 are
incomparable in L, one has zβ′j1

zβ′j2
∈ in<rev(G), which contradicts v 6∈ in<rev(G).

Finally, the same argument as above is also valid if we suppose (♠).
This completes proving that G is the reduced Gröbner basis of I(L;S) with respect to

<rev.
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