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Abstract. A recent thread of research in ordinal data analysis involves a class of mixture models
that designs the responses as the combination of the two main aspects driving the decision pro-
cess: a feeling and an uncertainty components. This novel paradigm has been proven flexible to
account also for overdispersion. In this context, Gröbner bases are exploited to estimate model
parameters by implementing the method of moments. In order to strengthen the validity of the
moment procedure so derived, alternatives parameter estimates are tested by means of a simula-
tion experiment. Results show that the moment estimators are satisfactory per se, and that they
significantly reduce the bias and perform more efficiently than others when they are set as starting
values for the Expectation-Maximization algorithm.
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1. Introduction

When administering a survey, respondents are asked to express a preference in a list
of ordinal categories, corresponding to levels of agreement/pleasantness/involvement with
respect to a given item. In this regard, cub models’ paradigm [33, 13, 23] prescribes that
the data generating process yielding to the evaluation from an underlying latent trait is
basically structured as the combination of two elements: the actual feeling towards the
item and an inherent uncertainty concerning the final rating [43]. The decision-making
process results in a two-component mixture distribution, where the meditated behavior is
shaped by a shifted Binomial random variable and the uncertainty is modelled by a discrete
Uniform distribution, thus the acronym cub standing for C ombination of a U niform and
a shifted B inomal random variable. In this sense, cub models directly shape the latent
components of the decision process, offering an alternative setting to classical methods
for the analysis of ordinal data (see, for instance, [1, 30]) in which an added value is the
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explicit specification of uncertainty.

cub models approach has been extended in several directions to perform more refined
analysis, for instance to account for inflated categories [19], and for overdispersion, which
leads us to the main focus of the present paper. cubemodels [20, 22] have been introduced
to deal with the overdispersion effect, occurring when an excess of variability is observed
among subjects: as a consequence, the feeling component is adjusted and then modelled
via a shifted Beta-Binomial distribution. Several attempts have been pursued in the
statistical literature to understand and model the overdispersion phenomenon by means of
the Beta-Binomial distribution [8, 15, 28, 42]. In addition, [42] focuses on estimation issues
for location and overdispersion parameters of the Beta distribution, with comparisons
between the Maximum Likelihood method (ML) and an unbiased version of the method
of moments. For estimation of parameters of the Beta-Binomial distribution, see also
[41]. In this paper an original methodology to tackle moment estimation for cub and
cubemodels is proposed. In order to solve the system of moment equations, a classical
choice would be to implement a Newton-Raphson algorithm in a suitable variant. However,
such a procedure does not guarantee convergence within the boundaries of the parameter
space and, additionally, it is very sensitive to the choice of starting values. For this reason
and since the system of the moment equations simply lends itself to be algebraically
manipulated and reduced to polynomial form, a Gröbner bases approach can be pursued
[9, 37]. This technique yields to a system in a simplified form that can be solved with
a forward or backward substitution procedure, allowing in principle to derive an explicit
expression for the moment estimates.

As for any finite mixture model, inference about cub and cubemodels is currently
based on the maximum likelihood methods and relies on the Expectation-Maximization
(EM) algorithm [31, 32], whose slowness can be sometimes discouraging. Indeed, both
experience and literature suggest that, for general mixtures, it is usually preferable to run
preliminary iterations of the EM algorithm starting with different initial values in order
to exclude possible local maxima. See [4] for a focus on initialization procedures and [25]
for a discussion of possible improvements of the algorithm. For cub and cubemodels,
devoted studies have been addressed, also when subjects’ characteristics are taken into
account [34, 35].

The ultimate idea of the paper is to derive the moment estimators of parameters for
cub and cubemodels in an algebraic setting -see [3] for a study on moment varieties for
mixtures of multivariate Gaussian distributions grounded on tools from computational al-
gebra. Then, in the more involved setting afforded by cubemodels, the core of the presen-
tation is to test their performances when compared to other methods. Classical techniques
for selecting preliminary estimates for a statistical model include a grid search across the
parameter space, random choices, as well as short preliminary runs of the EM algorithm
for finite mixture models, or compound methods. In the present work and specifically
for cubemodels, these standard proposals are compared with both moment and naive
estimators, the latter consisting in model-based parameter estimates, computed after an
exploratory data analysis. After a brief theoretical discussion on advantages and disad-
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vantages for each alternative, this task is pursued by running a Monte Carlo experiment in
which all methods are applied on simulated data sampled from selected cube distributions.
In this respect, the simulation results support that the moment estimators significantly
reduce the bias and improve efficiency as compared with other proposals; these conclusions
are supported by [29] distance and Kullback-Leibler divergence with respect to true param-
eter vectors. Then, to further validate the moment proposal, ML estimation is performed
by running the EM algorithm initialized by using the different preliminary estimators.
Thus, as a by-product of this study, the advantages of the derived moment proposal can
be assessed also in terms of acceleration of the ML procedure, as indicated by the mean
number of iterations needed to achieve convergence, the bias and root mean square errors
of final ML estimates. It is worth to mention that similar comparative studies have been
carried out for other mixture models, as for the Normal and Poisson cases [5, 26, 16],
as well as for cub models in [18]. Initial values for the overdispersion parameter can be
derived by exploiting consistent estimators of the Beta-Binomial parameters as those pro-
posed by [44], [45] and [46]: see [2] for estimation of overdispersion based on likelihood
methods in the framework of generalized linear models.

The paper is organized as follows: in Section 2 cube models are shortly described,
whereas the proposed method of moments is discussed in Section 3. Section 4 is devoted
to the joint preliminary estimation of model parameters based on grid, naive, mixing
and random estimators. The design and the results of the planned simulation study are
discussed in Sections 5 and 6: then, final considerations, a real application and hints
on future developments end the paper (the Appendix addresses a short overview of the
theory of Gröbner basis). The methodology discussed in the paper has required both Maple
Software (Version 15) and the R programming environment: in particular, the simulation
study has been performed by means of the R package CUB available on CRAN [24], devoted
to fit and test ordinal data within cub models and their extensions.

2. Mixture models for uncertainty and overdispersion

cub models [13] were devised to mimic the data generating process letting respondents
produce an evaluation over an ordinal scale, say with J > 3 categories. The discrete
choice process disentangling the latent perception is designed as a mixture distribution
with parameters θ

′
= (π, ξ)

′
of a shifted Binomial distribution with parameters J and ξ:

br(ξ) =

(
J − 1

r − 1

)
ξJ−r(1− ξ)r−1 , r = 1, 2, . . . , J , (1)

and a discrete Uniform distribution over the support {1, 2, . . . , J}. Then, a cub random
variable RCUB ∼ cub (π, ξ) has probability distribution given by:

pr(θ) = Pr(RCUB = r | θ) = π br(ξ) + (1− π)
1

J
, r = 1, 2, . . . , J . (2)

The parameter ξ is referred to as the feeling parameter: indeed, 1− ξ can be interpreted
as the probability of each category being preferred over the previous ones in a pairwise
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comparison procedure [11], while the uncertainty parameter π, acting as reverse weight
to the Uniform distribution, is responsible for observed heterogeneity. Both empirical
evidence and methodological studies indicate that the model specification benefits from
the inclusion of the uncertainty component: indeed, the Uniform distribution accounts
for the unavoidable fuzziness produced in the discretization of a latent perception into
categories, as well as for the respondents’ indecision, response styles, ignorance of the
subject, laziness of respondents and other nuisances.

Starting from cub models, the specification of cubemodels [20] was motivated by
the necessity of directly shaping the overdispersion effect : this arises when an excess of
inter-subjects variability occurs with respect to that accounted by the shifted Binomial
component (for a discussion on the genesis of the overdispersion effect in cubemodels,
see [21]). More specifically, overdispersion and uncertainty are different sources of vari-
ability in the data: confusing the two effects might result in mis-specified models, thus
both components deserve an ad-hoc specification. Indeed, uncertainty is a measure of
the heterogeneity of the distribution, while overdispersion is mainly related to the mutual
variability in the sense of the Gini mean difference (as discussed in Subsection 4.2). The
importance of isolating location and dispersion in the analysis of ordinal data is highlighted
also in [42], where the Authors’ motivation supporting the choice of the Beta distribution
as a model for the latent response in overdispersed ordinal data meets the rationale of
cube models.

For J > 4, a cube random variable R with parameters θ
′

= (π, ξ, φ)
′

is obtained
from (2) by considering a random variable X with the shifted Beta-Binomial distribution
of parameters (ξ, φ) for the feeling component:

pr(θ) = Pr(R = r | θ) = πPr(X = r|ξ, φ) + (1− π)
1

J
, (3)

where Pr(X = r|ξ, φ), for r = 1, . . . , J , is parameterized as:

Pr(X = r|ξ, φ) =

(
J − 1

r − 1

) r∏
k=1

[1− ξ + φ(k − 1)]

J−r+1∏
k=1

[ξ + φ(k − 1)]

[1− ξ + φ(r − 1)] [ξ + φ(J − r)]
J−1∏
k=1

[1 + φ(k − 1)]

, r = 1, . . . , J.

(4)
For a general presentation of the Beta-Binomial model, see [41, 42]. The cube distribution
(3) is well defined for θ

′
= (π, ξ, φ)

′
belonging to the parameter space:

Ω(θ) = {(π, ξ, φ) : 0 < π ≤ 1; 0 ≤ ξ ≤ 1; 0 ≤ φ <∞}. (5)

The parameterization chosen in (4) highlights that cub models are nested into cube ,
that is, when φ = 0 the probability distribution (3) collapses to (2). Notice that the
expectation of the cube random variable R is unaffected by the overdispersion parameter
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φ:

E (R) = E(RCUB) =
J + 1

2
+ π(J − 1)

(
1

2
− ξ
)
. (6)

Instead, the overdispersion strongly affects the variance:

Var(R) = Var(RCUB) + φJ(θ) , (7)

where

Var(RCUB) = (J−1)

[
π ξ (1−ξ)

[
π (J−1)−(J−2)

]
+ (1−π)

3π (J − 1) + (J + 1)

12

]
(8)

is the variance of a cub model with the same (π, ξ)
′

parameters and φJ(θ) is the overdis-
persion effect :

φJ(θ) = π ξ (1− ξ) (J − 1) (J − 2)
φ

1 + φ
. (9)

It follows that the variance of R increases with φ (and π) by a quantity which, ceteris

paribus, is maximized when ξ =
1

2
. When ξ tends to 0 or to 1, or when π tends to 0,

one fails to capture the overdispersion effect. This circumstance indicates that, in case
of predominance of extreme feelings or maximum heterogeneity, the final result is not
so affected by any inter-variability among the subjective selection of the categories (as
confirmed by the simulation experiment presented in Sections 5 and 6).

Hereafter, the focus will be on unimodal distributions: thus, we have to require φ < 0.5
[21] in order to have cube models with mode at an intermediate category. Moreover, it
is reasonable to assume a measure of overdispersion that does not exceed the threshold
φ ≤ 0.3: this choice prevents from confounding effect with the latent uncertainty. To deal
with multimodal distributions, specification of subjects’ covariates is more appropriate, as
discussed in [35].

In Figure 1, some unimodal cube distributions over J = 7 categories are shown with
varying parameters, highlighting the wide flexibility of cube models in fitting observed
distributions with different shapes and features. Parameter values have been chosen to
range the whole parameter space with several combinations (small, medium, large) of
uncertainty, feeling and overdispersion components. These models will be the object of
the simulation study discussed in Sections 5 and 6.

3. Moment estimators

As a matter of fact, for cub models it is quite straightforward to obtain the moment
estimates from the first two moment equations (by substitution) corresponding to given
data. The method of moments for cub models has been directly applied in [33] to ob-
tain estimates of uncertainty and feeling parameters π and ξ respectively; in addition,
a comparative analysis with the ML approach has been run in a real case study. For
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Figure 1: cube probability distributions for varying π, ξ, φ (J = 7)

cube models, instead, a direct approach yields to cumbersome computation since high
order polynomials are involved. In what follows, a strategy to tackle moment estimation is
proposed by considering the theory of Gröbner basis. In order to work in a homogeneous
framework, our strategy for the forthcoming simulation study is to exploit the Gröbner
basis proposal also to derive moment estimates for cub mdoels: see the Appendix for
related computational details.
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3.1. CUBE distribution: theoretical moments

Let BB ∼ BetaBin(α, β, J − 1) be a Beta-Binomial random variable with parameters
α, β > 0, over the support {0, 1, . . . , J − 1}, and probability mass function:

Pr(BB = r) =

(
J − 1

r

)
Be(r + α, J − 1− r + β)

Be(α, β)
, r = 0, 1, . . . , J − 1 ,

where Be(p, q) =
1∫
0

tp−1(1− t)q−1dt denotes the Euler Beta function [36].

If (α+ β)(k) denotes the rising factorial:

(α+ β)(k) = (α+ β)(α+ β + 1) · · · (α+ β + k − 1), (10)

the first three moments of BB are given by:

E (BB) = (J − 1)α
1

α+ β
,

E
(
BB2

)
= (J − 1)α

[
(J − 1) (1 + α) + β

]
(α+ β)(2)

,

E
(
BB3

)
= (J − 1)α

(J − 1)(1 + α)
[
(J − 1)(2 + α) + 3β

]
+ β(β − α)

(α+ β)(3)
.

The selected parameterization (4) is preferred in the framework of cube models, and it
arises from the one-to-one correspondence [20]:

ξ =
β

α+ β

φ =
1

α+ β

⇐⇒


α =

1− ξ
φ

β =
ξ

φ
.

Given the latter parameterization, the first three moments of BB can be written as:

E (BB) = (J − 1)(1− ξ)

E
(
BB2

)
= (J − 1)(1− ξ)(J − 1)(φ+ 1) + ξ(J + 2)

1 + φ

E
(
BB3

)
= (J − 1)(1− ξ)

{
(J − 1)(φ+ 1− ξ)[(J − 1)(2φ+ 1− ξ) + 3ξ] + ξ(2ξ − 1)

}
(1 + φ)(1 + 2φ)

.

When shifting the support from {0, 1, . . . , J−1} to {1, . . . , J}, the first three moments

µ
(X)
1 , µ

(X)
2 , µ

(X)
3 of the shifted Beta-Binomial random variable X = BB+ 1 can be written

as:

µ
(X)
1 = A0 − (J − 1)A1(φ) ξ ;

µ
(X)
2 = B0 − (J − 1)B1(φ) ξ + (J − 1)(J − 2)B2(φ) ξ2 ;
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µ
(X)
3 = C0 − (J − 1)C1(φ) ξ + (J − 1)(J − 2)C2(φ) ξ2 − (J − 1)(J − 2)(J − 3)C3(φ) ξ3 ;

where:

A0 = J ; B0 = J2; C0 = J3;

A1(φ) = 1 ; B1(φ) =
(J + 1)φ+ (2J − 1)

1 + φ
; C1(φ) =

2(J2 + J + 1)φ2 + 3(2J2 − 1)φ+ (3J2 − 3J + 1)

(1 + φ)(1 + 2φ)
;

B2(φ) =
1

1 + φ
; C2(φ) = 3

(J + 1)φ+ (J − 1)

(1 + φ)(1 + 2φ)
; C3(φ) =

1

(1 + φ)(1 + 2φ)
.

Let U denote a random variable with the discrete Uniform distribution over {1, . . . , J}.
Since:

µ
(U)
1 = E (U) =

J + 1

2
, (11)

µ
(U)
2 = E

(
U2
)

=
(J + 1)(2J + 1)

6
, (12)

µ
(U)
3 = E

(
U3
)

=
J(J + 1)2

4
, (13)

the first three moments µ
(R)
1 , µ

(R)
2 , µ

(R)
3 of a cube random variable R (3) are given by:

µ
(R)
k = π E

(
Xk
)

+ (1− π)E
(
Uk
)

= π
[
µ

(X)
k − µ(U)

k

]
+ µ

(U)
k , k = 1, 2, 3,

namely:

µ
(R)
1 = π

[
(A0 − µ(U)

1 )− (J − 1)A1(φ) ξ
]

+ µ
(U)
1 ;

µ
(R)
2 = π

[
(B0 − µ(U)

2 )− (J − 1)B1(φ) ξ + (J − 1)(J − 2)B2(φ) ξ2
]

+ µ
(U)
2 ;

µ
(R)
3 = π

[
(C0 − µ(U)

3 )− (J − 1)C1(φ) ξ + π (J − 1)(J − 2)C2(φ) ξ2 + (J − 1)(J − 2)(J − 3)C3(φ) ξ3
]

+ µ
(U)
3 .

(14)
In the end, given a sample of observations (r1, . . . , rn)

′
drawn from a cube distribu-

tion with parameters θ
′

= (π, ξ, φ)
′
, and the corresponding first three sample moments

m1,m2,m3:

mj =
1

n

n∑
k=1

(rk)
j , j = 1, 2, 3, (15)

the solution (π̃, ξ̃, φ̃) of the three non-linear equations:
E1(π, ξ, φ) = µ

(R)
1 (π, ξ, φ)−m1 = 0

E2(π, ξ, φ) = µ
(R)
2 (π, ξ, φ)−m2 = 0

E3(π, ξ, φ) = µ
(R)
3 (π, ξ, φ)−m3 = 0

(16)

gives the moment estimates for the parameter vector θ [38, pp. 351]. When comput-
ing moment estimates one should keep in mind that they usually underperform the ML
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estimates in terms of efficiency, but the method of moments yields always consistent esti-
mates. A part from a relative lack of efficiency, one of the main drawbacks of the method
of moment is that it may happen that estimates lay out of the parameter space, in which
case they are meaningless. Furthermore, they are unique only under invertibility of the
defining moment equations [10, 39]. The ML method, however, also implies several dis-
advantages: estimates can be biased for small samples and the procedure is sensitive to
the choice of starting values for the optimization runs (sometimes generated with moment
estimators). On the other hand, moment estimates are usually easier to determine. Our
investigation will lead to the empirical conclusion that, for cubemodels, moment estima-
tors computed from a suitable Gröbner basis are instead a fairly satisfactory choice. Most
importantly, from the simulation study it can be advanced that a moment estimate can be
always uniquely determined with the proposed methodology within the parameter space,
thus supporting the desired regularity assumptions.

3.2. Moment estimates and Gröbner bases

Due to the regularity of µ
(R)
1 , µ

(R)
2 , µ

(R)
3 on the parameter space as functions of π, ξ, φ,

one can equivalently consider the nonlinear algebraic system obtained from (16) after
reducing the moment equations to polynomial form, say:

Ẽ1(π, ξ, φ) = 0

Ẽ2(π, ξ, φ) = 0

Ẽ3(π, ξ, φ) = 0

(17)

whose coefficients are functions of J and of the sample moments m1,m2,m3. The Gröbner
bases approach is a symbolic technique to solve an algebraic system of equations: it
consists in providing an algebraic system equivalent to (17) but in a simpler form [6, 40]:
in few words, solving a system of nonlinear algebraic equations in the ring of polynomials
K[x1, . . . , xt]:

Ei(x1, . . . , xt) = 0, i = 1, . . . , s, (18)

is equivalent to determine, if they exists, the solutions of the system:

Gj(x1, . . . , xt) = 0, j = 1, . . . , q, (19)

where G1, . . . , Gq form the reduced Gröbner basis of the polynomial ideal generated by
E1, . . . , Es. Provided that one chooses a so-called elimination ordering, the resulting sys-
tem could be solved easily by forward (or backward) substitution (see the Appendix for a
concise overview).

3.2.1. Computational details

For a fixed number J of ordinal categories, the Gröbner basis associated with (17) has
been computed via Maple Software (Version 15), library Groebner. For our purposes, the
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best performances are obtained by considering the lexicographic order: π > ξ > φ. In this
case, the first parameter to be solved for is the overdispersion: this ordering is advisable
because it recognizes a major importance to the estimation of φ and limits the propagation
error. Indeed, mis-specification of φ yields biased estimates of both π and ξ; in addition,
this choice performs more efficiently from a computational view if compared with other
choices. Further comments on the selection of the ordering are postponed to the Appendix.
As a matter of fact, the randomness of the sampling procedure induces a particularly high
variability in the second and the third sample moments: for this reason, it may occur that
the Gröbner basis associated with (17) is trivial, and consequently no moment solution
exists. Indeed, the proposed strategy always uniquely determines the moment solution
when considering theoretical moments in place of the sample moments, but it might fail
at the simulation level. Empirical evidence suggests that this circumstance is mostly
associated to a population φ lying close to the lower bound of its admissible range, that
is for negligible overdispersion effect, thus indicating that a cub model fit could be used
instead. This problem could be overcome by looking for a different parameterization of the
overdispersion: nevertheless, the chosen one is preferred due to easiness in interpretation.
Thus, as an overall rule, at each step of the implementation, whenever the moment solution
cannot be provided within the admissible range, the chosen strategy is to minimize the
overdispersion effect by setting φ = 0.01, and search for the moment solutions for π and ξ
switching to the nested cub models (see the Section 7 in the Appendix). Specifically, the
percentage of times the procedure had to switch to the nested cub models as indicated
is about 5% for all models, expect for models corresponding to φ < 0.1, for which such
percentage is greater.
The symbolic approach afforded by the Maple library allows to claim that, when non-
trivial, the reduced Gröbner basis for polynomials in (17) is always composed of four
generators:

G1(φ) = a0 + a1φ+ a2φ
2 + φ3 (20)

G2(ξ, φ) = b0 + b1φ+ b2φ
2 + ξ + ξφ (21)

G3(ξ, φ) = c0 + c1φ+ c2φ
2 − ξ + ξ2 (22)

G4(π, ξ, φ) = d0 + d1φ+ d2φ
2 + d3ξ + π (23)

whose coefficients are functions of J and of the sample moments. Notice that this state-
ment is the result of our extensive numerical experiment, run by means the Maple library
and by selecting the Buchberger algorithm as option †. The procedure here implemented
highlights possible interactions between theory and experiments in Gröbner basis use to
overcome moment estimation pitfalls. Secondly, considering the system (20) - (23), a for-
ward substitution strategy can be implemented. First, consider (20): it turns out that
G1(φ) always admits a root in φ = −1; then, for G̃1(φ) = G1(φ)(1 + φ)−1, it is straight-
forward to determine if it admits solutions and, in this case, the relative values. At this
point, a proper stepwise procedure has to be developed to account for all the possible
occurrences:

†Such structure has been double-checked and validated also by means of the Mathematica software.
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1. if no solution to G̃1(φ) = 0 exists, or if they exists but they are not admissible,
switch to the nested cub model.

2. When there is exactly one admissible solution φ̃ to G̃1(φ) = 0, then seek for the
solutions of G2(ξ, φ̃) = 0 w.r.t. ξ within the parameter space.

3. If an admissible moment estimate ξ̃ can be derived, then switch to the last equation
G4(π, ξ̃, φ̃) = 0 to compute the moment estimate π̃.

4. If two solutions to G̃1(φ) = 0 exist, both of which are admissible, then proceed as
explained in the previous steps for both of them. Thus, one would have two final
solutions to the system: in this regard, the planned simulation study strongly sup-
ports the claim that exactly one of them would be admissible, yielding to a uniquely
determined moment estimate.

As a final remark about the adopted solving procedure are needed, notice that it is not
required to directly involve G3(ξ, φ) into the solving procedure. Specifically, when an
admissible solution ξ̃ is derived from (21), it verifies also G3(ξ̃, φ̃) = 0. Figure 2 displays
the plotted kernel densities of the moment estimators corresponding to nsimul = 1000
simulations of samples, each of n = 1000 observations, generated from cubemodel on a
J = 7 point ordered scale, illustrated in Figure 1. We acknowledge that, at this preliminary
stage, moment estimation for π is smoother as its true value increases and φ decreases,
that is the lower the variability in the data.

Figure 2: Moment estimator for cubemodels obtained via Gröbner basis
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4. Preliminary estimators

The moment estimates derived in the previous section have an independent interest.
Nevertheless we propose to challenge them comparatively with alternative estimation pro-
cedures, and then by further testing their performances when set as starting values for the
EM algorithm to run maximum likelihood estimation.

Among the possible alternatives to obtain preliminary estimators of parameters of a
cube model, we consider grid, naive, mixing and initial guesses derived by short prelim-
inary runs of the EM algorithm. For all proposals, their motivations and their soundness
are discussed, especially with reference to the naive choice. Random starting values are
also considered for the sake of completeness.
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4.1. Grid estimators

For a sample of ratings with absolute frequencies n1, . . . , nJ , the grid approach consists
in obtaining an initial guess of parameter values by computing the log-likelihood function:

` (θ) =
J∑
r=1

nr log
[
Pr(R = r|θ)

]
, (24)

over a grid of few admissible values for the parameters belonging to Ω(θ) (5), and then
to choose those maximizing it. The grid approach has been advocated by [27] for finite
mixtures and it has become very popular because it is easy to implement. Moreover, it
is particularly suitable in frameworks where the parameter space has bounded range, and
it is useful when questioning about possible local maxima issues. When such occurrence
can be excluded, the denser the grid the more reliable are the resulting estimates.

In order to range all the parameter space and consider all possible combinations
‘low/high’ for uncertainty, feeling and overdispersion, the log-likelihood function (24) will
be computed over the grid:

Ω(θ0) = Nπ ×Nξ ×Nφ, (25)

where Nπ, Nξ, Nφ are the chosen grid ranges for π, ξ and φ, respectively:

Nπ = {0.30, 0.50, 0.70}; (26)

Nξ = {0.20, 0.40, 0.80}; (27)

Nφ = {0.05, 0.15, 0.30}. (28)

Then, the grid estimator θ∗ = (π∗, ξ∗, φ∗)
′

of the true parameter vector θ is defined
as:

(π∗, ξ∗, φ∗) = argmax
θ0∈Ω(θ0)

` (θ0) . (29)

4.2. Naive and mixing estimators

This subsection aims at designing preliminary estimators for parameters in cube mod-
els that can be directly computed starting from an exploratory analysis of available data
and that are connected to the parameters features of the distribution: the naive estimators.
In particular, the naive proposal relies on [18], where the Author discusses preliminary
estimators for parameters in cub models. For what concerns the feeling parameter, it can
be derived on the basis of a location property of the sample mode Mn:

ξcub = 1 +
0.5−Mn

J
. (30)

Let G denote the normalized Gini heterogeneity index for a given probability distribution
(p1, . . . , pJ):

G =
J

J − 1

(
1−

J∑
r=1

p2
r

)
, (31)
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attaining its maximum for the Uniform distribution: GU = 1. Then, the uncertainty
parameter can be effectively estimated by:

πcub = min

(√
GU − GObs

GU − GSB(ξcub )
, 1

)
(32)

where GU , GObs, GSB(ξcub ) denote the index (31) for the Uniform, the observed and the
shifted Binomial distribution of parameter ξcub, respectively.

Since cub models are nested into cube , estimators (30) and (32) may be considered
as naive choices for feeling and uncertainty parameters also for cube distributions. For
deriving a naive estimate of the overdispersion parameter φ, empirical evidence [21] sug-
gests to relate the overdispersion parameter to the mutual variability of responses among
categories according to the following regression model:

∆(π, ξ, φ) = a(π, ξ) + b(π, ξ)
√
φ, (33)

where a(π, ξ), b(π, ξ) are functions of the uncertainty and the feeling parameters, and
∆(π, ξ, φ) denotes the mean difference index, expressed according to [14] formulation as:

∆ =

J−1∑
r=1

Fr(1− Fr), (34)

with Fr =
∑r

j=1 fr is the empirical cumulative distribution function. The regression model
(33) has been tested with a short simulation plan and it has shown nice performances in
terms of goodness of fit when sampling from a theoretical Beta-Binomial distribution.

Back to cube models, the naive strategy requires to regress the Mean Difference
computed for the cube probability distributions with feeling and uncertainty parameters
(30) and (32), respectively, and let φ varying in the established admissible range. Finally,
for the estimated intercept and slope, a naive estimate φ∆ for φ is obtained by plugging
the observed Mean Difference into model (33), in such a way that the naive estimator of
true parameter vector θ is given by:

θ
′
naive = (πcub , ξcub , φ∆)

′
. (35)

4.2.1. Mixing estimators

A choice that takes advantages from both naive and grid estimation is to merge the two
techniques into a mixing procedure in which the following grid for the true parameter
vector θ

′
= (π, ξ, φ)

′
is considered:

Ω(θmix) = Nπ(ε)×Nξ(ε)×Nφ(ε), (36)

where ε is a small number (say ε = 0.1) such that the grid ranges for parameters are set
to:

Nπ(ε) = {πcub − ε, πcub , πcub + ε}; (37)
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Nξ(ε) = {ξcub − ε, ξcub , ξcub + ε}; (38)

Nφ(ε) = {0.05, 0.10, 0.30}. (39)

After computing the log-likelihood function on the given grid, the mixing estimator of θ
is chosen as the parameter vector maximizing the log-likelihood ` (θ) in (24):

θ̄ = (π̄, ξ̄, φ̄) = argmax
θ0∈Ω(θmix)

` (θ0) . (40)

4.3. Random starting estimators

The most popular device for initializing the EM algorithm is to consider random start-
ing values. For cube distributions, they are based on a continuous Uniform distribution
for π and for ξ over the unit interval (0, 1), whereas for the overdispersion parameter φ
a continuous Uniform distribution U(0, 0.3) over the interval (0, 0.3) is assigned. Thus,
given π̌ ∼ U(0, 1), ξ̌ ∼ U(0, 1), φ̌ ∼ U(0, 0.3), the proposed random starting estimators
are θ̌ = (π̌, ξ̌, φ̌)

′
.

4.4. Short runs of EM algorithm

A common and recognized practice used to initialize the EM algorithm is to consider
ML estimates obtained from short preliminary runs of the algorithm itself [5], obtained by
allowing a low maximum number of iterations and a high error tolerance to stop iterations
when comparing the log-likelihood values in subsequent steps ‡. Considering that ML
convergence can be quite slow and that the choice of preliminary values should not to be
too demanding at this stage, within the planned simulation study the initial value of each
parameter will be set to the midpoint of its admissible range:

π̊ = 0.50, ξ̊ = 0.50, φ̊ = 0.15. (41)

5. Comparative analysis

After having replicated the experiment for different numbers of categories (J = 5, 7, 9, 10),
it results that the performances of the different methods do not substantially depend upon
the value J : thus, the analysis here reported concerns 1000 simulations of samples of size
n = 1000 when J = 7 (other simulation results are available from Authors upon request).

The convenience of the moment proposal over the other alternatives appears evident
also at a preliminary stage, as indicated by the bias and the root mean square errors
(RMSE) reported in Tables 1 and 2. For each method and each model of the 12 models
illustrated in Figure 1, the best results are highlighted in bold. Note that the mixing and
the naive alternatives provide satisfactory performances for several models, as well as the
grid approach. In particular, when some components of the true parameter vector fall

‡In the simulation plan to follow, maxiter = 3, toler = 1e-2.
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Table 1: Bias of preliminary estimators

Model Moment Naive Grid Mixing Random Short run EM

(π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ)

1 ( 0.001, 0.000, 0.000) (−0.084, −0.029, 0.084) (−0.200, 0.100, 0.200) (−0.004, −0.001, 0.004) (−0.410, 0.416, 0.054) (−0.212, −0.032, −0.056)

2 ( 0.016, -0.005, 0.014) (−0.037, 0.024, 0.019) ( 0.000, 0.098, 0.001) ( 0.033, −0.018, 0.040) ( 0.200, −0.209, 0.102) ( 0.183, −0.096, 0.180)

3 ( 0.003, 0.001, 0.001) (−0.131, −0.032, −0.020) (−0.127, −0.023, 0.009) (−0.057, 0.005, 0.000) (−0.298, 0.201, 0.107) (−0.207, −0.006, −0.037)

4 ( 0.004, 0.001, 0.002) (−0.228, −0.096, 0.140) ( 0.000, 0.000, 0.008) (−0.139, −0.019, −0.037) (−0.202, 0.319, 0.053) (−0.142, −0.002, 0.009)

5 ( 0.010, −0.003, 0.003) (−0.199, 0.126, 0.146) ( 0.000, 0.000, 0.004) (−0.101, 0.028, −0.048) ( 0.002, −0.305, 0.009) ( 0.000, −0.055, 0.121)

6 ( 0.015, -0.001, 0.006) (−0.095, 0.019, −0.042) (−0.300, 0.022, 0.000) (-0.006, 0.014, 0.000) (−0.106, −0.102, 0.106) (−0.059, −0.011, −0.001)

7 ( 0.016, 0.003, 0.006) (−0.095, −0.045, −0.042) ( 0.195, 0.056, 0.139) (-0.016, 0.004, 0.007) ( 0.083, 0.208, 0.056) ( 0.091, 0.066, 0.108)

8 ( 0.007, −0.001, 0.000) (−0.280, 0.129, 0.100) ( 0.000, 0.000, −0.008) (−0.180, 0.029, −0.061) (−0.206, −0.305, −0.045) (−0.157, 0.012, −0.001)

9 (0.001, 0.000, -0.003) (−0.361, 0.129, 0.100) (−0.200, 0.000, −0.045) (−0.261, 0.031, −0.067) (−0.393, −0.294, −0.043) (−0.294, 0.052, −0.094)

10 (0.011, 0.006, 0.016) (−0.025, −0.015, 0.074) (0.002, 0.001, 0.012) (-0.001, 0.006, 0.010) ( 0.194, 0.297, 0.101) ( 0.175, 0.141, 0.242)

11 ( 0.006, 0.003, 0.008) (−0.056, −0.029, 0.038) ( 0.100, 0.100, 0.200) ( 0.002, −0.009, −0.014) (−0.102, 0.401, 0.052) (−0.055, 0.027, 0.149)

12 ( 0.028, 0.000, 0.001) (−0.074, 0.026, −0.047) ( 0.000, −0.112, 0.050) (−0.036, 0.016, −0.014) ( 0.211, −0.086, 0.056) ( 0.184, −0.048, 0.119)

Table 2: RMSE of preliminary estimators

Model Moment Naive Grid Mixing Random Short run EM

(π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ)

1 (0.021, 0.008, 0.030) (0.087, 0.029, 0.139) (0.200, 0.100, 0.200) (0.013, 0.005, 0.050) (0.497, 0.506, 0.100) (0.212, 0.033, 0.057)

2 (0.074, 0.033, 0.059) (0.057, 0.079, 0.054) (0.000, 0.102, 0.016) (0.064, 0.040, 0.064) (0.347, 0.347, 0.131) (0.183, 0.097, 0.183)

3 (0.040, 0.011, 0.021) (0.149, 0.076, 0.024) (0.145, 0.100, 0.030) (0.076, 0.032, 0.007) (0.412, 0.344, 0.136) (0.208, 0.011, 0.037)

4 (0.042, 0.015, 0.034) (0.251, 0.113, 0.178) (0.006, 0.000, 0.050) (0.165, 0.026, 0.050) (0.345, 0.422, 0.100) (0.142, 0.010, 0.024)

5 (0.064, 0.029, 0.068) (0.201, 0.127, 0.149) (0.009, 0.000, 0.041) (0.103, 0.028, 0.070) (0.279, 0.419, 0.085) (0.008, 0.056, 0.124)

6 (0.085, 0.014, 0.039) (0.103, 0.058, 0.044) (0.300, 0.200, 0.003) (0.049, 0.043, 0.003) (0.299, 0.302, 0.135) (0.060, 0.016, 0.016)

7 (0.086, 0.030, 0.063) (0.105, 0.082, 0.064) (0.257, 0.100, 0.174) (0.051, 0.039, 0.051) (0.292, 0.352, 0.099) (0.091, 0.068, 0.112)

8 (0.058, 0.022, 0.057) (0.281, 0.129, 0.100) (0.009, 0.000, 0.068) (0.181, 0.030, 0.070) (0.350, 0.416, 0.095) (0.158, 0.016, 0.031)

9 (0.041, 0.015, 0.044) (0.362, 0.129, 0.100) (0.200, 0.000, 0.053) (0.262, 0.033, 0.077) (0.488, 0.407, 0.093) (0.294, 0.053, 0.096)

10 (0.057, 0.036, 0.063) (0.062, 0.065, 0.132) (0.025, 0.013, 0.037) (0.032, 0.023, 0.032) (0.344, 0.409, 0.131) (0.175, 0.142, 0.242)

11 (0.041, 0.019, 0.071) (0.061, 0.029, 0.121) (0.100, 0.100, 0.200) (0.050, 0.016, 0.050) (0.297, 0.487, 0.096) (0.056, 0.028, 0.151)

12 (0.142, 0.036, 0.090) (0.085, 0.095, 0.098) (0.000, 0.200, 0.094) (0.075, 0.053, 0.051) (0.351, 0.294, 0.103) (0.184, 0.051, 0.124)

on the fixed grid, obviously the resulting grid estimator is unbiased. Nevertheless, the
corresponding moment estimates behaves likewise.

An efficient indicator of the goodness of the estimated parameter vector θ̂ is the Ma-
halanobis distance to the true one θ:

distM (θ̂, θ) =

√
(θ̂ − θ)′V−1(θ̂ − θ). (42)

where V denotes the variance-covariance matrix of θ̂ [29]. The Mahalanobis distance is
suitable for taking into account the usually non-negligible correlation between parameters
and for its asymptotical distributional properties. The results reported in Table 3 show
the relative convenience derived by introducing the moment estimators with respect to the
other methods. The NA values corresponds to non-positive definite variance-covariance ma-
trix: in this respect, note that the proposal behaves smoothly and prevents the occurrence
of non-admissible values.

The symmetrized Kullback-Leibler divergence has been also computed in order to get
an overall measure of the discrepancies between the estimated probability distribution and
the theoretical one. Recall that, given two (discrete) probability distributions p, q over the
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same support (here, {1, . . . , J}), the Kullback-Leibler divergence is defined by:

DKL(p|q) =
J∑
r=1

log

(
pr
qr

)
pr.

DKL(p|q) is not a metric: in particular it is not symmetric, and hence one usually sym-
metrizes it by considering:

D̃KL(p, q) =
1

2
DKL(p|q) +

1

2
DKL(q|p).

Table 3: Mahalanobis Distance and Kullback-Leibler divergence

Mahalanobis distance Kullback-Leibler divergence

Model Moment Naive Grid Mixing Random Short run EM Moment Naive Grid Mixing Random Short run EM

1 3.002 NA NA 3.163 7.623 2035.342 0.0017 0.0139 0.1733 0.0035 0.9636 0.0475

2 3.057 3.838 NA 3.753 5.579 6615.974 0.0014 0.0047 0.0116 0.0020 0.2003 0.0041

3 3.003 27.899 6.759 4.509 6.152 1025.594 0.0016 0.0326 0.0616 0.0094 0.4016 0.0158

4 3.007 22.953 NA 7.320 5.384 647.523 0.0016 0.0495 0.0026 0.0109 0.4201 0.0124

5 3.032 79.140 NA 29.030 4.129 107.261 0.0017 0.0203 0.0006 0.0036 0.2824 0.0055

6 3.031 18.933 NA 3.129 4.888 142.768 0.0015 0.0092 0.0755 0.0062 0.2622 0.0021

7 3.046 10.517 9.313 3.352 4.065 1420.891 0.0015 0.0061 0.0054 0.0023 0.2047 0.0033

8 3.028 NA NA 112.183 4.938 1286.176 0.0017 0.0328 0.0023 0.0105 0.3915 0.0108

9 3.019 NA NA 225.734 6.382 4413.853 0.0019 0.0710 0.0275 0.0333 0.5829 0.0355

10 3.071 3.741 3.134 3.169 5.982 2887.882 0.0015 0.0052 0.0004 0.0011 0.2162 0.0063

11 3.021 NA NA 4.118 5.809 47.824 0.0020 0.0039 0.0160 0.0036 0.4580 0.0103

12 3.168 8.260 NA 3.332 4.082 7168.244 0.0014 0.0043 0.0239 0.0019 0.1938 0.0015

6. Simulation experiment

For a fixed J > 4, the simulation experiment has been carried out according to the
following steps:

1. the cube models shown in Figure 1 have been chosen as a benchmark since they
are sufficiently scattered over the parameter space;

2. for varying sample size n = 250, 500, 1000, 3000, nsimul = 500, 1000 random samples
of ordinal values have been drawn by a cube distribution for each given parameter
vector θ

′
= (π, ξ, φ)

′
;

3. for each random sample, the EM algorithm has been run once for every choice of
preliminary estimators described in Section 4, set as starting values, as well as for
the moment estimators. For each method, the mean number over runs of iterations
needed to reach convergence to the ML solution, the mean bias and the RMSE are
computed.
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Table 4 provides the mean number of iterations required for convergence to the ML
solutions for each group of simulated samples. In these terms, the moment proposal
yields consistently faster convergence. The mixing and the naive proposals are also rather
satisfactory, especially for well-behaved distributions. It appears instead evident that the
strong bias of the preliminary estimates obtained by ML short runs of the EM algorithm
affects the performance of the convergence. It is often argued that the prevailing advantage
of the ML estimation procedure over the method of moments is that the former yields
the most efficient of the unbiased estimators, while the latter does not generally ensure
efficiency ([38]). In this framework, the two approaches give pretty close results in terms
of efficiency. Let us denote with θ

′
GB = (πGB, ξGB, φGB)

′
the moment estimators derived

with the Gröbner basis approach, and by the hat notation θ̂
′
GB = (π̂GB, ξ̂GB, φ̂GB)

′
the

ML estimates achieved after EM iterations started with moment estimates themselves.
Table 4 reports (on the right) the relative efficiency of θ̂GB with respect to θGB, showing
that the distance to ML efficiency is rather negligible; thus, the moment proposal here
developed can be considered as a safe, convenient and fairly easy technique to obtain good
estimates of parameters for cube models.

Model Method

Moment Naive Grid Mixing Random Short run EM

1 28.295 42.527 41.459 33.477 60.450 46.150

2 100.786 146.774 143.636 137.527 201.828 207.876

3 41.721 73.790 74.276 67.334 83.673 78.366

4 44.901 77.769 59.059 73.888 86.396 70.449

5 87.241 148.552 116.082 131.940 154.333 122.769

6 130.618 157.840 171.894 137.008 178.026 144.307

7 98.429 175.767 246.098 153.507 207.339 187.791

8 66.955 143.152 108.633 133.155 145.844 128.808

9 79.447 157.265 148.768 152.075 157.757 153.634

10 86.008 105.814 96.783 97.110 147.198 160.346

11 59.960 68.839 95.157 59.411 90.314 64.206

12 272.627 306.812 317.305 292.527 365.308 392.952

Model Eff (θ̂GB|θGB)

π ξ φ

1 1.2216 1.3061 1.2346

2 1.0563 1.0635 0.9669

3 1.0000 1.2100 1.1025

4 1.0494 1.1480 1.0615

5 1.0656 1.0727 1.1289

6 1.3194 1.0000 1.3157

7 1.0736 1.0000 1.0325

8 1.1121 1.0975 1.2016

9 1.1052 1.1480 1.3407

10 1.2016 1.4400 1.3121

11 1.2279 1.4102 1.7287

12 1.0436 1.0000 0.9570

Table 4: Mean number of iterations for ML convergence (left table). Relative efficiency
(right table).

The impressive performances of the moment solution are motivated by the fact that
the corresponding log-likelihood values are perfectly comparable with those achieved after
the EM algorithm started with the other preliminary estimates. Table 5 summarizes the
mean values over simulations attained by the estimated cube log-likelihood both at the
different initial preliminary values and at the final ML estimates.

In addition, the convenience of the moment proposal is supported by the fact that
the final ML estimates obtained by the different starting values for the EM algorithm are
characterized by substantially the same final bias and root mean square errors, as detailed
in the Tables 6 and 7.
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Table 5: Log-Likelihood of preliminary estimates and final ML estimates

Moment Naive Mixing Short runs EM

LL Initial LL Final LL Initial LL Final LL Initial LL Final LL Initial LL Final

1 −1253.879 −1253.694 −1295.036 −1253.694 −1256.227 −1253.694 −1294.720 −1253.694

2 −1918.672 −1918.546 −1923.923 −1918.546 −1919.737 −1918.546 −1922.358 −1918.546

3 −1743.660 −1743.627 −1776.688 −1743.627 −1752.653 −1743.627 −1758.427 −1743.627

4 −1728.412 −1728.327 −1810.780 −1728.327 −1739.301 −1728.327 −1740.071 −1728.327

5 −1839.518 −1839.184 −1880.065 −1839.184 −1842.538 −1839.184 −1844.603 −1839.184

6 −1862.259 −1862.031 −1871.020 −1862.031 −1866.613 −1862.031 −1863.893 −1862.031

7 −1905.543 −1905.488 −1912.128 −1905.489 −1907.066 −1905.489 −1908.562 −1905.488

8 −1736.376 −1736.018 −1798.710 −1736.018 −1746.277 −1736.018 −1746.272 −1736.018

9 −1588.194 −1587.446 −1699.769 −1587.446 −1616.688 −1587.446 −1618.111 −1587.446

10 −1904.188 −1903.890 −1910.412 −1903.890 −1904.870 −1903.890 −1910.393 −1903.890

11 −1642.941 −1642.285 −1656.147 −1642.285 −1644.414 −1642.285 −1652.495 −1642.285

12 −1930.139 −1929.681 −1934.469 −1929.680 −1930.878 −1929.679 −1930.970 −1929.682

Table 6: Bias of final ML estimators, given different starting values for EM
Model Moment Naive Grid Mixing Random Short run EM

(π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ)

1 ( 0.002, 0.000, 0.001) ( 0.002, 0.000, 0.001) ( 0.002, 0.000, 0.001) ( 0.002, 0.000, 0.001) (−0.019, 0.000, 0.001) ( 0.002, 0.000, 0.001)

2 ( 0.019, −0.006, 0.014) ( 0.019, -0.005, 0.013) ( 0.019, -0.005, 0.013) ( 0.019, −0.006, 0.014) ( 0.019, −0.006, 0.014) ( 0.020, −0.006, 0.014)

3 ( 0.003, 0.001, 0.001) ( 0.003, 0.001, 0.001) ( 0.003, 0.001, 0.001) ( 0.003, 0.001, 0.001) ( 0.003, 0.001, 0.001) ( 0.003, 0.001, 0.001)

4 ( 0.004, 0.001, 0.002) ( 0.004, 0.001, 0.002) ( 0.004, 0.001, 0.002) ( 0.004, 0.001, 0.002) (-0.002, 0.001, 0.003) ( 0.004, 0.001, 0.002)

5 ( 0.011, -0.004, 0.008) ( 0.011, -0.004, 0.007) ( 0.011, -0.004, 0.008) ( 0.011, -0.004, 0.007) ( 0.007, −0.005, 0.008) ( 0.011, -0.004, 0.008)

6 ( 0.015, -0.001, 0.005) ( 0.014, -0.001, 0.005) ( 0.014, -0.001, 0.005) ( 0.015, -0.001, 0.005) ( 0.015, -0.001, 0.005) ( 0.015, -0.001, 0.005)

7 ( 0.017, 0.003, 0.006) ( 0.016, 0.003, 0.006) ( 0.017, 0.003, 0.006) ( 0.016, 0.003, 0.006) ( 0.016, 0.003, 0.006) ( 0.017, 0.003, 0.006)

8 ( 0.008, -0.002, 0.002) ( 0.007, -0.002, 0.002) ( 0.007, -0.002, 0.002) ( 0.007, -0.002, 0.002) ( 0.001, -0.002, 0.002) ( 0.007, -0.002, 0.002)

9 ( 0.004, -0.001, 0.001) ( 0.004, -0.001, 0.001) ( 0.004, -0.001, 0.001) ( 0.004,-0.001, 0.001) ( 0.001, -0.001, 0.001) ( 0.004, -0.001, 0.001)

10 ( 0.011, 0.006, 0.010) ( 0.011, 0.006, 0.010) ( 0.011, 0.006, 0.010) ( 0.011, 0.006, 0.010) ( 0.009, 0.007, 0.011) ( 0.011, 0.006, 0.011)

11 ( 0.005, 0.002, 0.007) ( 0.005, 0.002, 0.006) ( 0.005, 0.002, 0.007) ( 0.005, 0.002, 0.007) (-0.005, 0.004, 0.010) ( 0.005, 0.002, 0.007)

12 ( 0.044, −0.003, 0.015) ( 0.034, -0.002, 0.010) ( 0.037, −0.003, 0.012) ( 0.036, -0.002, 0.011) ( 0.057, −0.006, 0.024) ( 0.050, −0.005, 0.020)

7. Discussion and conclusions

The original motivation for the present work was to emphasize that modelling overdis-
persion in ordinal data is a non-trivial task and deserves accurate analysis also at a pre-
liminary stage. For cub and cube models, this issue is tackled by developing a method of
moments grounded on Gröbner basis theory: the methodological efforts spent in this direc-
tion are related mainly to the choice of the best ordering among parameters when treated
as polynomial indeterminates. Then, once and for all computed the theoretical Gröbner
basis in full generality, the technique is not consuming, in that only a step-wise procedure
has to be implemented to directly solve the corresponding system. Globally, the moment
proposal derived by the Gröbner basis approach outperforms other preliminary estimation
solutions since it uniformly and substantially reduces the average number of required iter-
ations for ML convergence and it is characterized by the lowest (initial) bias, Mahalanobis
distance and Kullback-Leibler divergence. Most importantly, the log-likelihood at the
moment estimates is strikingly close to the maximized value attained via ML procedure,
and moment and final ML estimates of parameters are perfectly comparable in terms of
efficiency.

The simulation experiment confirms the relevant role of both uncertainty and overdis-
persion parameters in determining the speed of convergence of the numerical routines and
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Table 7: RMSE of final ML estimators, given different starting values for EM

Model Moment Naive Grid Mixing Random Short run EM
(π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ) (π, ξ, φ)

1 (0.019, 0.007, 0.027) (0.019, 0.007, 0.027) (0.019, 0.007, 0.027) ((0.019, 0.007, 0.027) (0.138, 0.009, 0.027) (0.019, 0.007, 0.027)

2 (0.072, 0.032, 0.060) (0.072, 0.032, 0.059) (0.072, 0.032, 0.059) (0.072, 0.032, 0.060) (0.075, 0.033, 0.061) (0.072, 0.032, 0.060)

3 (0.040, 0.010, 0.020) (0.040, 0.010, 0.020) (0.040, 0.010, 0.020) (0.040, 0.010, 0.020) (0.040, 0.010, 0.020) (0.040, 0.010, 0.020)

4 (0.041, 0.014, 0.033) (0.041, 0.014, 0.033) (0.041, 0.014, 0.033) (0.041, 0.014, 0.033) (0.078, 0.015, 0.033) (0.041, 0.014, 0.033)

5 (0.062, 0.028, 0.064) (0.062, 0.028, 0.063) (0.061, 0.028, 0.063) (0.061, 0.028, 0.063) (0.078, 0.029, 0.064) (0.061, 0.028, 0.063)

6 (0.074, 0.014, 0.034) (0.073, 0.014, 0.034) (0.073, 0.014, 0.034) (0.073, 0.014, 0.034) (0.074, 0.014, 0.034) (0.073, 0.014, 0.034)

7 (0.083, 0.030, 0.062) (0.082, 0.030, 0.062) (0.084, 0.030, 0.062) (0.082, 0.030, 0.062) (0.083, 0.030, 0.062) (0.082, 0.030, 0.062)

8 (0.055, 0.021, 0.052) (0.055, 0.021, 0.052) (0.055, 0.021, 0.052) (0.055, 0.021, 0.052) (0.086, 0.022, 0.052) (0.055, 0.021, 0.052)

9 (0.039, 0.014, 0.038) (0.039, 0.014, 0.038) (0.039, 0.014, 0.038) (0.039, 0.014, 0.038) (0.063, 0.014, 0.038) (0.039, 0.014, 0.038)

10 (0.052, 0.030, 0.055) (0.052, 0.030, 0.054) (0.052, 0.030, 0.054) (0.052, 0.030, 0.054) (0.057, 0.041, 0.057) (0.052, 0.030, 0.055)

11 (0.037, 0.016, 0.054) (0.037, 0.016, 0.054) (0.037, 0.016, 0.054) (0.037, 0.016, 0.054) (0.086, 0.019, 0.059) ((0.037, 0.016, 0.054)

12 (0.139, 0.036, 0.092) (0.122, 0.035, 0.086) (0.124, 0.035, 0.087) (0.124, 0.035, 0.087) (0.148, 0.037, 0.097) (0.134, 0.036, 0.094)

the efficiency of ML estimation. As expected, random starting is comparatively the worst
method, thus it should not be chosen as a criterion for initial values. Finally, the mixing
and the naive proposals are generally intermediate but they require a substantially longer
time to achieve convergence with respect to the moment proposal for most of the selected
models. The dependence of the EM convergence on the initial estimates appears evident:
with a low number of iterations, if the starting values are far enough from the true pa-
rameter vector, the resulting short run EM estimates are poor. Moreover, the presence
of extreme feeling seriously undermines the ability of detecting the overdispersion effect.
In this regard, a plausible solution to deal with borderline feeling parameter and almost
negligible uncertainty component can be hinted: in this case, one could derive parameter
estimates by fitting an Inverse Hypergeometric Model (for short, IHG) [11, 12], since it
corresponds to a shifted Beta-Binomial model unaffected by uncertainty: indeed, IHG
models are nested into cube ones [17].

In conclusion, we briefly shows the performances of the proposed method of moments
on a real application. In December 2014, an observational survey was run at University
of Naples Federico II to investigate relational goods, perceived happiness and leisure time
habits§. Questionnaires were collected according to a snowball sampling scheme starting
from students of the Department of Political Sciences. All the ratings were measured on
a J = 10 point ordinal scale (ranging from 1 = “Never”, “Not at all good”, to 10 =
“Always”, “A lot”, “Absolutely good”). Here we shall focus on a variable measuring the
quality of time spent with relatives (n = 2458), for which both the classical ML estimation
procedure and the Gröbner basis approach to moment estimation have been tested. cube
models allows an impressive fit for this variable: indeed, ML estimates for cub parameters
are (π̂, ξ̂)

′
= (0.302, 0.364)

′
, with a maximized log-likelihood of `(θ̂) = −5564.84 (the

saturated log-likelihood equals ` = −5499.13), whereas the maximized log-likelihood for a
cube fit attains the value `(θ̂) = −5530.60.

In order to enhance comparisons, the (normalized) Dissimilarity index between the
observed (relative) frequency distribution and the estimated cube probability distribution

§The data set is freely available at http://www.labstat.it/home/wp-content/uploads/2015/09/relgoods.txt
and it is further bundled within the R package CUB.
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has been computed in addition to the Kullback-Leibler divergence. This index is a fitting
measure that allows effective interpretation in ordinal data analysis as it corresponds to
the proportion of respondents whose answers should be modified to achieve a perfect fit.
For a (discrete) probability model (p1(θ), . . . , pJ(θ)) over {1, . . . , J} and given a random
sample with relative frequency distribution (f1, . . . , fJ), the dissimilarity index evaluates
the goodness of fit of an estimated probability model (p1(θ̂), . . . , pJ(θ̂)):

Diss =
1

2

J∑
r=1

|fr − pr(θ̂)|. (43)

Results for the application here discussed are reported in Table 8. Thus, empirical
evidence supports the efficacy of the proposal in that the model estimated via the method
of moments here implemented is really close to the one estimated via ML procedure. In
this regard, we underline that the Kullback-Leibler divergence between the two estimated
probability distributions attains a very low value KL = 0.0007, and that, in order to reach
convergence with the ML method with a tolerance equal to 1e − 6, 457 iterations are
needed), whereas the moment estimation is straightforward. The Delta method can be
used to estimate the variance of moment estimates.

π̂ ξ̂ φ̂ `(θ̂) Dissimilarity K-L Divergence

ML 0.713 0.388 0.244 -5530.60 0.059 0.0131

Moment 0.913 0.413 0.298 -5532.67 0.066 0.0139

Table 8: Comparisons on real data between the Method of Moment and the ML estimation
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Appendix

Gröbner bases

Gröbner bases are a widely used mathematical tool within algebraic statistics, which
have mostly applications in experimental design. The following presentation aims at pro-
viding the necessary insights for the understanding of the proposed approach to the method
of moments for cube models. For any unspecified detail and further discussion about
Gröbner bases, see [9, 37] and references therein.

If K is an algebraic closed field, let K[x1, . . . , xt] denote the ring of multivariate poly-
nomials with coefficients in K in the independent indeterminates x1, . . . , xt, provided with
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an initial order, say x1 � · · · � xt. The second step in this context is the choice of a
monomial order : indeed, while in the univariate setting the degree of a polynomial is
uniquely determined as the highest order exponent of the variable, in the multivariate
case several choices are available, and therefore an ordering has to be set for developing
a proper extension of the univariate setting. In more precise terms, a monomial order is
an order relation on the set of monomials in the fixed indeterminates that allows one to
compare them, according to their multidegree and the fixed initial order. Specifically, an
order that is compatible with cancellation between monomials is required.

Throughout the analysis here presented, a lexicographic order on monomials has been
chosen: for α1, . . . , αt, β1, . . . , βt non-negative integers, xα1

1 · · ·x
αt
t � x

β1
1 · · ·x

βt
t if and only

if, for p = min
(
i : αi 6= βi

)
, αp � βp. The lexicographic order is a particular instance

of what is called an elimination order, needed to apply Gröbner basis within elimination
theory and solving systems of nonlinear algebraic equations. For a fixed monomial order on
K[x1, . . . , xt], the first fundamental concept to introduce are the definitions of leading term
LT (f) and leading coefficient LC(f) of a polynomial q(x1, . . . , xt), namely, the highest-
degree monomial with respect to the fixed ordering and its coefficient, respectively. Given
the dependence of these concepts on the monomial and on the initial order, division
between polynomials does not produce uniquely determined quotient and remainder: more
precisely, given a polynomial f and polynomials h1, . . . , hp, it is always possible to find
polynomials q1, . . . , qp, r, such that:

f =

p∑
i=1

qihi + r, (44)

with r being the remainder, and such that there is no index i with LT (hi) dividing LT (r).
For a generic set of polynomials h1, . . . , hp, the remainder is not unique. In order to
develop a unique Euclid’s division procedure in the multivariable setting, Gröbner basis
needs to be introduced, which requires, in turn, the notion of polynomial ideal. A subset
I of K[x1, . . . , xt] is called an ideal if the following properties are satisfied:

• I is a subring, that is 0 ∈ I (where 0 denotes the identity element with respect to
summation of polynomials), and p1 + p2 ∈ I ∀p1, p2 ∈ I;

• ∀p ∈ I, ∀q ∈ K[x1, . . . , xt], p q ∈ I.

According to the Hilbert’s Basis Theorem, every ideal I of K[x1, . . . , xt] is finitely gener-
ated, namely, there exists a finite number of polynomials p1, . . . , ph ∈ I such that every
other polynomial p ∈ I can be written as:

p =
h∑
i=1

ai pi, ai ∈ K[x1, . . . , xt]. (45)

In this case, p1, . . . , ph are called generators of I, and this circumstance is denoted as
I =< p1, . . . , ph >.
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A Gröbner basis G for an ideal I is a set of generators G = {g1, . . . , gk} of I such that,
according to the given order, the leading term of any polynomial in I can be divided
uniquely in the set of the leading terms of G, producing no remainder, for short:

< LT (I) >=< LT (g1), . . . ,LT (gk) > . (46)

A Gröbner basis G is said minimal if the following conditions apply:

• LC(g) = 1 for every g ∈ G,

• ∀g ∈ G,LT (g) /∈< LT (G \ g) >,

while it is called reduced if:

• LC(g) = 1 for every g ∈ G;

• ∀g ∈ G, there is no monomial of g belonging to < LT (G \ g) >.

Every non-trivial ideal of K[x1, . . . , xt] admits a unique reduced Gröbner basis for the
given monomial order, and reduced Gröbner basis solves the ideal membership problem.
As far as the object of the present paper is concerned, the most interesting application of
Gröbner basis fits in the so-called elimination theory, that is, the solutions of a system of
K algebraic equations:

Fi(x1, . . . , xt) = 0, i = 1, . . . ,K (47)

can be equivalently computed by considering the system of algebraic equations:

Gj(x1, . . . , xt) = 0, j = 1, . . . ,H, (48)

where G = {G1, . . . , GH} is the reduced Gröbner basis for the ideal generated by F1, . . . , FK .
The choice of an elimination ordering guarantees that the latter system can be solved by
forward/backward substitution, simplifying hence the solving procedure. In particular,
when G is trivial, that is G = {1} (with 1 denoting the identity element with respect to
product of polynomials), then F1, . . . , FK have no root in common.
Although there is no explicit formula for computing the number of polynomials composing
the Gröbner basis (for the given monomial ordering), Buchberger algorithm provides the
steps required to compute the reduced Gröbner basis in polynomial time [7].

Gröbner basis for CUB models

The Maple library Gröbner includes a routine that suggests the variable ordering that
yields to the simplest possible equivalent system. For a cub (π, ξ) model over J ordinal
categories, the suggested ordering is π > ξ: thus, for a given sample of observations, the
(reduced) Gröbner basis corresponding to the first two moment equations – obtained by
selecting the Buchberger-Möller algorithm as option for computation – is composed of:

G1(ξ) = A(J,m1,m2) ξ2 +B(J,m1,m2) ξ + C(J,m1,m2) (49)

G2(π, ξ) = D(J,m1,m2)π + E(J,m1,m2) ξ + F (J,m1,m2) (50)

where, if m1,m2 denote the first two sample moments, we have set:
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1. A(J,m1,m2) = −3(J2 − J (1 + 2m1)− 2(1− 2m1));

2. B(J,m1,m2) = 4 J2 − 12m1 J + 6m2 − 4;

3. C(J,m1,m2) = −J2 + J (4m1 − 1) + m1 − 3m2;

4. D(J,m1,m2) = J2 − 3 J + 2 ¶;

5. E(J,m1,m2) = −6(J2 − J (1 + 2m1)− 2(1− 2m1));

6. F (J,m1,m2) = 5J2 + 3J (1− 6m1) + 2(6m2 − 1).

From (49)-(50) it is immediate to study and derive the moment solutions. From empirical
evidence, it turns out that the only admissible moment solution for ξ corresponds to:

ξcub =
−B(J,m1,m2)−

√
B(J,m1,m2)2 −A(J,m1,m2)C(J,m1,m2)

2A(J,m1,m2)
, if p2 6= 0.

Notice that when m1 = J+1
2 , A(J, J+1

2 ,m2) = 0 for all values of J and m2: this situation
occurs whenever we sample from a perfectly symmetric cub distribution (having true value
of ξ equal to 0.5). In this case, (49) collapses to a one-degree equation and, accordingly,
the resulting ξ estimate is given by:

ξcub = −C(J,m1,m2)

B(J,m1,m2)
= 0.5 (51)

for all values of J and m2.
Notice also that, when m1 = J+1

2 , the identifiability of π from (50) is always ensured since
F (J,m1,m2) 6= 0.

Gröbner basis for CUBE models

For cubemodels, the suggested ordering would be the lexicographical order π > φ > ξ,
for which the Gröbner basis corresponding to (17) consists of 3 polynomials of the type:

1. H1(ξ) = ξ(ξ − 1)(k0 + k1ξ + k2ξ
2)

2. H2(ξ, φ) = j0 + j1ξ + j2ξ
2 + l1φ

3. H3(ξ, φ) = s0 + s1ξ + s2ξ
2 + l2π,

whose coefficients are functions of J and of the first three sample moments. Thus, given
the solutions to k0 + k1ξ + k2ξ

2 = 0, the corresponding solutions for φ and π would
be easily obtained. However, an imputation choice should be thought in case there is
no (admissible) solution to H1(ξ) = 0 other than the trivial ones ξ = 0 or ξ = 1. In the
setting here developed, based on the method of moments, the most natural strategy would

¶(which is always non-zero under our assumption J > 3)
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be to impute the moment estimate for ξ of the nested cub model and then solve for π
and φ the remaining equations by conditioning on the estimated ξ value. Nevertheless,
Gröbner basis theory involves symbolic variables, whereas the approach here advanced has
to consider parameters constraints and their mutual interactions. Then, the choice of the
ordering π > ξ > φ assumed for our analysis is better-suited for cube models estimation
since it allows to first solve for φ, which is the main feature of the model, and then, if it
is not possible to determine its moment estimate within the given boundaries, one could
exploit the nesting of cub into cube to estimate π and ξ.
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