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1. Introduction

Mathematical models describing physical, biological, and other real-life phenomena
contain parameters whose values must be estimated from data. Over the past decade, a
powerful framework called “sloppiness” has been developed that relies on Information Ge-
ometry [1] to study the uncertainty in this procedure [10, 17, 56, 57, 58, 55]. Although the
idea of using the Fisher Information to quantify uncertainty is not new (see for example
[20, 45]), the study of sloppiness gives rise to a particular observation about the uncertainty
of the procedure and has potential implications beyond parameter estimation. Specifically,
sloppiness has enabled advances in the field of systems biology, drawing connections to sen-
sitivity [25, 19, 24], experimental design [4, 37, 25], identifiability [47, 55, 13], robustness
[17], and reverse engineering [19, 14]. Sethna, Transtrum and co-authors identified sloppi-
ness as a universal property of highly parameterized mathematical models [61, 56, 54, 25].
More recently a non-local version of sloppiness has emerged, called predictive sloppiness
[33]. However, the precise interpretation of sloppiness remains a matter of active discussion
in the literature [4, 26, 29].

This paper’s main contribution is to serve as a first step towards a unified mathemat-
ical framework for sloppiness rooted in algebra and geometry. While our work does not
synthesize the entirety of the field, we provide some of the mathematical elements needed
to formalize sloppiness as it was initially introduced. We extend the concept beyond time
dependent models, in particular, to statistical models. We rigorously define the concepts
and building blocks for the theory of sloppiness. Our approach requires techniques from
many fields including algebra, geometry, and statistics. We illustrate each new concept
with a simple concrete example. The new mathematical foundation we provide for slop-
piness is not limited by current computational tools and opens up the way to further
work.

Our general setup is a mathematical model M that describes the behavior of a variable
x € R™ depending on a parameter p € P C R". Our first step is to explain how each
precise choice of perfect data z induces an equivalence relation ~ ;. on the parameter
space: two parameters are equivalent if they produce the same perfect data. We then
characterize the various concepts of structural identifiability in terms of the equivalence
relation ~ 7 .. Roughly speaking, structural identifiability asks to what extent perfect
data determines the value of the parameters. See section 2.

Assume that the perfect data z is a point of RV for some N. The second crucial step
needed in order to define sloppiness is a map ¢ from parameter space P to data space RN
giving the perfect data as a function ¢(p) of the parameters known as a “model manifold”
in the literature [56, 57, 58, 55|, which we rename as a model prediction map. A model
prediction map thus induces an injective function on the set of equivalence classes (the
set-theoretic quotient P/~js.), that is, the equivalence classes can be separated by N
functions P — R. See Section 3.

The next step is to assume that the mathematical model describes the phenomenon
we are studying perfectly, but that the “real data” is corrupted by measurement error and
the use of finite sample size. That is, we assume that noisy data arises from a random
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process whose probability distribution then induces a premetric d on the parameter space,
via the Kullback-Leibler divergence ( see start of Section 4 ). This premetric d quantifies
the proximity between the two parameters in parameter space via the discrepancy between
the probability distributions of the noisy data associated to the two parameters.

The aforementioned premetric d has a tractable approximation in the limit of decreas-
ing measurement noise using the Fisher Information Matrix (FIM). In the standard defi-
nition, a model is “sloppy” when the condition number of the FIM is large, that is, there
are several orders of magnitude between its largest and smallest eigenvalues. Multiscale
sloppiness (see [44]) extends this concept to regimes of non-infinitesimal noise.

We conceptually extend the notion of sloppiness to a comparison between the premetric
d and a reference metric on parameter space. We demonstrate that using the condition
number of the FIM to measure sloppiness at a parameter pg, as is done in most of the
sloppiness literature [10, 17, 56, 57, 58, 55|, corresponds to comparing an approximation of
d in an infinitesimal neighborhood of pg to the standard Euclidean metric on R” O P. Note
that considering the entire spectrum of the FIM, as is done newer work in the sloppiness
literature (eg, [61]) corresponds to performing a more refined comparison between an
approximation of d in an infinitesimal neighborhood of pg to the standard Euclidean metric
on R" D P. Multiscale sloppiness, which we extend here beyond its original definition [44]
for Euclidean parameter space and Gaussian measurement noise, avoids approximating
d, and so better reflects the sloppiness of models beyond the infinitesimal scale. Finally,
we describe the intimate relationship between sloppiness and practical identifiability, that
is, whether generic noisy data allows for bounded confidence regions when performing
maximum likelihood estimation. See Section 4.

The following diagram illustrates the main objects discussed in this paper:

M a mathematical model
P / ~M,z

x variable, belongs to X C R™ .

y  observable, belongs to Y C R" / \ljj

¢ model prediction map . ¢ N
S

p parameter, belongs to P C R" RSP ZCcR

z data, belongs to Z C RN é g

g function giving y in terms of x R > X — 9 vV cR"

2. An equivalence relation on parameter space

A mathematical model M describes the behavior of a variable z € X C R™ depending
on a parameter p € P C R", with measurable output y = g(z) € Y € R". We further
specify a choice of perfect data z produced for the parameter value p. The nature of perfect
data will be made clear in the examples discussed throughout the section. We think of
the perfect data z as belonging to the wider data space Z that encompasses all possible
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“real” data. Data space will be defined rigorously in Section 4 when measurement noise
comes into play.

An example where the measurable output y differs from = = (z1,...,x,) is when only
some of the x;’s can be measured (e.g., due to cost or inaccessibility of certain variables).
The perfect data is extracted from the measurable output, as illustrated by examples 2.1,
2.5, and 2.7. The behavior of the variable x may also vary in time (and position in space,
although this will not be addressed here). In the time dependent case, the perfect data
often consists of values of the measurable output y at finitely many timepoints, that is,
a time series. An alternative choice of perfect data would be the set of all stable steady
states. We are also interested in what we will call the continuous data, that is, the value
of y at all possible timepoints or, equivalently, the function ¢t — y(t) for ¢ belonging to the
full time interval. For a statistical model, the measurable output is the outcome from one
instance of a statistical experiment, while a natural choice for perfect data is a probability
distribution belonging to the model, or any function or set of functions characterizing this
probability distribution.

Given a model M, a choice of perfect data z induces a model-data equivalence relation
~nr,, on the parameter space P as follows: two parameters p and p’ are equivalent (p ~
wm,zp') if and only if fixing the parameter value to p or p’ produces the same perfect data.
We now provide a more concrete description for a selection of types of mathematical
models.

2.1. Finite discrete statistical models

The most straightforward case is when the perfect data is described explicitly as a
function of the parameter p. Finite discrete statistical models fall within this group, with
the perfect data z being the probability distribution of the possible outcomes depending
on the choice of parameter. Such a model is described by a map

p: P —[0,1]"
p= (p1(p)s - pu(p))-

The model-data equivalence relation then coincides with the equivalence relation ~, in-
duced on P by the map p, that is, p ~pr.p" if and only if p(p) = p(p').

Ezample 2.1 (Two biased coins [27]). A person with two biased coins, picks one at random,
tosses it and records the result. The person then repeats this three additional times, for a
total of four coin tosses. The parameter is (p1, p2,p3) € [0,1]3, where p; is the probability
of picking the first coin, ps is the probability of obtaining heads when tossing the first
coin (that is, the bias of the first coin), and ps is the probability of obtaining heads when
tossing the second coin. Here, the measurable output is the record of a single instance of
the statistical experiment described and perfect data is the probability distribution of the
possible outcomes (there are five possibilities). The map giving the model is then

p: 0,1 =R®
(p17p27p3) '_>(P07P17p2a P37P4)7
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where p; is the probability of obtaining heads i times. Explicitly we have

po =p1(1—p2)* + (1 —p1)(1 —p3)*,

p1 = 4p1pa(1 — p2)® +4(1 — p1)ps(1 — p3)?,
p2 = 6p1p3(1 — pa)® +6(1 — p1)p3(1 — p3)?,
p3 = 4p1p3(1 — p2) + 4(1 — p1)p3(1 — p3),
p1 = pips + (1 — p1)ps.

Two parameters (p1, p2, p3) and (p, ph, ps) are then equivalent if p(p1, p2, p3) = p(p}, vh, Ps),
or equivalently, if p;(p1, p2,p3) = pi(p}, Ph, ps) for each 7.

We next study the equivalence classes. As we cannot distinguish between the two
coins, we will always have (p1,p2,p3) ~wm,.(1 — p1,p3,p2), and so the equivalence class
of (p1,p2,ps) contains the set {(p1,p2,p3), (1 — p1,p3,p2)}. Furthermore, the equivalence
class of (p1, p2, p2) will contain {(q1,p2,p2) | ¢1 € [0,1]}. The equivalence class of (0, pz2, p3)
will contain {(0,q1,p3) | ¢1 € [0,1]} and {(1,p2,¢2) | 2 € [0, 1]}.

The ideal (p;®1—1®p; | i =0,...,4) in C[p1, p2, p3] @ C[p1, p2, p3] is the ideal cutting
out the set-theoretic equivalence relation ~, on C? induced by extending the function
p to C3. Indeed, the zero set of this ideal is the set of pairs ((p1,pe,ps), (P}, s, Ps)) €
C3 x C3 such that (p1, pa, p3) ~, (P}, ph, p). Using a symbolic computation software, we
compute the prime decomposition of its radical and conclude that the equivalence class of
(p1,p2,p3) € C* is

{(p1,p2,p3), (1 — p1,p3,p2) } if p1 #0,1,1/2 ps # ps,
{(¢,p2,p2) | ¢ € C} if p1 #0,1,1/2 pa = ps,
{(0,q1,p3) | @1 € CYU{(1,p2,42) | 2 € C} if py =0,1,
{(1/2,p2,p3)} if p1 =1/2.

Therefore, the equivalence classes in [0, 1]> must be contained in the intersections of the
above sets with [0,1]3. Thus the equivalence class of (p1,p2,ps) € [0, 1] is

{(p1,p2,p3), (1 — p1,p3,12) } if p1 #0,1,1/2 pa # ps,
{(g,p2,p2) | ¢ €[0,1]} if p1 #0,1,1/2 py = p3,
{(0,a,p3) | @ € [0, 1]} U{(1,p2,9) | a2 € [0,1]} if p1 = 0,1,
{(1/2,p2,p3)} if p =1/2.

In particular, we obtain a stratification of parameter space as shown in Fig. 1.

We remark that almost all equivalence classes have dimension zero, although some
equivalence classes have dimension one. As the points with zero-dimensional equivalence
classes form a dense open subset of parameter space, we say that the dimension of an
equivalence class is generically zero. Note that since all these zero-dimensional equivalence
classes have size two, we say that the equivalence classes are generically of size two. N
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b3

P2
0 P
Figure 1: Stratification of parameter space for the two biased coins example. Blue: {(p1,p2,p3) |

P1 7é Oa la 1/2 P2 = p3} Green: {(p17p27p3) | P11 = 07 1a 1/2}7 Grey: {(p17p27p3) | P1 = 1/2} the rest
of the cube (interior and faces) is the generic part {(p1,p2,p3) | P1 # 0,1, p2 # p3}.

2.2. time dependent models and the 2r + 1 result

Let M be an explicit time dependent model with measurable output x. That is, the
behavior of the variable z is given by the map

p: P x RZO —R™
(p,t) =a(p 1),

and x can be measured at any time ¢t. Perfect time series data produced by the parameter
p will be (z(p,t1),...,z(p,tn)), where 0 < t; < --- < ty € R>¢ are timepoints. We denote
the corresponding model-data equivalence relation on P by ~ps4, . +y. The continuous
data is the map R>9 — R given by ¢ — x(p,t). We denote the equivalence relation
induced by the continuous data on P by ~j/ .

We particularly consider ODE systems with time series data. For such a model M,
the behavior of the variable x is described by a system of ordinary differential equations
depending on the parameter p € P with some initial conditions:

z  =f(p,x) (1)
x(0)=x0.

When initial conditions are known, or we do not wish to estimate them, they are not
considered as components of the parameter. The measurable output is y = g(z), and
perfect data is then (y(t1),...,y(tn)) ER¥N" for0 <t; <--- <ty € R>p. The continuous
data is given by the function R>g — R", ¢+ y(¢), which supposes that a solution to the
given ODE system exists, a valid assumption in the real-analytic case.

The key result when working with time dependent models with time series data is
the 27 + 1 result of Sontag [52, Theorem 1], which implies that there is a single “global”
model-data equivalence relation: the equivalence relation ~ s o, induced by the continuous
data. Precisely, we suppose that the model M is real-analytic, that is, either an explicit
time-dependent model given by a real-analytic map or an ODE system as in (1) with f a
real-analytic function. We additionally assume that the variable x, the parameter p, and
the time variable ¢ belong to real-analytic manifolds. If we suppose that P is a real-analytic
manifold of dimension r, then for N > 2r +1 and a generic choice of timepoints t1,...,tx
the equivalence relation ~psy, . ;5 coincides with the equivalence relation ~jp .
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An important consequence of the 2r + 1 result [52] is that for real-analytic time-
dependent models with time series data, the model equivalence relation is a global struc-
tural property of the model, and one need not specify which exact timepoints are used.

Remark 2.2. Note that in many applications the variable z belongs to the real positive
orthant, which is indeed a real-analytic manifold. The condition on the time variable can
be relaxed to include closed and partially closed time intervals.

Remark 2.3. A choice of N timepoints corresponds to a choice of a point in the real
analytic manifold T := {(¢1,...,tn) € R>o | t; < tix1}. The use of the word “generic”
in the statement means that there can be choices of N timepoints that will not induce
the equivalence relation ~ps «, but that these choices of timepoints will belong to a small
subset of T, so small that its complement contains an open dense subset of T

In cases where no results like the 2r + 1 result [52] hold, there is no “global” equiv-
alence relation. Therefore, a finite number of measurements will never induce the same
equivalence relation on parameter space as the continuous data. In other words, by taking
more and more measurements we could obtain an increasingly fine equivalence relation
without ever converging to ~ps oo.

Ezxample 2.4 (A model for which the 2r + 1 result does not hold, cf [52, Section 2.3]). The
model, while artificial, is an explicit time dependent model given by the map:

p: ]R>0 X Rzo —R
(p, 1) =y(p— 1),

where 7: R — R is a €™ map that is ¢!/ for s < 0 and zero for s > 0. Suppose
for a contradiction that evaluating at timepoints ¢1,...,¢5 induces the same equivalence
relation on R+ as taking the perfect data to be the maps ¢t — p(p,t). Take p; > pa > tn,
it follows that p(p1,ti) = 0 = p(p2,t;) for each ¢ = 1,..., N. On the other hand, we will
have p(p1,P1+p2/2) = 0 # p(p2,P1+r2/2), and so we have a contradiction. N

Ezample 2.5 (Fitting points to a line). This example is motivated by one of the examples
found on the webpage of Sethna dedicated to sloppiness [50]. We consider an explicit time
dependent model where the variable x changes linearly in time:

z(t) = ap + art,

that is,  is given as a polynomial function in ¢ depending on the parameter (ag,a;) € R

Hence, by the 2r+1 result [52], taking the perfect data to be the measurement at 2-24+1 =5

sufficiently general time points induces the same equivalence relation as taking the perfect

data as the continuous function ¢ +— ag + a1t. In fact, taking measurements at two

timepoints will suffice, since there is exactly one line going through any two given points.
We have that (ag,a1) ~n,00 (bo,b1) if and only if

ap + ait = bg + b1t, for all t € Rx>.

It follows that ap = by (taking t = 0), and then a; = b; (taking ¢t = 1), thus
[(ao,@1)]m,00 = {(ao,a1)}. Naturally, this coincides with the equivalence classes obtained
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with taking the perfect data to be noiseless measurements at ¢t = 0 and ¢t = 1, that is,
(2(0),2(1)) = (ap,ag + a1). q
Ezample 2.6 (Sum of exponentials). The sum of exponentials model for exponential decay,

widely studied in the sloppiness literature [56, 57, 58], is an explicit time dependent model
given by the function

p: RZ) x R>g =R

(a,b,t) e~ 4 7",

By the 2r+1 result [52], the time series (e~ 4+e 701 ... e~ fe=b5) with (t1,...,t5)
generic induces the same equivalence relation on the parameter space R2>0 as the continuous
data. This model is clearly non-identifiable. Indeed, for any a,b € R>q, the parameters
(a,b) and (b,a) yield the same continuous data since e~ 4 e~ = ¢7% 4 =9 for all t. It
follows that the equivalence class of a parameter (a,b) will contain the set {(a,b), (b,a)}.

Suppose (a,b) ~ar4, t, (@',b") where t1 # to are positive real numbers, thus

! /
6—at1 +6_bt1 — e—a t1 + e—b tl’
/ /
e—atz +€_bt2 — e—(l to + e—b t2'
We can reduce it to the case t; = 1, t3 = 2 by rescaling the time variable via the

substitution ¢ + (t+t2=2t1)/(t,—¢t;) in p. Simplifying further with the substitution x =

e thy=ebu= e v=e¢" the equation becomes:
r+y=u—+v

2?4+ y* = u? 4+ 0%

It is then easy to see that the only solutions (u,v) to this system are (u,v) = (x,y) or

(u,v) = (y,z). As the exponential function is injective it follows that (a’,0’) = (a,b) or
(a',b') = (b,a).
Therefore, the equivalence class of a parameter (a,b) is
{(a,b), (b,a)}, if a # b,
{(a,a)}, if a =0.
q

Ezample 2.7 (An ODE system with a solution). We consider the ODE system with variable
(z1,x2) € RQZO and parameter (p1,p2) € R%, given by

T = —p1T1

Tg = P11 — P22

with known initial conditions z1(0) = ¢; and x2(0) = 0, and observable output (x1,z2).
Set U := {(p1,p2) | p1 # p2}. For (p1,p2) € U, a solution to this system is given by
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b+

N
a

Figure 2: Parameter space of sum of exponential example. Green: {(a,b) € RZzo | @ # b}, Blue:
{(a,a) [ a € Rxo}

r1(t) = cre Pt
c1p1 —p1t —pat
xo(t) = ————— (e P1" — P2 |
(p2 —p1) ( )

When p; = po, the ODE system becomes

T1 = —p1o1

&g = p1(x1 — x2),

and a solution is given by
x1(t) = cre Pt

xo(t) = cipite Pt

The 2r + 1 result [52] implies that, for general (¢1,...,t5), the time series data
(z1(t1), z2(t1), ..., x1(t5), x2(t5)) induces the same equivalence relation on the parameter
space R2>0 as the continuous data. As in the previous example, we will show that this can
be achieved by taking a time series with two distinct nonzero time points. We can again
reduce to the case t1 = 1,t3 = 2. Suppose that (p1,p2) and (p},p)) are two parameters
that produce the same perfect data. The first case we consider is when they both belong
to U, then we have

_ .
cie Pl =cre P,

cre” P = ¢re
/
c1p1 _ _ C1py —p, —pt

T (e —eP2) = L __(eTP1 — P2,

(p2 — p1) (Py = Ph)
/

ﬁ(e—Qm _ 6—2192) _ ﬁ(e—%ﬁ _ e—Zpé).
92— D1

The first equation implies that p; = p)| since ¢; # 0 and the exponential function is
injective. Using the last two equations we find that we have

c1p! o/ o/

I < i N

e P4 e = (p2—p1) = 2P =e P14 e P2,
_CGPL _(o—p1 — o—P2 c1p —p! —l,
(prm)(e emP2) ( /71/)(6 P — e P2)

Py—p7
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And since p; = pf, it follows that ps = p,. Next, if we suppose that neither belongs to U,
that is, (p1,p1) and (p},p}) produce the same perfect data, we then have
cre P = cle_pll,
cre 2P = 616_217/1,
cipre P = ephe ™,
2e1pre 2P = 2clp’1672pl1.
The first equation already implies that p; = p}. Finally, we suppose that one parameter

is in U and the other is not, that is, (p1,p2) with p1 # p2 and (p), p}) produce the same
perfect data. We then have

_ P
cie P =cie™™

) 2
cre Pl = cre™P1

C1P1 — - ’ —p
(e P, p2):clp e 1
(PQ - Pl) !
C1p1 e—2p1 _ €—2p2) _ 261;0116—21;’1.
(p2 — p1)

The first two equations imply that p; = p} and so the last two equations become

C1p1 — _ _
(6 P _ ¢ ’p2) = cipie P1
(p2 — p1)
C1P1 o201 _ 672p2) _ 201p1672p1_
(p2 - p1)

If p1 = 0, then ps is not further constrained. If p; # 0, the equations simplify to

(plp)(epl _ e*m) —e P
2 — P1
M(QQM _ 672172) — 26721717
2 —P1
and so
e Pl e P2 = (P;Pl)(edpl —e) — 270! = 2e P,
m(e—m — 6—?2) e—p1

But this implies that p; = po, a contradiction. Hence, the third case was not possible in
the first place.
We conclude that the equivalence class of the parameter (p1,p2) € P is

{(p17p2)} lfpl 75 O7
{(0,9) | ¢ € R0} if p1 = 0.
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b2

-
b1

Figure 3: Parameter space of ODE example. Blue: p; = 0, and Green: {(p1,p2) € ]RQZO | p1 # 0}.

Example 2.7 is an exception. In general one cannot so easily find an exact solution to an
ODE system. Nevertheless, describing the equivalence classes can still be possible. Indeed,
there are various approaches to building what is called in the literature an exhaustive
summary (see for example [41]). An ezhaustive summary is simply a (not necessarily
finite) collection E of functions P — R that makes the model-data equivalence relation
effective, that is, p ~pp if and only if f(p) = f(p') for all f € E. The differential algebra
approach, introduced by Ljung and Glad [36] and Ollivier [42], relies on using exhaustive
summaries. For an ODE system with time series data given by rational functions, one
derives an input-output equation whose coefficients (once normalized so that the first term
is one) provide an exhaustive summary for a dense open subset of parameter space.

Additional details on exhaustive summaries are given by Ollivier [42] and Meshkat et
al. [39], and software is available for computing input-output equations [5]. Exhaustive
summaries are useful for determining identifiability (subsequently defined) and finding
identifiable parameter combinations.

2.3. Structural Identifiability

We formulate a definition of structural identifiability in terms of the model-data equiva-
lence relation defined at the beginning of this section. We base our rigorous understanding
of the various flavors of identifiability in Sullivant’s in-progress book on Algebraic Statistics
[53] and Di Stefano III’s book on Systems Biology [28].

Definition 2.8 (Structural Identifiability). Let (M, z) be a mathematical model with a
choice of perfect data z inducing an equivalence relation ~js . on the parameter space P.

e The pair (M, z) is globally identifiable if every equivalence class consists of a single
element.

e The pair (M, z) is generically identifiable if for almost all p € P, the equivalence
class of p consist of a single element.

e The pair (M, z) is locally identifiable if for almost all p € P, the equivalence class of
p has no accumulation points.

e The pair (M, z) is non-identifiable if at least one equivalence class contains more
than one element.
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e The pair (M, z) is generically non-identifiable if for almost all p € P, the equivalence
class of p has accumulation points (or are positive dimensional).

Remark 2.9. In the definition above, “almost all” is used to mean that the property holds
on a dense open subset of parameter space with respect to the usual Euclidean topology
on R" D P. Recall also that ¢ € Q@ C P C R" is an accumulation point of @) if every open
neighborhood of p contains infinitely many elements of ().

Remark 2.10. In the ODE systems literature, where local identifiability is the main con-
cern, “non-identifiable” is often used to mean what we have called “generically non-
identifiable”.

Ezample 2.11 (The sum of exponentials). We revisit Example 2.6 where we computed the
equivalence class of any parameter (a,b) € R>o. We found that [(a,b)] = {(a,b), (b,a)},
where [(a, b)] denotes the set of parameters equivalent to (a,b). It follows that this model
is not globally identifiable, and so non-identifiable. This model is locally identifiable since
every equivalence class has size at most 2. <

Ezample 2.12 (Two biased coins). We revisit the model considered in Example 2.1. We
showed that the equivalence class of a parameter (p1,p2,p3) € [0, 1] is

p1,p2,03), (1 —p1,p3,p2)} if p1 #0,1,1/2 pa # p3
q,p2,p2) | ¢ €[0,1]} if p2 = p3
0,¢:p3) [ ¢ € [0,1]} U{(L, p2,q) [ ¢ € [0,1]} if p1 =0,1,1/2 py # ps,
1/2,p2,p3)} if p1 =1/2.

{
{
{
{

~ o~ o~ o~

This model is not globally identifiable (in fact no equivalence class is a singleton), but it
is locally identifiable. Indeed, the equivalence classes have size two for almost all values
of the parameter; only the parameters in the 2-dimensional subset {(p1,p2,p3) | p1(p1 —
1)(p2 — p3) = 0} have positive dimensional equivalence classes. N

Ezample 2.13 (Fitting points to a line). We revisit the model discussed in Example 2.5.
We saw that [(ag,a1)] = {(ag,a1)} for all possible values of the parameter, therefore this
model is globally identifiable. <

Ezample 2.14 (An ODE system with an exact solution). For the model studied in Example
2.7, the equivalence class of a parameter p = (p1,p2) € P = R% is

{(p1,p2)} if p1 # 0,
{(0,9) | ¢ € R>o} if p; = 0.

As some equivalence classes are infinite, this model is not globally identifiable, but it is
generically identifiable. Indeed, the equivalence classes of parameters belonging to the
dense open subset {(p1,p2) € P | p1 # 0} have size 1. <

Ezample 2.15 (A nonlinear ODE model, see [38, Example 6] and [40, Example 5]). We
now consider a model given by an ODE system with time series data and describes the
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behavior of a variable (x1,x2) depending on a 5-dimensional parameter (p1, p2, p3, P4, Ps)
with measurable output y = x1. The ODE system is given by:

T1 =p1T1 — P2T1T2

&g =p3w2(1 — pax2) + psT1T0

The differential algebra method produces an exhaustive summary

2
D3P4 —2p1p3pa P1P3P4
(bl — Do - 17 ¢2 = Do — D3, ¢3 = —Ds5, ¢4 =1

+ p1p3, ¢5 = p1ps-

That is, there is a dense open subset U C P on which the model-data equivalence relation
coincides with the equivalence relation given by the map

¢: U —R*
(p17p2ap37p47p5) H(gbla ¢27 ¢37 ¢47 ¢5)

We may take U to be the set of parameters such that all ps, ps and 2ps + paps + pip2 —
4p1psps are nonzero. Then for (p1, pa, p3, pa,ps) € U, we have

—2?3, p3=—2—¢2—

b s+ ) -
D “20s — by —2onds. T 3

Let p: U — R* be the map given by (p1,p2,p3,pa,ps) = (p1,p3.pa/p2,ps). The map
¢ factors through p, and the formulas (2),(3) above provide an inverse for the induced

function ¢: p(U) — ¢(U), and so in particular this function is bijective. It follows that
for (p1,p2,p3,p4,p5) € U the function p determines the model-data equivalence relation.
Therefore, the equivalence class of (p1, p2, p3, p4,p5) € U is

P
{<p1,Q1,p3,4-q> ' q€ R}-
D2

Hence, all parameters in U have a 1-dimensional equivalence class and we conclude that
the model is generically non-identifiable. <

(2)

p1 =

The main strategy we employed in the above examples was to construct a map ¢: P —
RY for some N, such that p ~ys.p’ if and only if ¢(p) = ¢(p'), that is, a map making the
equivalence relation p ~p/.p" effective. The model we considered was given in this way,
or we evaluated an explicit time dependent model (or a solution to an ODE model) at
finitely many timepoints, or else we used an alternative method to obtain an exhaustive
summary and thus such a map. When the model-data equivalence relation can be made
effective via a differentiable map f: P — RY, that is, when we can find f such that
~Mz = ~f, it is also possible to determine the local identifiability of the model by
looking at the Jacobian of f. The model is locally identifiable if and only if the Jacobian
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of f has full rank for generic values of p. Indeed, this is an immediate consequence of
the Inverse Function Theorem. This method is regularly employed in algebraic statistics
when considering specific models (see for example [53, Proposition 15.1.7]).

In the case of ODE systems for which we do not have a solution and are unable
to obtain an exhaustive summary, there are computational methods for establishing the
(local) identifiability, see e.g. [41], [47] for a survey of the techniques available.

3. Model Predictions

In this section we provide a rigorous definition and a more mathematically correct
name for “model manifold”, a geometric object that takes center stage in the sloppiness
literature [56, 57, 58, 55].

Definition 3.1. Let M be a mathematical model with parameter space P and a choice
of perfect data. Suppose that the perfect data produced for each parameter value p € P
is a point of RY for some N. A model prediction map is a map ¢: P — RY that expresses
the perfect data produced for the parameter value p as a function ¢(p).

A model prediction map is a geometric realization of the quotient P/~ . in the sense
that it factors through the set-theoretic quotient P — P/~ s, in such way that the
induced map ¢: P/~p; . — RY is injective.

A model prediction map is meant to be more than just a map making the model-data
equivalence relation effective: we want to use this map to perform parameter estimation
by finding the nearest model prediction (in the image of ¢) to a given noisy data point (in
the data space, possibly off the image of ¢).

Remark 3.2. The sloppiness literature uses the term “model manifold” for the image
of a model prediction map [56, 57, 58, 55]. Although in general the image of ¢ is not
a manifold as such, using the term manifold has the benefit of bringing into focus the
geometric structure of mathematical models.

Remark 3.3. Note that we do not require a model prediction map to satisfy the universal
property of a categorical quotient, that is, we do not require that any map that is constant
on the equivalence class factors through ¢.

Each fiber of ¢ is a single equivalence class. As a consequence, when there is a model
prediction map, then ~p7 . =  ~y, that is, the model-data equivalence relation coincides
with the equivalence relation induced by ¢. Therefore, identifiability can be characterized
in terms of model prediction maps:

Proposition 3.4. Let M be a mathematical model and suppose there is a model predic-
tion map ¢: P — RY for some N > 0. Then

e The pair (M, ¢) is globally identifiable if ¢ is injective.

e The pair (M, ¢) is generically identifiable if ¢ is generically injective.
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e The pair (M, ¢) is locally identifiable if almost all non-empty fibers of ¢ have no
accumulation points.

e The pair (M, ¢) is non-identifiable if ¢ is not injective.

e The pair (M, ¢) is generically non-identifiable if almost all non-empty fibers of ¢
have accumulation points.

In some situations, it may be possible to construct a model prediction map only on
a dense open subset of parameter space. A subset £ C P is ~ s ,-stable if p € E and
p' ~n.p implies p’ € E, that is, E is the union of equivalence classes.

Definition 3.5. A generic model prediction map is a model prediction map ¢: U — RV
that is defined on a ~)y ,-stable dense open subset U C P of parameter space.

We will use the notation ¢: P --» RN borrowed from rational maps in the algebraic
category to denote generic model prediction map when the exact domain of definition is
unknown or not important. Three of the above notions of identifiability can be rephrased
in terms of generic model prediction maps:

Proposition 3.6. Let M be a mathematical model and suppose there is a generic model
prediction map ¢: P --» RN for some N > 0. Then

e The pair (M, ) is generically identifiable if ¢ is injective on its domain of definition.

e The pair (M, p) is locally identifiable if almost all non-empty fibers of ¢ have no
accumulation points.

e The pair (M, p) is generically non-identifiable if almost all non-empty fibers of ¢
have accumulation points.

In the algebraic category, we have an additional notion of identifiability:

Definition 3.7 (Rational Identifiability). Let (M, ¢) (resp. (M, y)) be a mathematical
model with and algebraic model prediction map defined over R (resp. a generic model
prediction map given by a rational map with real coefficients). We say that (M, ¢) (resp.
(M, ¢)) is rationally identifiable if and only if each parameter p; can be written as a rational
function of the ¢;’s (resp. the ¢;’s), or equivalently if the fields of rational functions are

equal: R(p1,...,pr) = R(¢1,...,0p) (resp. R(p1,...,pr) = R(p1,...,0n)).

Note that rational identifiability implies generic identifiability. The implication is strict
because we are working over a non-algebraically closed field (i.e. R).

Ezample 3.8 (An example of global identifiability, but not rational identifiability). Con-
sider the model M with model prediction map ¢ : R — R defined on the parameter space R
by p — p3+p. First, we show that M is globally identifiable. Let a and b be two real num-
bers such that a®+a = b>+b. We can rewrite a3 +a = b3+b as (a—b)(a® +ab+b*+1) = 0.
The polynomial function a? + ab+ b> + 1 has no real zeros, since for any given b € R, it is
a polynomial of degree 2 in a with discriminant —3b%> — 4 < 0. It follows that a = b, and
so the model is globally identifiable. As z is not a rational function of 3 + z, (M, ¢) is
not rationally identifiable. <
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The case of finite discrete parametric statistical models is again the simplest case,
since the parameterization map is a model prediction map. For the two biased coin model
studied in Examples 2.1 and 2.12, the map ¢ is a model prediction map. It is possible
to have non-isomorphic sets of model predictions, and also, as in the following example,
we may have model prediction maps belonging to different categories (real-analytic vs
algebraic).

Ezample 3.9 (Gaussian Mixtures). We consider the mixture of two 1-dimensional Gaus-
sians, a model that can be used to describe the behavior of one measurement we make
on individuals belonging to two populations. The model goes back to Pearson in 1894
who developed the methods of moments while studying crabs in the Bay of Naples.
We follow the treatment by Améndola, Faugere and Sturmfels [2]. The parameter is
5-dimensional: (A, u,0,v,7) € [0,1] X R x R>9 x R X R>¢ =: P. The mixing parameter
A gives the proportion of the first population, the remaining four coordinate parameters
are the means and variances of the two Gaussian distributions: u,o and v, 7. Note that
this model is at best locally identifiable. Indeed, since we cannot tell to which popula-
tion an individual belongs, the parameters (A, u,o,v,7) and (1 — A\, v, 7, u, o) will induce
the same probability distribution (that is, the same perfect data) and so we will have
(A p,o,v,7)] 2 {(\, 0,0, 7), (1 — N\ v, 7, u,0)}, that is, the equivalence class of a pa-
rameter includes its orbit under an affine action of the symmetric group on two elements.
It follows that generic equivalence classes will have size at least 2. Non-generic spe-
cial cases will include the case where both populations have the same behavior, that is,
(,0) = (v,7), and the case where only one population is actually present, that is, A =0
or A = 1. In these cases the equivalence class of a parameter contains certain subsets as
follows:

[()‘7/'670-7[%0-)] 2 {(qmu’a o, K, U) ‘ qc [07 1]} if (,U,, U) = (V7 T)
[(Oauaaa v, T)] 2 {(07QI7QQ7V77—)7 (171/7 T, q17QQ) | q1 € R? q2 € RZO} ifA=0
[(17u707 v, T)] ) {(17/’L707 CI17QQ)7 (07QIaCI27,U70) ‘ q1 € R7 Q2 € RZO} ifA=1

In particular, some non-generic equivalence classes will be 1 and 2-dimensional.

As well as a cumulative distribution function F'(x), this model has both a probability
density function f(z) and a moment generating function M (t); either characterizes the
model. The probability density function is the map

f:Rx P >R

A < ! ‘(“5)2> (1A ( ! _<w;>2>
X [ 20 — [& 2T s
oV 2w T 21

the cumulative distribution function is the map

F:Rx P —=R

1 T (t—w? 1 T -n?
T A e 22 dt )+ (1—-N) e 22 dt |,
oV2T Joo TV2T Jo
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and the moment generating function is

Z ,utJra t2 /2 4 +(1- /\)61/t+72t2/2‘
— !

Note that the m;’s are polynomial maps in the five parameters and M (¢) is defined on
some interval (—a,a). Thus M can be seen as a function M: (—a,a) x P — R. The
statement that these three functions characterize the distribution means that the equiva-
lence relations they induce on P = [0,1] x R coincide with the model-data equivalence
relation. By the 2r + 1 result [52], it follows that for generic x1,...,x11 and t1,...,%t11
each of the functions

¢1: P >R
b H(f(l‘lap)v s 7f(x117p)))

$o: P »RU
p H(F(xlvp)a s >F($117p))7

and
¢3: P =R
p H(M(tl,p), .. 7M(t117p))

also induce the model-data equivalence relation. Let X1, ..., Xx denote a random sample
from the distribution. As the moment generating function can be estimated from the sam-
ple via % Zfil e!Xi | the map ¢3 is a model prediction map. As the cumulative distribution
map can be estimated by the empirical distribution function, ¢ is also a model prediction
map. The probability density function can also, in principle, be indirectly estimated from
the sample by numerically deriving the empirical distribution function that estimates the
cumulative distribution function. Thus, ¢; can also be considered as a model prediction
map.

This model also has algebraic model prediction maps. Indeed, the set of moments
{mi | i > 0} determines M, which implies that this set of polynomial functions P — R will
also induce the model-data equivalence relation. To obtain an algebraic model prediction
map it will suffice to find a finite separating set £ C R[m; | i > 0] C R[A, u, 0, v, 7], that
is, a set E such that whenever two points of R® are separated by some m;, there is an
element of E that separates them (see [31] for a treatment of separating sets for rings of
functions). As R[A, u, 0, v, 7] is a finitely generated k-algebra, by [31, Theorem 2.1] finite
separating sets exist, and for d large enough the first d + 1 moments mqg, mq, ..., mg will
form a separating set. In fact, through careful algebraic manipulations it is possible to
show that the first 7 moments already form a separating set (see [2, Sectlon 3] or [34]).
As it is possible to estimate moments from data (via the sample moments 7 ZZ , X for
j > 1), we have a fourth model prediction map

¢1: [0,1] x RY ) —R®
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p = (m1, ma, m3, ma, ms, me).

<

Let M be given by a real-analytic ODE system with time series data or an explicit
time dependent model with time series data. Then by the 2r + 1 result [52], we know
that there exist model prediction maps that capture all the time series information. For
the explicit models it is simply a matter of choosing timepoints. For ODE systems, we
would in principle need an exact solution. First, some examples of explicit time dependent
models:

Ezample 3.10 (Fitting points to a line). By the discussion in Example 2.5, the model-
data equivalence relation coincides with the equivalence relation induced by evaluating
the variable = at the timepoints t7 = 0 and to = 1. As there is an invertible linear
transformation taking any two distinct timepoints (t1,%2) to (0,1), any choice of two
timepoints will give a model prediction map

Bty oty R? »RR?

(ao,al) |—>(a0 + t1a1,a0 + t2a1).

Each corresponding set of model predictions, that is the image of ¢, +,, actually fill up
R2. The set of model predictions we would obtain by taking more timepoints would still
be isomorphic to R2. q

Ezxample 3.11 (Sum of exponentials). By the 2r + 1 result [52], any generic choice of
5 timepoints will provide a model prediction map, but as we saw in Example 2.11, two
timepoints suffice. As in the paper [57], we use the three timepoints ¢; = 1/3,t2 = 1,t3 =3
to define a model prediction map

qb: RZO —)Rg

(a,b) (e 4+ e 3 e 4 et ¢34 %),

The image of ¢, the corresponding set of model predictions, is a surface with a boundary
given by the image of the line {(a,b) | a = b}. A set of model predictions obtained by
measuring at two timepoints will consist of a closed subset of the positive quadrant of R2.
<

For an ODE system with time series data, if we have an exact solution then we can
easily construct a model prediction map as in the explicit time dependent case. In the
absence of a solution, it may still be possible to construct a model prediction map, at
least on a dense open subset of parameter space. For example, the coefficients of the
input-output equations used in the differential algebra approach to obtain an exhaustive
summary can be estimated from data (see for example [7, p. 17]). Hence, in this case
one can construct a rational model manifold. For example, in Example 2.15 the map
¢: U — R5, when seen as a rational map on the whole parameter space, is a rational
model prediction map. In general, however, the best one can do is solve the ODE system
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numerically and build a numerical model prediction map as is done in the sloppiness
literature [56, 57, 58, 55]. A numerical model prediction map will provide some information
on the model equivalence relation induced by an exact model prediction map; the quality
of this information will depend on the quality of the numerics.

4. Sloppiness and its relationship to identifiability

We consider a model M with a fixed choice of model prediction map ¢. A similar
analysis can be made for a model with a generic model prediction map ¢ by replacing P
with the domain of definition of ¢ where needed. For the rest of this paper we focus on
models with model prediction maps.

We now consider the situation in which the data are model predictions corrupted
by measurement noise with a known probability distribution. Hence, according to our
assumption, the noisy data is the result of a random process. We define the data space
Z C RY to be the set of points of RV that can be obtained as a corruption of the perfect
data; how much it extends beyond the model predictions will depend on the support of
the probability distribution of the measurement noise. The probability density function of
the noisy data that can arise for the parameter value p € P is denoted by ¥(p,): Z — R;
it is the probability density of observing data z € Z, which, for each p € P, depends on
the model prediction ¢(p) rather than depending directly on the parameter p.

The Kullback-Leibler divergence, used in probability and information theory, quanti-
fies the difference between two probability distributions [32]. We define a premetric on
parameter space via the Kullback-Leibler divergence:

o) i= [ w2108 (555 a (W

Gibb’s Inequality [16] proves that the Kullback-Leibler divergence is nonnegative, and zero
only when the two probability distributions are equal on a set of probability one. It follows
that d is a premetric, that is, d(p,p’) > 0 and d(p,p) = 0. Furthermore, d(p,p’) = 0 if and
only if the probability distributions ¢ (p, -) and ¥ (p’, -) are equal on a set of probability one,
which is equivalent to ¢(p) = ¢(p'), since the dependence of ¥ on p is only via the model
prediction ¢(p). Note that in general the Kullback-Leibler divergence and the premetric
d are not symmetric and do not satisfy the triangle inequality.

Ezample 4.1 (The case of additive Gaussian measurement noise). Suppose the observations
of a model prediction are distributed as follows:

z N(¢(p), 2)7 (5)

where N (¢(p),¥) denotes a multivariate Gaussian distribution with mean ¢(p) € RY
and covariance matrix ¥, a N x N positive semi-definite matrix. This is equivalent to
specifying that z = ¢(p) + € where € ~ N (0,3), that is, the measurement noise is additive
and Gaussian. We let K be the number of experimental replicates, or the size of the
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sample. The density of a multivariate Gaussian then gives ¥ (p, -) as

62 = 0 F 12 e (— 5~ o) 27 - 00) )

where (-, -) denotes the inner product. The computation of (4) then yields :

A(p.0') = o (6(0) ~ 6(0), 57 (6(0) — 00)) ). (0

(details provided in [18]). Thus d(p, p’) is a weighted sum of squares, and so it is symmetric
and satisfies the triangle inequality, and hence d is a pseudometric. In particular, if ¥ is
the identity matrix, then d is induced by half of the square of the Euclidean distance in
data space. The pseudometric d is a metric exactly when the model is globally identifiable,
since then d(p,p) =0 ¢(p) = o(p)) ©p=7p. q

It is often possible to equip parameter space with a metric, a natural choice being
the Euclidean metric inherited from the ambient R". For instance our model might be of
a chemical reaction network, where the coordinates of the parameter correspond to the
positive, real-valued rate constants associated with particular chemical reactions. In this
case, a reasonable choice of reference metric is the Euclidean distance between different
points in the positive real quadrant. The reference metric on parameter space may not
be Euclidean. For example, the natural metric on tree space that arises in Phylogenetics,
the BHV metric, is non-Euclidean [6].

We can now offer a new precise, but qualitative, definition of sloppiness. We discuss
two different quantifications in the following two sections:

Definition 4.2. Let (M, ¢,1,dp) be a mathematical model with a choice of model pre-
diction map, a specific assumption on the probability distribution of the noisy data, and a
choice of reference metric on P. We say that (M, ¢,1,dp) is sloppy at pg if in a neighbor-
hood of pg the premetric d diverges significantly from the reference metric on parameter
space.

4.1. Infinitesimal Sloppiness

We first provide the generally accepted and original quantification of sloppiness found
in the literature, which we explain in terms of our new qualitative definition of sloppiness
(see Definition 4.2). The sloppiness literature makes the implicit assumption that the
reference metric on parameter space is the standard Euclidean metric, and we make the
same assumption in this section.

Fix py € P and consider the map d(-,pp): P — R>¢ mapping p to d(p,po). Suppose
that d(-,pg) is twice continuously differentiable in a neighborhood of pg. By definition,
d(po,po) = 0, and furthermore py is a local minimum of d(-, py), implying a null Jacobian.
Therefore an approximation of d(p, pp) for p in a neighborhood of py is given by the Taylor
expansion

d(p,po) = %<<p = p0). (V3d(p.P0) lp=s0 (0 = P0) ) + O(l(p = p0)]|2): (7)
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where || - ||2 is the Euclidean norm and Vzd(p, po) is the Hessian of the function d(p, po),

that is, the matrix (%;md(p, p0)> of second derivatives with respect to the coordinate
* ,L?J
parameters. This Hessian evaluated at p = pg is known as the Fisher Information Matrix

(FIM) at pp.
Local minimality of d(-,pg) at pp ensures that the matrix (ng(p, po)) |p=po 18 positive
semidefinite, and so the FIM at py induces a pseudometric on parameter space

dFIM,p(): PxP —)RZO
1
(p,p") H5<(p — ), (V2d(p,10)) lp=po (P — p’)>-

Note that the pseudo-metric d(-, po) is not the Fisher Information metric. When the FIM
is positive definite, the Fisher Information metric is the Riemannian metric induced by
the FIM by computing the line integral of the geodesic linking two parameters p,p’ € P
[1].

Ezample 4.3 (The case of additive Gaussian measurement noise). In the sloppiness liter-
ature, measurement noise is assumed Gaussian, as in Example 4.1, and for K = 1 the
FIM (V%d(p, po)) lp=po is known as the sloppiness matriz at pg. Explicitly, the sloppiness
matrix is

((Vp¢(P))|p=po)T »! ((vp¢(p))|p=po) ) (8)

| =

(V3d(p,20)) lp=po =

where (V,0(p))|p=p, denotes the Jacobian of ¢ with respect to the coordinate parameters
evaluated at p = pog. N

Remark 4.4 (Structural identifiability and the FIM). The FIM is intimately linked to
structural identifiability. Indeed, a result of Rothenberg [48, Theorem 1] shows that M is
locally identifiable if and only if the FIM is full rank at some pgy. If we assume additive
Gaussian noise, then Equation 8 implies that the rank rg of the FIM at pg is equal to the
rank of the Jacobian of ¢ at pg, and so for generic pg, the dimension of the connected
component of pg in its equivalence class is r — ¢ (cf discussion near [15, Equation 85]). As
one can compute the rank of the FIM by computing the singular value decomposition and
employing a sound threshold [22], the FIM can then be used to numerically determine the
dimension of generic equivalence classes. Further approaches for giving probabilistic, and
sometimes guaranteed bounds on identifiability using symbolic computation at specific
parameters have been developed and applied in [3, 49, 30].

The Taylor expansion (7) shows that, for parameters very near pg, the premetric d is
approximately given by the pseudometric dgmv p,. Therefore, in a neighborhood of pg, the
map ¢ giving the model predictions is maximally sensitive to infinitesimal perturbations
in the direction of the eigenvector of the maximal eigenvalue of the FIM at pg, referred to
as the stiffest direction at pg. The direction of the eigenvector of the minimal eigenvalue
of the FIM at pg, which gives the perturbation direction to which ¢ is minimally sensitive,
is known as the sloppiest direction at pg.
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Definition 4.5. Let (M, ¢,1,ds2) be a mathematical model with a choice of model pre-
diction map, a specific assumption on measurement noise, and the Euclidean metric as a
reference metric on P. We say that (M, ¢,1,ds) is infinitesimally sloppy at a parameter
po if there are several orders of magnitude between the largest and smallest eigenvalues of
the FIM at pg. We define the infinitesimal sloppiness at py to be the condition number of
the FIM at pg, that is, the ratio between its largest and smallest eigenvalues.

Remark 4.6. First note that this definition is only meaningful when the FIM at pg is full
rank. In this case, the condition number of the FIM at py corresponds to the aspect ratio
of the level curves of dpiwv p,, which is one way to quantify how far these level curves are
from Euclidean spheres. Thus, using the condition number of the FIM as a quantification
of sloppiness implies that the reference metric on P is the Euclidean metric.

The FIM possesses attractive statistical properties. Suppose (M, ¢,1),d2) is locally
identifiable and that maximum likelihood estimates exist generically, that is, for almost all
z, there are parameters minimizing the negative log-likelihood: p(z) = minpep(—log ¥ (p, 2)).
Let z € Z be a generic data point and let p(z) be the unique maximum likelihood estimate.
Suppose that the “true” parameter is pg, that is, z is a corruption of the model prediction
®(po). When the FIM at pg is invertible, the Cramer-Rao inequality [11, Section 7.3]
implies that

[(V?gd(PJ?O)) ’p:po]il = Covy, p(2), 9)
where

Covp 5(2) i= [ T (. 2) dz

z
- </Zﬁ(2)¢(po,z) dz) </Zﬁ(2)w(p0’z) dZ>T

is the covariance of the maximum likelihood estimate with respect to measurement noise,
and A < B if and only if B— A is positive semi-definite. This inequality provides an explicit
link between the uncertainty associated with parameter estimation and the geometry of
the negative log likelihood. Meanwhile, the sensitivity of ¢ is related to the uncertainty
associated with parameter estimation via (9). The asymptotic normality of the maximum
likelihood estimates implies that the Cramer-Rao inequality (9) tends to equality as K
tends to infinity [11, Section 10.7]. Formally,

Jim [(V5d(p, po)) lp=po] " = Covig B(2). (10)

The list of regularity conditions required for (9) and (10) to hold are provided in [11,
Section 7.3|, and are easily satisfied in practice.

Remark 4.7. A sufficient condition for dgmy,p, to be a good approximation for the premetric
d on a neighborhood of pg is to have a very large number of replicates. In practice,
however, questions of cost and time mean that the number of replicates is often very small.
Accordingly, the sloppiness literature generally assumes the number of experiments is one
(K = 1), though the effect of increasing experimental replicates in mitigating sloppiness
has been explored in [4].
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Ezample 4.8 (Fitting points to a line). We revisit once more the model first considered in
Example 2.5. We consider the model prediction map obtained by evaluating at timepoints
t1 =0 and t2 = 1 as in Example 3.10. We assume that we are in the presence of additive
Gaussian error with covariance matrix ¥ = I equal to the identity matrix as discussed in
Examples 4.1 and 4.3. As in Example 4.1 the premetric d is induced by half the square of
the Euclidean distance on the data space R?. We can explicitly determine d:

1

d((ao, a1), (ag, ay)) = 3 ((ag — ap)? + (ap + a1 — af — a})?)
= % (2(@0 —ap)? + 2(ap — ap) (a1 — dy) + (a1 — a,l)z)

(@) G @)
“2\\a1—dy )\l 1) \a—d}) /"

We see that d itself is a weighted sum of squares given by a positive definite matrix, and
so d is a metric. As the positive definite matrix giving this sum of squares is constant
throughout parameter space, it follows that the sloppiness of the model is also constant
throughout parameter space. Note that the same phenomenon would happen for any
model such that the model manifold is given by an injective linear map (see Proposition
4.9 below). In particular, the same situation would arise when considering the problem of
fitting points to any polynomial curve, as the corresponding model prediction map will be
linear.

We next compute the FIM. The map d(-, (b, b1)) is given by

d((ao, al), (bo, bl)) = % ((b@ — a0)2 + (bo + b1 —ag — CL1)2)

and so its Hessian, that is, the FIM is

1( Szdlan.ar), (bo. b))  gagzd((ag, ar), (bo, b)) _(2 1)
gga d(a0,01). (bo,b1))  Fzd((a0,a1), (bo.br)) )\ 1

We conclude that in this case, the pseudometric dpry (49,q4,) COincides with d on the entire
parameter space, which we will see in Proposition 4.9 is a consequence of the linearity of
the model prediction map. N

Proposition 4.9. Let (M, ¢, N(¢(p),X),d2) be a mathematical model with parameter
space P C R", a choice of model prediction map, additive Gaussian noise with covariance
matrix ¥, and the Euclidean metric as a reference metric. If the model prediction map
¢: P — RN is linear, then drim,p, = d for all pg € P.

Proof. Our assumption that ¢ is linear implies that there is a N X r matrix A with
real entries such that ¢(p) = Ap. By the discussion in Example 4.1, we have

d(p',p) = §<(Ap’ — Ap), oA — Ap)>
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= 2{AW ~ ). 5 AW )
- §<(p’ —p), (ATET AW - p)).

On the other hand the FIM is given by
NK K K
V() = V(=75 ow(2m) + 5 og() + 5 ((Apo — 49). (A — 40))
K _
= 592 (((4po — Ap), =7 (Apo — Ap)))
K _
= 5 V2 ({(ap), =7 (am))
= EATz—lA,
2
completing the proof.

Ezample 4.10 (Linear parameter-varying model). We consider a standard model arising
in control theory, which falls under the case of real analytic time dependent models.
Specifically, we consider models of the form

i =A(p)z,
y =Cu,
z(0)=xo,

where A(p) is a m x m matrix with polynomial dependence on the parameter p € R" 1,
C is a known fixed n x m matrix with real coefficients, and y is the measurable output.
Note that y depends on the initial condition xy, which we will consider as an extension
of parameter space. We assume further that A(p) is Hurwitz for all p considered. We
denote by y(t, (p,xo)) the output of the system at time ¢, given the parameter (p,zo).
If we measured the system at a finite number of time-points, assuming Gaussian noise-
corruption, then the distance function d((p,xo), (p/,2()) would be the Euclidean distance
between the model predictions at the chosen set of timepoints.

For any pair of parameters (p,zo) and (p/, (), the following integral can be explicitly
computed and is a rational function of (p,zo) and (p/,x() (cf [43, Theorem 1], which
assumes that A(p) is linear in the parameters, but whose proof holds more generally):

oo (P, 20), (7 ) := /0 e, (0. 20)) — (e, (0 b)) .

Note that de((p, 7o), (p',x})) is equal to the L? norm of the function y(t, (p,zo)) —
y(t, (p', 7)), and so deo((p, o), (P 25)) = 0 if and only if y(t, (p,z0)) = y(t, (', 7p) for
almost all t. As y is real-analytic, it then follows that y(¢, (p, o)) = y(t, (p, xp) for all ¢.
Therefore doo ((p, x0), (p', 2()) = 0 if and only if (p', () ~ar(p, x0), and so the equivalence
class of (p, o) is given by the zeros (p/, () of the rational function du((p, zo), (, 5)). <
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4.2. Multiscale sloppiness

We now present a quantification of sloppiness that holds for non-Euclidean reference
metric and is better suited to the presence of noninfinitesimal noise. In this section, we
sometimes make the assumption that for generic pg € P, there is a neighborhood of pg
where the reference metric dp is strongly equivalent to the Euclidean metric inherited
by P as a subset of R". The BHV metric [6] mentioned at the beginning of the section
satisfies this property.

In Section 4.1 we saw how the FIM approximates the premetric d in the limit of
decreasing magnitude of parameter perturbation, which is realizable in the limit of in-
creasing experimental replicates or sample size. In a practical context, however the limit
of increasing replicates may not be valid. Indeed, examples are provided in [26] and [29] of
models for which the uncertainty of parameter estimation is poorly approximated by the
FIM. Even when the approximation is valid, numerical errors in sloppiness quantification
are often significant, due to the ill-conditioning of the FIM [60]. We describe a second
approach called multiscale sloppiness introduced in [44] for models given by ODE systems
with time series data under the assumption of additive Gaussian noise and with the stan-
dard Euclidean metric as a reference metric. We extend this quantification of sloppiness
to a more general setting.

Definition 4.11 (Multiscale Sloppiness). Consider a model (M, ¢,1,dp) with a choice
of model prediction map ¢, a specific assumption on measurement noise, and a choice of
reference metric on P. We define the -sloppiness at py to be

suppep{d(p, po) | dp(p,po) = 6}
infpep{d(p,po) | dp(p,po) = 0}

SPO (6) =

If dp is strongly equivalent to the Euclidean metric on a neighborhood of pg, then for
d sufficiently small, the (non-unique) mazimally and minimally disruptive parameters at
length scale § at the point pg € P are the elements of the sets

Dggax((S) = arg I;leaﬁ’( d(p,po) . dp(p,po) =9 (11)
Dy (5) = arg min d(p, po) : dp(p, o) = 9, (12)

respectively. In this case, the d-sloppiness at pg is

_d(Pp**(0),po)
S0 ® = Upp).p0) (13

where ppi®®(5) € D,**(5) and d(ngm(é) € D;”Oi"(é).

Note that since the set {d(p,po) | p € P and dp(p,po) = 6} is a closed set of real
numbers with a lower bound (zero), the infimum is actually a minimum, hence Dy (4) is
always well-defined.
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Remark 4.12. Computation of d-sloppiness would seem to require the solution of a (pos-
sibly nonlinear, nonconvex) optimization program for each § > 0. However, assuming
the reference metric on parameter space is the Fuclidean distance and that we are in the
presence of additive Gaussian noise, finding pj*(8) € D} (8) for continuous ranges of
0 can be formulated as the solution of an optimal control problem relying on solving a
Hamiltonian dH/dp = 0 as described in [44, Section 5]. With this method, computation of
d-sloppiness is possible for large, nonlinear systems of ODE. Note that this formulation as
an optimal control problem does not fundamentally rely on the assumption of a Euclidean
metric on parameter space, and so the principle likely applies to more general classes of
metric.

If we choose the usual Euclidean distance as the reference metric on parameter space,
then as the length-scale § goes to zero, infinitesimal and multiscale sloppiness coincide:

Amax v2d ’ _
%im Spo(é) _ T ( g (p po)) |p po)
—0 (vpd(p7p0)) ‘pzpo

where A% and A" denote the maximal and minimal eigenvalues of their argument.
Indeed, the Taylor expansion (7) implies that as p approaches pgy, d(p,po) approaches
driM.po (Ps Po), and so the level sets {p € P | d(p,po) = 0} tend to the level sets {p € P |
driv,po (P, o) = 0} as § goes to zero.

Multiscale sloppiness, or more precisely the denominator of Sp,(d), is closely related
to structural identifiability:

Theorem 4.13. Let (M, ¢,v,dp) be a mathematical model with a choice of model pre-
diction map, a specific assumption on measurement noise, and a choice of reference metric
dp, which we assume is strongly equivalent to the Euclidean metric. The equivalence class
[P0~ Of the parameter py has size one if and only if infye p{d(p, po) | dp(p,po) =} >0
for all 6 > 0.

Proof. Suppose that the equivalence class [pg] of pg has size one, then for any other
parameter p, we will have d(p, po) > 0. In particular, this will hold for pzz)m(é) € Dgém(é),
for any § > 0. Hence infye p{d(p, po) | dp(p,po) = 6} = d(pp,"(6), po) > 0.

Suppose on the other hand that inf,cp{d(p,po) | dp(p,po) = 0} > 0 for all 6 > 0
and suppose, for a contradiction that p € [po] is distinct from pg. Set &' := dp(p,po). As

p # po, we have ¢’ > 0 and
0= d(p,po) > gglfa{d(p,po) | dp(p,po) = 0"},

which is a contradiction, since inf,ep{d(p, po) | dp(p,po) =6’} > 0.

Ezample 4.14 (Sum of exponentials). We highlight that sloppiness is a local property:
it depends on the point in parameter space and the precise choice of timepoints. In
this spirit, let us revisit Example 2.6, again adding Gaussian measurement noise with
identity covariance and taking the model prediction map to be evaluating at timepoints
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{1/3,1,3}. We are in the situation considered in Example 4.1 and so d is again half the
squared Euclidean distance between model predictions:

1
d ( (a’ b)v (a/’ b/) ) = 5”¢(a7 b) - QS(CL/, bl)”%?
where
¢(a,b) = (e_a/3 +e B e et R0 4 e 3.
The Jacobian of the model prediction map at (ag, bg) is therefore given as

_le_a0/3 _e_ao _36_3a0
(Vapd(a,0))|(a,p)=(a0,b0) = <_ze_b0/3 b0 _36_31,())

The FIM at (ag, bo), in this case, will be given as

1,—2a0/3 4 e—2a0 4 gp—6ao %ef(ao-%bo)/a + e—(ao+bo) _|_9673(a0+b0)
%e—(a0+bo)/3 + e—(ao+bo) 4 96—3(a0+b0) %e_2b0/3 -+ e~ 2bo + 9e—6bo

We compute infinitesimal sloppiness and d0-sloppiness of (M, ¢) at py = (a,b) = (4,1/8) in
Figure 4: the difference between these notions of sloppiness becomes clear.

4
\

o
(S}
w
IS

Figure 4: Infinitesimal sloppiness vs d-sloppiness of sum of exponential (Example 4.14). For a given
parameter pg = (@ = 4,b = 1/8) and time points {1/3,1, 3}, level sets of d are drawn (colors).
The vector field consisting of the eigenvector corresponding to the largest eigenvalue of the FIM
is plotted across the grid. We compare the flow of this vector field initialized at py (gray curve),
with the most delta-sloppy parameters with respect to pg over a range of § (orange curve).

Figure 5 illustrates how the change of model prediction map, in this case different
choices of timepoints, changes the premetric d. This suggests that sloppiness should be
taken into consideration when designing an experiment: some choices of timepoints will
allow for better quality parameter estimation. Figure 6, on the other hand, illustrates how
the premetric d changes in parameter space. In particular, these two figures illustrate that
unlike identifiability, sloppiness is not a global property of a model. N
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Figure 5: Sloppiness for different choices of model prediction map for the sum of exponentials
(Example 4.14). For a given parameter py = (4,1/2), we draw the level curves of \/d(-, (4,1/2))
for timepoints {1/3,1,3} on the left, for timepoints {1/9,1/3} in the center, and for timepoints
{1,3} on the right are shown. Taking the square root changes the spacing of the level curves, but
not on their shape.

Figure 6: Sloppiness at different parameters given a choice of model prediction map for the sum of
exponentials (Example 4.14). With the model prediction map given by timepoints {1/3, 1,3},

we draw the level curves of /d(-,(4,1/2)) on the left, of \/d(-,(3,3)) in the center, and of
\/d(+, (6,2))on the right are shown. Taking the square root changes the spacing of the level curves,
but not on their shape.

4.3. Sloppiness and practical identifiability

Determining the practical identifiability of a model corresponds to asking whether one
can arrive to some estimate of the parameter from noisy data, that is, whether based
on an assumption on measurement noise, noisy data constrains the parameter value to a
bounded region of parameter space. Part of the literature uses the FIM in the manner of
infinitesimal sloppiness to define practical identifiability(see for example [59, 13]), but we
will see in Example 4.19 that this method of evaluating practical identifiability can lead
to problems. We thus favor an approach more in line with Raue et al [46].

Practical identifiability depends on the method used for parameter estimation. We fo-
cus on practical identifiability for maximum likelihood estimation, one of the most widely
used methods for parameter estimation (see, for example [35]). Accordingly, in the remain-
ing of this section, we consider models (M, ¢, 1, dp) with a choice of model prediction map,
a specific assumption of the probability distribution of measurement noise and a choice of
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reference metric on P such that maximum likelihood estimates exist for generic data.

For the noisy data point zg € Z, supposing the existence of a unique maximum likeli-
hood estimate p(zp) (i.e. supposing the model is generically identifiable, see Proposition
4.15 below), we define an e-confidence region Uc(zp) as follows:

Ue(z0) ={p € P | —log¥(p, 20) < e€}.

The e-confidence region therefore denotes the set of parameters that fit the data at least
as well as some cutoff quality of fit, predicated on e. The set Uc(zp) is often known
as a Likelihood-based confidence region [59, 11|, and is intimately connected with the
Likelihood Ratio Test: Suppose we had a null hypothesis Hg that data zy was generated
(modulo noise) through a parameter pg, and we wished to test the alternative hypothesis
H1 that zp was generated through some other parameter. By definition, a Likelihood
Ratio test would reject the null hypothesis when

W0, 20) s
PHCo)z0) =

where k* is a critical value, with the significance level a equal to the probability Pr(A(zg) <
k*|Hp) of rejecting the null hypothesis when it is in fact true. The set of parameters such
that the nul hypothesis is not rejected at significance level « is

A(po, 20) =

{0’ € P |logy(v', 20) < —log —(p(20), 20) — log k™},
that is, Uc(z0), where € = —log —1(p(20), 20) — log k*.

Proposition 4.15 (closely related to [12, Theorem 2]). Let (M, ¢, 1)) be a mathematical
model with a model prediction map, and a specific assumption on measurement noise.
Suppose that maximum likelihood estimates exist for generic data. If ¢ and i are real-
analytic, then for almost all zg € Z, the set of maximum likelihood estimates p(z), consists
of exactly one equivalence class of ~py 4.

Proof. Let zg € Z be a generic data point. Solving the likelihood equation corresponds
to finding the model prediction “closest” to the noisy data, as measured via the negative
log-likelihood. We can assume without loss of generality that there is a unique solution to
the likelihood equations. Indeed, under our assumptions, the set of data points where the
closest model prediction is not unique will be contained in the zero set of analytic functions.
Thus, the set of maximum likelihood estimates will consist of a single equivalence class.
We can further assume that this equivalence class has generic size.

Remark 4.16. The ML degree [27], where the acronym “ML” stand for maximum likeli-
hood, is defined as the number of complex solutions to the likelihood equations (for generic
data). The ML degree is an upper bound for the number of solutions for the maximum
likelihood equation, in particular it is an upper bound on the size of the equivalence classes
when maximum likelihood estimates exist.
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Even if for generically identifiable models the maximum likelihood estimate is unique
with probability one, the parameter may not be identifiable in practice, meaning that
noisy data does not constrain the parameter value to a bounded region of parameter space
for a significant portion of the data space. More precisely, we refine the definition of Raue
et al [46]:

Definition 4.17 (Practical identifiability). Let (M, ¢,,dp) be a mathematical model
with a model prediction map, a specific assumption on measurement noise and a choice of
reference metric dp on P. Suppose that maximum likelihood estimates exist for generic
data. Then (M, ¢,),dp) is practically identifiable at significance level v if and only if for
generic zg € Z, there is a unique maximum likelihood estimate and the confidence region
Uc(z0) is bounded with respect to the reference metric dp, where € satisfies

P € Uz) & Pr( —log(p',2) < €| 2 € Z is a corruption of ¢(ﬁ(z0)> =1-a.

The model M is practically unidentifiable at significance level « if and only if there is a
positive measure subset Z' C Z such that for z9 € Z’, the confidence interval Uc(zp) is
unbounded with respect to the reference metric dp on P.

A model is practically identifiable at significance level « if generic data imposes that
the parameter estimate belongs to a bounded region of parameter space, but this con-
fidence region could be very large. Hence practical identifiability in this sense may not
necessarily be completely satisfactory to the practitioner. One can further quantify prac-
tical identifiability to take into account the size of confidence regions, see for example
[44].

Sloppiness and practical identifiability are complementary concepts. Practically iden-
tifiable models can be very sloppy, for example if the estimation of one component of the
parameter is much more precise than that of another, see example below.

Ezample 4.18 (Practically identifiable, but sloppy). Models with linear model prediction
maps, Euclidean parameter space and standard additive Gaussian noise are always prac-
tically identifiable according to our definition, but these models can be arbitrarily sloppy.

We consider a model with 2-dimensional Euclidean parameter space and a linear model
prediction map ¢ given by (a,b) — (10Va,b). We assume further that the measurement
noise is Gaussian with identity covariance matrix. By Proposition 4.9, d = drrar,p, for
any po and at any scale, the level curves of d are ellipses with aspect ratio 10V.

Our assumption of additive Gaussian noise implies that for any zg, for each € > 0, the
confidence interval U,(zp) is an oval whose boundary ellipse is the level set of d centered at
the maximum likelihood estimate p(zp). Thus the confidence intervals U,(zp) are bounded
for any € > 0, and so the model is practically identifiable. <

In the following, we give an example of a model that is almost everywhere not sloppy
at the infinitesimal scale, but is not practically identifiable. This model, however, exhibits
some sloppiness at the non-infinitesimal scale. We see that the boundedness of level curves
of d almost every where does not imply the boundedness of confidence intervals almost
everywhere.
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Ezample 4.19 (Not sloppy at the infinitesimal scale, but not practically identifiable). Con-
sider the mathematical model (M, ¢, N'(é(p), I2),d2) given by

¢ :[1/2,00) x R—R?

a b

additive Gaussian noise with identity covariance matrix, and parameter space P = [1/2, 00) X
R equipped with the usual Euclidean metric.

The model prediction map ¢ is a conformal mapping that maps the closed half plane
[1/2,00) x R to the closed disc of radius 1 centered at (1,0) minus the origin. Since it is a
conformal mapping, it preserves angles, and so infinitesimal circles are sent to infinitesimal
circles. Under our assumptions on measurement noise and with the standard Euclidean
metric as a reference metric on P, the model is not sloppy at all at the infinitesimal scale at
parameters belonging to the open half plane (1/2,00) xR, but becomes increasingly sloppy
at larger and larger scale, especially away from the parameter (1/2,0). The injectivity of
the map ¢ on P = [1/2,00) x R implies that the model (M, ¢) is globally identifiable.

Our assumption on measurement noise implies that the maximum likelihood estimate
is the parameter whose image is closest to the data point zg, it will exist for any data
point outside the closed half line (—oo, 0] x {0}. The confidence region U,(zp) is then the
preimage of the Euclidean open disc of radius € centered at zy. Whenever the closure of
this open disc contains the origin, the corresponding confidence region will be unbounded.
<

The final example illustrates that the uniqueness of the maximum likelihood estimate
is independent of the boundedness of the confidence regions:

Ezample 4.20 (Bounded confidence regions but not practically identifiable). Consider the
mathematical model (M, ¢, N'(¢(p), I2), d2) with model prediction map

¢ :[1/2,00) x R>R
(a,b) —a’ + b2,

additive Gaussian noise with identity covariance matrix, and parameter space P = [1/2, 00) X
R equipped with the usual Euclidean metric. The equivalence class of the model-data
equivalence relation are the concentric circles {(a,b) | a® + b*> = r} for r > 0, and so the
model is generically non-identifiable. By Proposition 4.15, the set of maximum likelihood
estimates for a generic (ag,by) € R is also a circle centered at the origin and the model
is practically non-identifiable on any open neighborhood of (ag,bp). On the other hand,
as the measurement noise is assumed to be Gaussian and the equivalence classes of ~j7 4
are bounded, any confidence region will be bounded as well. Indeed, the confidence region
Uc((ao, bo)) will be either an open disk {(a,b) € R? | a®+b? < a}+b3+¢}, when € > a}+b3,
or an open ring {(a,b) € R? | al + b2 — € < a® + b? < a}, + b3 + €}, otherwise. q
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5. Future of sloppiness

There are a number of interesting future directions for the theory and application of
sloppiness. While we explained sloppiness via identifiability, this is only the beginning. An
important next step is understanding sloppiness in the context of existing inference and
uncertainty quantification theory. In terms of applications, there are some models where
the reference metric on parameter space is non-Euclidean and we believe the computation
of multiscale sloppiness can be adapted. While beyond the expertise of the authors, we
would be excited to learn how the presented geometry of sloppiness extends to stochastic
differential equations.

We highlighted how sloppiness is a local property, dependent on the parameter and
timepoints of experiment. This dependence is reflected in model selection studies where a
different model is selected depending on the choice of timepoints [51] or experimental stim-
ulus dose [23]. We believe quantifying the shape of -sloppiness in relation to identifiability
will have direct impact on parameter estimation.

In the last few years, researchers have successfully used FIM-based sloppiness to per-
form dimension reduction [58, 55, 21]. This is similar to the profile likelihood approach
to dimension reduction [9], whose connection with identifiability was subsequently made
[8]. This motivates an alternative understanding of when a model should be considered
sloppy, namely when such model reduction is possible. Considerable more work is required
in order to formalize this approach. A first step towards a definition is found in [33], where
they propose predictive sloppiness. Predictive sloppiness is meant to be reparametrization
invariant. However, how to obtain a closed form “exact” reparametrization remains an
open problem.
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A. Table summary of main examples

Example Fitting points to a line 2.5 2.133.104.8

Type Explicit time-dependent model

Parameter space P (ap,a1) € R?

Variable (z € X) z(t) € R for t € R>g

Measurable output (y € | z(t)

Y)

Perfect data (x(t1),...,z(ty)) for some t; < -+ < ty €
RZO

Noisy data (x(t1) + €1,...,2(tN) + €n)
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Example

Two biased coins 2.1, 2.1

Type

Finite discrete statistical model

Parameter space P

[0, 1]

Variable (z € X)

Outcome of 1 instance of the experiment

Measurable output (y €

Record of 1 instance of the experiment

Y)
Perfect data Probability distribution for p € P

Noisy data Record of N instances of the experiment
Example Sum of exponentials 2.6, 2.11, 3.11, 4.14
Type Explicit time dependant model

Parameter space P

(a7 b) € IR2>O

Variable (z € X)

$(t) € Ryg fort e R>o

Measurable output (y €
Y)

.Z‘(t) S R>0 fort e Rzo

Perfect data (x(t1),...,z(ty)) for some t; < -+ < ty €
Rzo

Noisy data (x(t1) + €1,...,z(tN) + €n)

Example An ODE model with an exact solution 2.7

Type Polynomial ODE model

Parameter space P

(p1,p2) € IRQ>0

Variable (z € X)

(z1(t), 22(t)) € RZ,, for t € Rxg

Measurable output (y €
Y)

(21(t), z2(t))

Perfect data

(xl(tl),xg(tl), el (tN),:EQ(tN)) for some
1 < "'<tN€R20

Noisy data

(x1(t1) + eq,x2(t1) + €e1,....10(Nn) +
€1,N, T2(tN) + e2.n)
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Example

A non-linear ODE model 2.15

Type

Polynomial ODE model

Parameter space P

(p17p27p37p47p5) eP g R5

Variable (z € X)

(I1 (t), :Ez(t)) S R2>0 fort € RZQ

Measurable output (y €
Y)

($1 (t), xz(t)) € R2>0 fort € RZQ

Perfect data

o (x1(t1),m2(t1),...,1 (tn),xz2(tn)) for some
t; < "'<tN€R20

e An exhaustive summary or input-output
equations

Noisy data (1’1 (tl) + 6171,332(751) + €1,...,1 (tN) +
e1,nN, Z2(tn) + €2 )

Example Gaussian mixtures 3.9

Type Continuous parametric statistical model

Parameter space P

()\,,LL,O',I/,T)E [0,1] XRXRZ()XRXRE()

Variable (z € X)

a characteristic x € R>g of a mixed polulation

Measurable output (y €
Y)

xERZO

Perfect data

e Probability distribution of z for some
()\7 u,o,v, T)

e Value of the cdf (or the pdf) at general
r1,...,r11 € R

e Value of the moment generating function at
general t1,...,t11 € (—a,a)

e 11 generic moments (or the first 7)

Noisy data

e Measurements from a finite sample with
some measurement error

e Empirical distribution function from a finite
sample (or its numerical derivative)

e 11 generic sample moments from a finite
sample (or the first 7)

Example

Linear parameter-varying model 4.10

Type

ODE model

Parameter space P

pE Rr—l

Variable (z € X)

SL‘(t) € R™ for t € Rzo

Measurable output (y €
Y)

y = Cx(t) for t € R>g

Perfect data

(y(t1),...,y(tn)) for some t; < --- < tny €

Rzo

Noisy data

(y(t1) +e1,...,y(tn) +en)
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