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1. Introduction

Graphical models are a popular tool for representing multivariate probability distri-
butions in terms of conditional independence relations (see e.g. [6, 11]). Any probability
distribution can be modeled by a graphical model, for instance a complete undirected
graph imposes no constraints on the distribution. However, certain graphs involve many
more parameters than others to represent specific distributions. In the interest of concisely
representing data and reducing computational costs, one would like to understand which
graph structures best represent which kinds of data. For example, deep architectures, with
several layers of hidden variables, have become increasingly important in machine learning
(see [5] and references therein). Following [13] (and using their notation) we focus on two
important building blocks to such multi-layer architectures:

1. One hidden variable with k states, connected to n observed binary variables. This
is the mixture of products model Mn,k. Up to scaling, it consists of 2 × · · · × 2 (n
times) tensors of non-negative rank at most k,

p =
k∑

i=1

ai ⊗ bi ⊗ · · · ⊗ ci, ai, bi, . . . , ci ∈ R2
≥0.

2. A layer of m hidden binary variables, each connected to n observed binary variables.
This is the restricted Boltzmann machine (RBM) model RBMn,m, also called the
product of mixtures of products model. Up to scale, it consists of 2×· · ·×2 (n times)
tensors that are the Hadamard product of m tensors of non-negative rank at most
two,

p =

m∏
i=1

(ai⊗bi⊗· · ·⊗ci+di⊗ei⊗· · ·⊗fi), ai, bi, . . . , ci, di, ei, . . . , fi ∈ R2
≥0. (1)

Our main contribution is to find the set of distributions that these models can represent
for the first open case n = 3. We find the semi-algebraic subset of the simplex that the
models occupy. In doing so, we solve questions posed in [13].

The implicit description of a statistical model gives a membership test for distributions,
allows the computation of distances to the model (e.g., in terms of the Kullback-Leibler
divergence), and suggests model-specific algorithms for parameter estimation [19, 20]. In
the above definitions, we consider the polynomial parametrization of the models. They
are often defined as marginals of exponential families.† The two definitions are equiva-
lent up to closure, see for example [13, Proposition 2.3]. In contrast to the exponential
parametrization, we allow zeros in the decomposition, excluding the possibility that p is
identically zero.

†As marginals of exponential families, RBMs and mixtures of products are given by p(x) =
1

Z(W,b,c)

∑
y∈{0,1}m exp(y>Wx+c>y+b>x) and p(x) = 1

Z(W,b,c)

∑
y∈{ej : j=1,...,k} exp(y>Wx+c>y+b>x),

respectively, where x ∈ {0, 1}n and Z(W, b, c) is a normalization function.
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We note that Mn,1 is the independence model, described by the intersection of the
Segre variety Seg(P1 × · · · × P1) with the probability simplex ∆2n−1 of joint probability
distributions of n binary random variables. Also, by definition,Mn,2 = RBMn,1. In [2] the
description ofMn,2 is found. The authors describe the ‘formidable obstacles’ to extending
their results to hidden variables with more than two states.

Three binary variables take joint states in {0, 1}3. The 2× 2× 2 tensor (pijk)0≤i,j,k≤1
stores the probabilities of these elementary events. Such probability distributions lie in
the simplex ∆23−1 = ∆7. Strictly positive distributions lie on the interior of the simplex.
We obtain the following description of RBM3,2.

Theorem 1.1. The statistical model RBM3,2 is described on the interior of the simplex
∆7 by the union of six basic semi-algebraic sets. One is given by the two inequalities

{p000p011 ≥ p001p010, p100p111 ≥ p101p110}. (2)

The other five are obtained by permuting indices, and/or reversing the inequalities:

{p000p011 ≤ p001p010, p100p111 ≤ p101p110}
{p000p101 ≥ p001p100, p010p111 ≥ p011p110}
{p000p101 ≤ p001p100, p010p111 ≤ p011p110}
{p000p110 ≥ p100p010, p001p111 ≥ p101p011}
{p000p110 ≤ p100p010, p001p111 ≤ p101p011}.

These binomial inequalities correspond to determinants of slices of the tensor (pijk).
They record conditional correlations in the distribution.

We compare RBM3,2 to the mixture model M3,3 of non-negative rank at most three
tensors. Both models are over-parametrized in the seven-dimensional simplex ∆7, since
they have 11 parameters. In [13], it is shown that M3,3 does not fill the simplex. The
authors state ‘we believe thatM3,3 and RBM3,2 are very similar, if not equal.’ We resolve
this question as follows.

Theorem 1.2. We have the equality M3,3 = RBM3,2. Equality M3,3 = RBM3,2 holds on
the interior of the simplex.

2

3

2 2

2 2

2 22

Figure 1: A pictorial representation of Theorem 1.2. The label of a variable is the number of states it has; the
shaded nodes are hidden.

The notation RBM3,2 refers to the topological closure of RBM3,2. The mixture model
M3,3 and the RBM model RBM3,2 look quite different in their parametrization, but this
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result shows that they turn out to parametrize the same probability distributions (up
to closure). The parametrization of RBM3,2 in (1) does not describe a closed set on
the boundary of the simplex. We describe RBM3,2 on the boundary of the simplex in
Proposition 2.1. On the other hand, M3,3 is closed (see Proposition 2.3) and we have the
following corollary.

Corollary 1.3. The model M3,3 is described on ∆7 by the inequalities in Theorem 1.1.

Previous results showed thatM3,3 has relative volume at most 96.4%, and RBM3,2 has
relative volume at most 99.2% inside the simplex ∆7 [13]. Simulations using Theorem 1.1
and Corollary 1.3 estimate the true volume of both of these models to be 75.3%.

We use Theorem 1.1 to prove a conjecture from [13, Section 3.5.1]:

Corollary 1.4. No distribution in RBM3,2 has four modes.

For a discrete distribution, a mode is a state with larger probability than any of its
Hamming neighbour states. Corollary 1.4 is stated as a conjecture RBM3,2 ∩G3 = ∅
in [13], where G3 denotes distributions on {0, 1}3 with four modes (the maximum possible
number). Note that the modelsM3,4 and RBM3,3 fill the interior of the simplex ∆7 [12, 14].
Corollary 1.4 also follows from Theorem 1.2, since no p ∈ M3,3 has four modes [13,
Proposition 3.10].

The remainder of the paper is organized as follows. We derive the implicit description
of RBM3,2 in Section 2. We obtain the equality of RBM3,2 and M3,3 in Section 3. We
connect this description to triangulations of the three-cube in Section 4, where we also
prove Corollary 1.4. We describe the boundary of the model M = M3,3 = RBM3,2 in
Section 5, and we study the maximum likelihood problem for the model in Section 6.
We explain how to construct a three-dimensional visualization of the model in Section 7.
Finally, in Section 8 we study extensions to n binary random variables.

2. The semi-algebraic description of RBM3,2

We first recall the semi-algebraic description of the non-negative rank at most two
model M3,2 given in [2]. The model is described in ∆7 by the union of four basic semi-
algebraic sets. On the interior of the simplex, one of the sets is given by the inequalities

p000p011 ≥ p010p001, p000p101 ≥ p100p001, p000p110 ≥ p100p010,
p100p111 ≥ p110p101, p010p111 ≥ p110p011, p001p111 ≥ p101p011.

(3)

The other three sets are obtained by reversing the signs of the inequalities in two out of
the three columns of (3). For example:

p000p011 ≥ p010p001, p000p101 ≤ p100p001, p000p110 ≤ p100p010,
p100p111 ≥ p110p101, p010p111 ≤ p110p011, p001p111 ≤ p101p011.

(4)

One way to get a distribution in RBM3,2 is to take the Hadamard product of a dis-
tribution satisfying (3) with one satisfying (4). We find the semi-algebraic description for
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all distributions expressible as such a Hadamard product. It is defined by the polynomial
inequalities in (2). From this, swapping indices gives the full semi-algebraic description
of the restricted Boltzmann machine RBM3,2 on the interior of the simplex. Note that
the independence modelM3,1 is obtained on the interior of ∆7 by setting the inequalities
in (3) or (4) to equalities.

2.1. On the interior of the simplex

The binomial inequalities above translate to linear inequalities in the log-probabilities.
The inequalities are independent of scaling and we can work with unnormalized distri-
butions. For a strictly positive distribution p = (pijk), we take the log distribution
lijk = log(pijk). Taking the logarithm of the inequalities in (3) gives the polyhedron

X =


l000 + l011 − l001 − l010 ≥ 0, l100 + l111 − l101 − l110 ≥ 0
l000 + l101 − l001 − l100 ≥ 0, l010 + l111 − l011 − l110 ≥ 0
l000 + l110 − l010 − l100 ≥ 0, l001 + l111 − l011 − l101 ≥ 0

 .

Similarly, we define Y to be the log-probabilities satisfying the logarithms of (4),

Y =


l000 + l011 − l001 − l010 ≥ 0, l100 + l111 − l101 − l110 ≥ 0
l000 + l101 − l001 − l100 ≤ 0, l010 + l111 − l011 − l110 ≤ 0
l000 + l110 − l010 − l100 ≤ 0, l001 + l111 − l011 − l101 ≤ 0

 .

Taking the Hadamard product in probability space is the same as taking the sum in
log-probability space. Therefore, showing Theorem 1.1 is equivalent to proving that the
Minkowski sum X + Y = {x+ y : x ∈ X, y ∈ Y } is

W = {l000 + l011 − l001 − l010 ≥ 0, l100 + l111 − l101 − l110 ≥ 0}.

The two polyhedra X and Y are eight-dimensional in R8. The lineality spaces of a
polyhedron is the space obtained by setting all the inequalities in their descriptions to
equalities. For both X and Y , the lineality space is the set of tensors (lijk) for which the
tensor (exp(lijk)) is rank one. It is spanned by the rows of the matrix

l000 l100 l010 l001 l110 l101 l011 l111


1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

.

The polyhedron W is also eight-dimensional. It has a six-dimensional lineality space that
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is spanned degenerately by the rows of the matrix

l000 l100 l010 l001 l110 l101 l011 l111



1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0

. (5)

Using the software polymake [9], we can find a description for the quotient of X or Y by
its lineality space. They are both triangular bipyramids.

Proof of Theorem 1.1.
We aim to show that W = X + Y . We begin with the containment X + Y ⊆ W .

Summing the first equations in X and Y yields

x000 + y000 + x011 + y011 − x001 − y001 − x010 − y010 ≥ 0

while summing the second equations from X and Y gives

x100 + y100 + x111 + y111 − x101 − y101 − x110 − y110 ≥ 0.

Translating back to the l-coordinates, we get l000 + l011 − l001 − l010 ≥ 0 and l100 + l111 −
l101 − l110 ≥ 0. Hence X + Y ⊆W .

For the reverse containment W ⊆ X + Y we require a spanning set for W in which
every basis vector lies either in X or in Y . The first four rows of the lineality space of W
in (5) lie in X, while the last four rows lie in Y . Hence any non-negative combination of
the lineality space lies in W . To extend to negative linear combinations we multiply the
spanning set by −1. The first four rows of the negation of (5) lie in Y , and the last four
are in X.

It remains to find a basis for the two-dimensional polytope obtained by taking the
quotient of W by its lineality space. The quotient is spanned by non-negative combinations
of any two linearly independent vectors in W not in its lineality space. For example
l000 ∈ X and l100 ∈ Y . All non-negative combinations of these lie in X + Y . This
concludes the proof.

2.2. On the boundary of the simplex

Theorem 1.1 gives a semi-algebraic description for the restricted Boltzmann machine
RBM3,2 on the interior of the simplex ∆7. However, for p in the boundary of the simplex
∂∆7, the inequalities in Theorem 1.1 are not sufficient for membership in RBM3,2.
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Proposition 2.1. The intersection RBM3,2 ∩∂∆7 is given by distributions which satisfy

If the probability of a state vanishes, so does the
probability of one of its Hamming neighbour states.

(6)

Proof. First we show that p ∈ RBM3,2 ∩∂∆7 satisfies condition (6). Since p lies on the
boundary of ∆7, one of its entries vanishes. Assume without loss of generality p000 = 0.
Then condition (6) means that p100p010p001 = 0. Since p ∈ RBM3,2, it is the product of
two distributions in M3,2. That is,

pijk = (qijk + rijk)(sijk + tijk),

where q, r, s, t are rank one non-negative 2 × 2 × 2 tensors. Up to swapping factors the
(0, 0, 0) entry of the tensor q + r must vanish. Hence q000 = r000 = 0. Since q and r are
rank one, they must vanish on a slice. Both q and r vanish in at least one of the locations
(0, 0, 1), (0, 1, 0) and (1, 0, 0), hence so does p.

For the converse, we consider some p ∈ ∂∆7 satisfying (6) and we aim to show that
p ∈ RBM3,2. As before, we can assume p000 = 0. Condition (6) implies that one of
p001, p010, p100 must also vanish. We reorder indices such that p010 vanishes. The distri-
bution admits the Hadamard factorization

p =

[
0 0 p001 p011
p100 p110 p101 p111

]
=

[
0 0 p001 p011
p101 p111 p101 p111

]
∗
[

0 0 1 1
p100
p101

p110
p111

1 1

]
.

If p101, p111 6= 0, both factors are non-negative rank two and the distribution lies in RBM3,2.
If p101 = 0, then p111p100p001 = 0 and if p111 = 0 then p110p101p011 = 0. In both of these
cases the distribution consists of two pairs of non-zero adjacent entries, hence lies inM3,2,
which is a subset of RBM3,2. Hence in all cases the distribution lies in RBM3,2.

Condition (6) is stricter than the restriction of the inequalities in Theorem 1.1 to the
boundary of the simplex. The model RBM3,2 is a semi-algebraic subset of the simplex
that is not closed. We give an example of a distribution that lies in the closure of the
model, but not in the model.

Example 2.2. Consider the distribution

pijk =

{
1
3 , (i, j, k) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
0, otherwise.

Observe that p ∈ M3,3, since p = 1
3(e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0) has non-

negative rank three and entries summing to one. Since p does not satisfy the conditions
in Proposition 2.1, p /∈ RBM3,2. We give a sequence of distributions (pn) ⊂ RBM3,2, such
that pn → p. Consider

pn ∝
[
ε 1 1 ε
1 ε ε ε4

]
,
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where || divides the two slices of the tensor, and ε = 1
n . As n→∞, pn → p. The scaling

factor can be subsumed to either factor in the following decomposition.

pn ∝
[
ε 1 ε2 ε
1 ε ε ε2

]
∗
[

1 1 ε−2 1
1 1 1 ε2

]
=

([
ε
1

]
⊗
[
1
0

]
⊗
[
1
ε

]
+

[
1
ε

]
⊗
[
0
1

]
⊗
[
1
ε

])
∗
([

1
1

]
⊗
[
1
1

]
⊗
[
1
0

]
+

[
ε−1

ε

]
⊗
[
ε−1

ε

]
⊗
[
0
1

])

This decomposition shows that pn ∈ RBM3,2 for each n. Hence RBM3,2 is not closed.

In the example above, the entries of one of the tensors in the decomposition are un-
bounded as n → ∞. They are multiplied by very small entries in the other term so
that the limiting tensor p is bounded. Such situations can be avoided on the interior of
the simplex, where the model RBM3,2 is closed, and can also be avoided for the mixture
model M3,3.

Proposition 2.3. The model Mn,k is closed for all n and k.

Proof. Consider a convergent sequence of tensors pn → p, where each pn ∈ Mn,k. We
show that the limiting tensor p also lies inMn,k. By definition, each pn can be written as
the sum of k non-negative rank one tensors pn = an + bn + · · · + cn. Since the entries of
pn are bounded above by 1, and the entries of an, bn, . . . , cn are non-negative, the entries
of an, bn, . . . , cn are also bounded above by 1. By the Bolzano Weierstrass Theorem,
there exists a subsequence of the an, call it anj , that converges. Its limit, a, is a non-
negative rank one tensor. Taking pnj → p as our new convergent sequence, we repeat the
argument to find a convergent subsequence of the bnj which converges to a non-negative
rank one tensor b. Repeating k times we obtain a subsequence of the pn whose limit is
a + b + · · · + c. Hence p = a + b + · · · + c ∈ Mn,k. The result also follows directly from
topological considerations, sinceMn,k is the image of the closed set (∆1)

nk ×∆k−1 under
a polynomial map.

3. Equality of RBM3,2 and M3,3

We prove Theorem 1.2 by proving the two directions of the containment in two lemmas.
The second sentence of the theorem (equality on the interior of the simplex) follows from
the first (equality of the model closures) by the fact that RBM3,2 is closed on the interior
of the simplex.

Lemma 3.1. We have the containment of statistical models RBM3,2 ⊆M3,3.

Proof. Consider a distribution p ∈ RBM3,2. If p ∈ ∂∆7 then it satisfies (6) and we can
assume without loss of generality p000 = p001 = 0. Then

p =

[
0 0 0 0
p100 0 p101 0

]
+

[
0 p010 0 p011
0 0 0 0

]
+

[
0 0 0 0
0 p110 0 p111

]
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is an expression for p as the sum of three non-negative rank one terms, hence p ∈M3,3.
It remains to consider distributions p with no entries vanishing. We name the six

determinants by di,j where i ∈ {1, 2, 3} denotes which index is fixed in the determinant,
and j ∈ {0, 1} gives the value of the fixed index:

d1,0 = p000p011 − p001p010, d1,1 = p100p111 − p101p110,
d2,0 = p000p101 − p001p100, d2,1 = p010p111 − p011p110,
d3,0 = p000p110 − p010p100, d3,1 = p001p111 − p011p101.

(7)

As we will see in Section 4 and Figure 3b, we can relabel indices such that determinants
d2,1 and d1,1 have opposite signs. We can write p as

p =

[
p000 0 p001 0

0 0 0 0

]
+

[
0 0 0 0
p100 x p101

p101
p100

x

]
+

[
0 p010 0 p011
0 y 0 p011

p010
y

]
,

where x =
p100p111·d2,1

p101d2,1−p011d1,1 and y =
p010p111·d1,1

p011d1,1−p101d2,1 . Since the signs of d2,1 and d1,1 are

different this expression for p is non-negative rank three, hence p ∈M3,3. The denominator
of x and y is non-zero, provided that d2,1 or d1,1 is non-zero. If some determinant vanishes,
a non-negative rank three decomposition is obtained from the rank one tensor of that face
plus the non-negative rank two representation of the opposite face.

Note that x and y are not both non-negative for p /∈ RBM3,2 by Figure 4: there is
no way to rotate or reflect the cube such that determinants d2,1 and d2,2 have opposite
sign.

Lemma 3.2. We have the containment of statistical models M3,3 ⊆ RBM3,2.

Proof. Consider a distribution p + q ∈ M3,3 where p is non-negative rank two, q is
non-negative rank one, and no entries of p or q vanish. Up to swapping values 0 and 1 in
one index, p being non-negative rank two means it satisfies the six binomial inequalities
in (3). Equivalently, its determinants di,j from (7) have sign pattern (+,+,+,+,+,+),
meaning that di,j ≥ 0 for all i, j. We assume for contradiction that p+ q /∈ RBM3,2. This
means p + q has three “−” in its sign pattern, di,j < 0 for these pairs i, j. After adding
tensor q, three determinants have swapped sign: d1,h, d2,h, d3,h for h = 0 or 1.

Take non-negative vectors a, b, c ∈ R2
≥0 such that qijk = aibjck. Assume determinant

d3,h of p+q is negative: (p00h +a0b0ch)(p11h +a1b1ch)− (p01h +a0b1ch)(p10h +a1b0ch) < 0.
Multiplying this expression out, and using p00hp11h ≥ p01hp10h, gives

p00ha1b1 + p11ha0b0 < p10ha0b1 + p01ha1b0. (8)

Hence either p00hb1 < p01hb0 or p11hb0 < p10hb1 must hold, and likewise either p00ha1 <
p10ha0 or p11ha0 < p01ha1 must hold. Furthermore, rearranging (8) yields

1

p00h
(p00ha1 − p10ha0)(p00hb1 − p01hb0) +

(
p11h −

p10hp01h
p00h

)
a0b0 < 0.
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Since the last term is non-negative, this implies that 1
p00h

(p00ha1−p10ha0)(p00hb1−p01hb0) <
0, hence exactly one of p00ha1 < p10ha0 and p00hb1 < p01hb0 holds. Similarly, (8) yields

1

p11h
(p11ha0 − p01ha1)(p11hb0 − p10hb1) +

(
p00h −

p01hp10h
p11h

)
a1b1 < 0,

implying exactly one of p11ha0 < p01ha1 and p11hb0 < p10hb1 holds. Repeating the above
for determinants d2,h and d1,h gives the following 23 = 8 options:

I
(1)
ab = {p00hb1 < p01hb0, p11ha0 < p01ha1}, I

(2)
ab = {p11hb0 < p10hb1, p00ha1 < p10ha0},

I
(1)
ac = {p0h0a1 < p1h0a0, p1h1c0 < p1h0c1}, I

(2)
ac = {p1h1a0 < p0h1a1, p0h0c1 < p0h1c0},

I
(1)
bc = {ph00c1 < ph01c0, ph11b0 < ph01b1}, I

(2)
bc = {ph11c0 < ph10c1, ph00b1 < ph10b0}.

If either inequality from I
(1)
ab is satisfied, the inequalities of I

(2)
ab cannot be satisfied, and

likewise for Iac and Ibc. To conclude the proof, we derive a contradiction from these
options.

Let h = 0. Assume the inequalities in I
(1)
ab hold. Then one of the inequalities from

I
(2)
bc is satisfied, hence I

(1)
bc cannot hold. If I

(1)
ac also holds, combining p110a0 < p010a1 from

I
(1)
ab with p000a1 < p100a0 from I

(1)
ac gives p110p000 < p010p100, contradicting the hypothesis

that p satisfies the inequalities in (3). If I
(2)
ac holds, combining inequalities involving c

gives p000p011 < p001p010, also a contradiction. Likewise, if I
(2)
ab holds then I

(1)
ac must hold.

If I
(1)
bc also holds, combining the inequalities involving c implies p101p000 < p100p001, a

contradiction. If I
(2)
bc holds, combining inequalities involving b gives p110p000 < p100p010,

also a contradiction. The case h = 1 follows by analogous reasoning.
This shows that an open dense subset of M3,3 is contained in RBM3,2. It remains to

consider when p or q has some vanishing entry. Such cases are in the closure of the above,
hence they lie in the closure of RBM3,2.

Proof of Theorem 1.2. Lemma 3.1, and the closedness of the model M3,3, imply
the inclusion of closures RBM3,2 ⊆ M3,3. Combining with the inclusion in Lemma 3.2
givesM3,3 ⊆ RBM3,2 ⊆M3,3, hence the two models are equal up to closure. Theorem 1.1
implies that RBM3,2 is closed on the interior of the simplex, hence we haveM3,3 = RBM3,2

on the interior of the simplex.

4. Connection to triangulations of the three-cube

LetM be the statistical modelM3,3 = RBM3,2. We characterizeM on the interior of
∆7 in terms of triangulations. This allows us to prove Corollary 1.4. We describe below
how to triangulate the three-cube using a positive distribution p ∈ ∆7. Membership inM
is determined by how this triangulation restricts to the faces of the cube.

Consider a generic, strictly positive distribution p ∈ ∆7. Its tensor of log-probabilities
(lijk) = log(pijk) induces a triangulation of the three-cube. For two observed variables,
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Figure 2: Distributions in
M3,2 give (rotations of)
this triangulation.

a
Figure 3: Two characterizations of the trian-
gulations from M (up to rotation). Empty
faces can be triangulated in either direction.

b

Figure 4: Distributions not
inM give this triangulation
(up to rotation).

the set-up is shown in [4, Figure 1]. In three dimensions, we do the higher-dimensional
analogue: we assign the height lijk to each vertex (i, j, k) ∈ {0, 1}3 of the three-cube. Then
we take the upper part of the convex hull of the points (i, j, k, lijk) in four-dimensional
space, which we refer to as the upper hull, and project it back to the three-dimensional
cube. The facets in the upper hull project to tetrahedra that triangulate the cube. Figures
2, 3, and 4 illustrate different types of triangulations of the cube by showing how the
triangulations restrict to the faces of the cube. Rotating or reflecting the cubes is allowed
within each type; this corresponds to relabeling indices of the distributions. The empty
faces in Figure 3 can be triangulated in either of the two possible directions, subject to
the condition that the triangulation of the faces is a restriction of a triangulation of the
whole cube. Some of the 26 possible triangulations of the six faces do not come from a
triangulation of the whole cube.

The triangulation of a face of the cube is an equivalent description of the sign of one
of the determinants in (7). Hence, we can use the triangulation types to capture the
inequalities that describe the model M.

Proposition 4.1. The model M contains distributions with triangulations of the form
shown in Figure 3. Distributions with triangulations of the form shown in Figure 4 lie
outside of M. Triangulations in Figure 2 are special cases of those in Figure 3 and come
from distributions in M3,2.

Proof. There are 20 linear expressions in the coordinates lijk whose signs determine the
triangulation, see [4, page 1325]. Six of these equations determine how the triangulation
restricts to the faces of the cube. These are the logarithms of the binomial equations
that define M. Hence we can see whether exp(lijk) lies in M by looking at how the
triangulation induced by (lijk) restricts to the faces of the cube. The equations that define
M3,2 and M3,1 are also of this form.

In the language of triangulations, being inM means we triangulate at least one pair of
opposite faces in the same direction, as in Figure 3a. The condition for being inM3,2 is that
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every pair of opposite faces is triangulated in the same direction, with sign compatibility
as in Figure 2. Triangulations of distributions not in RBM3,2 triangulate every pair of
opposite faces in opposing directions, as in Figure 4. An alternate characterization of such
triangulations is that every pair of adjacent faces is triangulated in a continuous way. If,
conversely, a pair of adjacent faces is triangulated in a discontinuous way, as in Figure 3b,
the distribution lies in M.

The three-cube has 74 possible triangulations which fall into six triangulation types,
see [10, Figure 1]. In [4] the authors study these triangulations in the context of epistasis
in evolutionary biology. We can re-phrase Proposition 4.1 in terms of the numbering of
the triangulation types from [10, Page 1657]. The model RBM3,2 only contains distri-
butions with triangulation types 3, 4, 5 and 6. Triangulation types 1 and 2 come from
distributions that lie outside of the model. Triangulation type 6 is from distributions in
M3,2. Triangulation type 4 can be distinguished from 3 and 5 using the empty faces of
the cube in Figure 3a. The empty faces can be triangulated in either direction. If a pair
of opposite empty faces are triangulated in different directions from one another we have
type 3 or 5. Type 4 occurs if both empty pairs of opposite faces are triangulated in the
same direction, but not with the right sign-compatibility for M3,2 membership.

Proof of Corollary 1.4. The idea of the proof is to show that distributions with four
modes restrict to the faces of the cube as shown in Figure 4. Assume we have a distribution
with four modes. Without loss of generality, the four numbers l000, l011, l101, and l110
exceed the values of their neighbours. Consider a face of the cube, for example the face
〈l000, l001, l010, l011〉. Since l000 ≥ l001 and l011 ≥ l010, we have

l000 + l011 − l010 − l001 ≥ 0,

which determines how the triangulation of (lijk) restricts to the face. Repeating for the
other faces gives the triangulation of the faces shown in Figure 4.

Distributions on ∂∆7 ∩ RBM3,2 have at least two adjacent entries vanishing, by (6).
This excludes the possibility of having four modes.

5. The boundary of the model

We saw that the statistical model M = M3,3 = RBM3,2 is defined by the binomial
inequalities in Theorem 1.1. Setting the inequalities in Theorem 1.1 to equalities gives the
Zariski closure of the boundary of the model.

Proposition 5.1. Distributions on the boundary of M are given by 2×2×2 tensors with
a 2× 2 slice of rank ≤ 1.

That is, the Zariski closure of the boundary of the model is a union of hypersurfaces
{di,j = 0}, for 1 ≤ i ≤ 3, 0 ≤ j ≤ 1. This is also the Zariski closure of the boundary of
the modelM3,2 from [2]. Proposition 5.1 says the boundary ofM consists of mixtures of
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three product distributions with disjoint supports in {0, 1}3. Mixtures of products with
disjoint supports were used in [15] to study the representational power of RBMs.

The following is a converse result. It implies that RBM3,2 is closed on the interior
of the simplex. Furthermore, within the simplex of probability distributions, the Zariski
closure of the boundary is contained in the closure of the model. This result (which fails
for M3,2) is useful in Section 6 when we study maximum likelihood estimation.

Lemma 5.2. Every distribution of three binary random variables with a rank one 2 × 2
slice, and strictly positive entries, lies in the models RBM3,2 and M3,3.

Proof. As in the proof of Lemma 3.1, if the determinant of a distribution p vanishes, a
non-negative rank three decomposition is obtained from the rank one tensor of that slice
plus the non-negative rank two representation of the opposite slice. This proves the result
for M3,3.

It remains to build a decomposition of p as (q + r)(s + t) where q, r, s, t are rank one
non-negative 2×2×2 tensors, and multiplication is entry-wise, as in (1). Assume without
loss of generality that d3,1 = 0. Let q be the rank one tensor with slices q∗∗1 and p∗∗1
equal, where q∗∗0 is set to be the smallest scalar multiple of p∗∗1 that zeros out an entry
of p∗∗0. The notation p∗∗0 refers to the slice pij0 for i, j ∈ {0, 1}. Then p − q consists
of at most three non-zero entries. Let r be the tensor which satisfies rijk = pijk − qijk
for two of the three entries at which p 6= q. Since these two entries can be chosen to be
Hamming neighbours, r is rank one. And since p − q is non-negative, r is non-negative.
There remains at most one entry where equality p = q + r does not hold: let i, j, k be
such that pijk > qijk + rijk. Let s be the all ones tensor, and let t be the tensor with just
one non-zero entry, tijk =

pijk
qijk+rijk

− 1. Then t is also non-negative and rank one, and

p = (q + r)(s+ t) as required.

In the log-probability coordinates, the boundary of M is the union of hyperplanes:

L1,0 = {l000 + l011 − l001 − l010 = 0}, L1,1 = {l100 + l111 − l101 − l110 = 0},
L2,0 = {l000 + l101 − l001 − l100 = 0}, L2,1 = {l010 + l111 − l011 − l110 = 0},
L3,0 = {l000 + l110 − l010 − l100 = 0}, L3,1 = {l001 + l111 − l011 − l101 = 0}.

(9)

The intersection poset of a hyperplane arrangement is the set of all intersections of
hyperplanes, ordered by reverse inclusion [18]. In Figure 5 we give the intersection poset of
the pieces of the boundary of M. As an example of its non-generic structure, in Figure 5
we highlight three codimension three flats that are intersections of four hyperplanes.

We can study the combinatorics of the arrangement using its characteristic polynomial
χ(t) =

∑
f µ(f)tdim(f). The summation is taken over all flats in the arrangement, and

µ is the Möbius function (indicated in Figure 5 next to each node). Evaluating the
characteristic polynomial at t = −1 gives the number of full dimensional regions of the
ambient space defined by the arrangement (see [18])

|χ(−1)| = 46.
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Figure 5: Intersection poset of the boundary pieces of M. The lowest node is the ambient space R8. At the
first level are the six boundary pieces. At the second level are the 15 pairwise intersections. The enlarged nodes
are Li,0 ∩ Li,1. The third level contains the 11 distinct codimension three intersections. The top intersection
corresponds to the independence model. The nodes are labeled with their Möbius function value.

For comparison, a generic four dimensional central arrangement of six hyperplanes defines
52 regions. Ours is a central arrangement (the origin is in all hyperplanes) hence all 46
regions are unbounded cones. Of the 46 regions the model M occupies 44. The model
M3,2 occupies four of the regions.

Since the six boundary pieces (9) are linear equations in log probability space, they de-
fine exponential families. For instance, the exponential family L1,0 consists of all distribu-
tions whose log-probabilities have a vanishing inner product with [1,−1,−1, 1, 0, 0, 0, 0]>.
A sufficient statistic is any set of vectors spanning the kernel of this vector. Since inter-
sections of exponential families are exponential families, each element in the intersection
poset in Figure 5 is also an exponential family.

6. Maximum likelihood

In this section we give a closed-form formula for maximum likelihood estimation to the
model M. We also find the distributions whose divergence to the model is greatest.

Consider an empirical probability distribution coming from some data. The maximum
likelihood estimation problem asks for the distribution in a statistical model with smallest
Kullback-Leibler (KL) divergence to the data distribution. The KL divergence from p
to q is defined as D(p‖q) :=

∑
x px log px

qx
, where x ranges over the possible states of p

and q. This is zero if and only if p = q and it is set to +∞ when supp(p) 6⊆ supp(q).
The distributions in the closure of a model that minimize the KL divergence are called
reverse information projections (rI-projections) [7]. In general they are not unique, but
for exponential families they are.
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6.1. Reversed information projections

To study the maximum likelihood estimation problem for the model M, we first find
the rI-projections to each boundary piece of the model. We use the description of the
boundary pieces as exponential families from Section 5. Proposition 5.1 means we only
need to consider projections onto the six boundary pieces, not onto the entire intersection
poset (as we would have to for M3,2, see [1]). For a distribution p ∈ ∆7\M, each rI-
projection will lie on one of the boundary pieces, and there is at most one projection point
in each boundary piece. Taking the projection that minimizes divergence, over the six
boundary pieces, gives the rI-projection to the whole model.

Let Pi,j be the toric hypersurface in the simplex obtained by exponentiating the hy-
perplane Li,j in log-probability space and normalizing. The following proposition concerns
maximum likelihood estimation for that toric model.

Proposition 6.1. The unique rI-projection of p ∈ ∆7 onto P1,0, denoted pP1,0, is found
by taking the best rank one approximation in the slice p0jk, j, k ∈ {0, 1}, and leaving the
other slice unchanged. In symbols,

pP1,0(X) =

{
p(X2|X1)p(X3|X1)p(X1), X1 = 0

p(X), X1 = 1
,

where X is the random variable on state space {0, 1}3 and Xi is its ith coordinate. The
divergence from p to P1,0 is

D(p‖P1,0) = p(X1 = 0) · Ip(X2;X3|X1 = 0),

where Ip(X2;X3|X1 = 0) = D(p(X2X3|X1 = 0)‖p(X2|X1 = 0)p(X3|X1 = 0)) is the
conditional mutual information of the two variables X2 and X3, given X1 = 0. The
rI-projections to the five other pieces follow analogously.

Proof. This follows applying [15, Lemma 3.2] to the exponential family described in
Proposition 5.1 and using the fact that the rI-projection of a distribution to an indepen-
dence model is given by the product of its marginals.

The distributions whose rI-projections to P1,0 coincide are those with the same values
p1jk, j, k ∈ {0, 1} and fixed marginals on p0jk, j, k ∈ {0, 1}. The rI-projection to the
entire model is the boundary projection with smallest divergence value. It has divergence

D(p‖M) = min
i=1,2,3, j=0,1

D(p‖Pi,j).

The rI-projection of any p to an exponential family is unique, so there are at most six
rI-projections to M.

Remark 6.2. For the M3,3 and RBM3,2 parametrizations of M, each rI-projection may
be realized by several distinct choices of the parameters. This implies that there are several
choices of parameters associated with each local maximizer of the likelihood function.
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6.2. Divergence maximizers

The maximum divergence to a statistical model is a measure of the representational
power of that model. The uniform distribution on the sets of vectors with even or odd
parity need the maximum number of components to be arbitrarily well approximated by a
mixture of products distribution (see [12]). Here, we show that these parity distributions
have the largest divergence to the model M.

Proposition 6.3. The maximum divergence to M is 1
2 log 2. The maximizers are u+ :=

1
4(δ000+δ011+δ101+δ110) and u− := 1

4(δ001+δ010+δ100+δ111). There are six rI-projections
of u+, one in each boundary piece:

u+P1,0
=

1

8
(δ000 + δ001 + δ010 + δ011) +

1

4
(δ101 + δ110)

u+P1,1
=

1

8
(δ100 + δ101 + δ110 + δ111) +

1

4
(δ011 + δ000)

u+P2,0
=

1

8
(δ000 + δ001 + δ100 + δ101) +

1

4
(δ011 + δ110)

u+P2,1
=

1

8
(δ010 + δ011 + δ110 + δ111) +

1

4
(δ000 + δ101)

u+P3,0
=

1

8
(δ000 + δ010 + δ100 + δ110) +

1

4
(δ011 + δ101)

u+P3,1
=

1

8
(δ001 + δ011 + δ101 + δ111) +

1

4
(δ000 + δ110).

The projection points of u− are given in a similar way.

Proof. Proposition 6.1 shows that the indicated distributions are the rI-projections of
u+ onto the individual boundary pieces of M. There can be no more than six projection
points and hence we have a complete list. The fact that 1

2 log 2 is the maximum possible
divergence to M follows from upper bounds for mixtures of products and RBMs given
in [16]. Both u+ and u− attain this upper bound.

Now we show that u+ and u− are the only divergence maximizers. Assume without
loss of generality that some maximizer p has an rI-projection onto M in P1,0. Then
D(p‖P1,0) = p(X1 = 0)Ip(X2;X3|X1 = 0) ≤ D(p‖P1,1) = p(X1 = 1)Ip(X2;X3|X1 =
1) ≤ (1− p(X1 = 0)) log 2. The last inequality follows since, for two binary variables, the
mutual information is maximized by a uniform distribution on strings of Hamming distance
2 (see [3]). The maximum value 1

2 log 2 is attained only if p(X1 = 0) = p(X1 = 1) = 1
2 and

both p(X2X3|X1 = 0) and p(X2X3|X1 = 1) are uniform on pairs of Hamming distance 2.
If these two conditional distributions were equal, then p ∈ M, and p is not a divergence
maximizer. Hence the pairs are different. This shows that p is a uniform distribution on
4 strings of equal parity.

Remark 6.4. Proposition 6.3 shows that the upper bound on the maximum divergence
to mixtures of products and RBMs from [16, Theorems 1 and 2] is tight in the case of
M3,3 and RBM3,2. Moreover it shows that for a given data point, RBM3,2 can have up
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to 6 global maximizers of the likelihood, and that generically this will be the number of
local maximizers.

An interesting question is whether we can characterize the points in the probability
simplex that project to the different boundary pieces of the model. That is, to provide
a decision boundary separating the regions of the simplex that are closer to each part of
the model, with respect to the KL divergence. In our case, these decision boundaries are
neither linear families nor exponential families.

7. Visualization in three dimensions

In [17, Figure 3], a first attempt was made to visualize the model M. In this section,
we explain how to draw the seven-dimensional modelM using a three dimensional figure.
We make use of the following change of basis (corresponding to the basis of characters) in
the log-probability coordinates:

m∅
m{3}
m{2}
m{2,3}
m{1}
m{1,3}
m{1,2}
m{1,2,3}


=



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





l000
l001
l010
l011
l100
l101
l110
l111


.

The boundary pieces of the model can be written in terms of just four of these coordinates:

L1,0 = {m{2,3} +m{1,2,3} = 0}, L1,1 = {m{2,3} −m{1,2,3} = 0},
L2,0 = {m{1,3} +m{1,2,3} = 0}, L2,1 = {m{1,3} −m{1,2,3} = 0},
L3,0 = {m{1,2} +m{1,2,3} = 0}, L3,1 = {m{1,2} −m{1,2,3} = 0}.

Hence it suffices to visualize the combinations of coordinates (m{1,2},m{1,3},m{2,3},m{1,2,3})
that lie in the model. Furthermore, if a vector satisfies the inequalities above, then so does
any scalar multiple of it. This means we need consider only those (m{1,2},m{1,3},m{2,3},m{1,2,3})
lying on the three-dimensional sphere. The value of m{1,2,3} can be found up to sign from
the other three coordinates. We draw the model in coordinates

(m{1,2},m{1,3},m{2,3}) =
(m{1,2},m{1,3},m{2,3})

‖(m{1,2},m{1,3},m{2,3},m{1,2,3})‖2
, (10)

with separate panels for the different signs of m{1,2,3}. Figure 6 shows pieces L1,0 and
L1,1. The whole model is shown in Figure 7.
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Figure 6: Illustration of two boundary pieces of the model M. The set L1,0 is in dark blue, and L1,1 is in
light blue. The points enclosed by the surface correspond to distributions in the complement of the two basic
semi-algebraic sets of RBM3,2 enclosed by L1,0 and L1,1. The black line is {m{2,3} = m{1,2,3} = 0}, along
which L1,0 and L1,1 meet. The non-linearity of the surfaces is due to normalizing with respect to the ‖ · ‖2
norm.

8. Outlook

We proved the rather surprising fact that a mixture of products and a product of
mixtures represent the same set of probability distributions. Although for larger models
this is known not to be true in general [13], it points at a close similarity of both models.

In most previous work on the representational power of RBMs, membership in the
model is determined by constructing parameters that realize certain probability distribu-
tions. In contrast, the implicit descriptions discussed here fully characterize distributions
that are in the model. As we have shown, the semi-algebraic description also allows the
computation of maximum likelihood estimates and divergence maximizers, both of which
appear quite difficult to obtain via other methods.

The natural next step is to extend the analysis to larger models. However, the de-
scription for larger models involves complicated equality constraints. For example, in [8]
the Zariski closure of the model RBM4,2 is found. It is the zero set of a single degree 110
polynomial with at least 17,214,912 terms. The binomial inequalities we obtain here are
more tractable.

In light of this, it appears natural to consider approximate descriptions of larger RBM
models in terms of inequality constraints only. A relaxation of larger statistical models,
given in terms of inequalities only, would provide lower bounds on the maximal divergence
and the minimal size of universal approximators.

In [2] the authors show that the model Mn,2 consists of supermodular distributions
with flattening rank at most two. Distributions in larger RBM models are Hadamard
products of non-negative tensors of rank at most two (products of tensors proportional to
distributions in Mn,2). Ignoring the equations, we have the set of supermodular tensors,
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Figure 7: Illustration of M in the (10) coordinates. The model occupies the space inside the three-sphere that
is outside any of the blue, green, or yellow surfaces. The colours correspond to the six boundary pieces of the
model. Within each orthant, the part of the sphere outside all three surfaces is a triangular bipyramid. Four
bipyramids make up the model M3,2.

which consists of basic semi-algebraic sets satisfying binomial quadratic inequalities as
in (3). Hence the algebraic boundary of Hadamard products of supermodular tensors is
again a union of exponential families, for which we may hope to obtain maximum likelihood
estimates in closed form.
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