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Preface

“Äußerten wir oben, daß die Geschichte des Menschen den Menschen
darstelle, so läßt sich hier auch wohl behaupten, daß die Geschichte
der Wissenschaft die Wissenschaft selbst sei.”

Goethe, Zur Farbenlehre: Vorwort (1808)

It is widely asserted that the great physicists who grasped the full unity of
physics are all dead, having been replaced in this age of specialization by sci-
entists who have a deep understanding only for issues of rather limited scope.
Indeed, it is difficult to refute such a viewpoint today, at the end of the first
decade of the twenty-first century. The unifying principles of the quantum the-
ory and relativity are part of the ethos of physics, but fragmented development
in various disjointed areas has characterized the past several decades of progress.

Therefore, it has been a refreshing experience to interact with Tom Erber,
who has sought to find unity by working in many areas — basic and applied,
experimental and theoretical, practical and fanciful. Tom has published about
one hundred articles in refereed journals over a period of about five decades.
While that number is respectable but not extraordinary, the diversity of arenas
in which he has made important contributions is quite striking. Here is a litany
of fields that have been significantly influenced by his work:

• classical electrodynamics (radiation reaction, Cerenkov radiation)

• quantum electrodynamics (photoelectric effect, Compton scattering syn-
chrotron radiation, vacuum polarization)

• random processes (randomness in quantum mechanics)

• cooperative systems (hysteresis)

v



vi

• structural stability (fatigue)

• magnetism (flux compression, micromagnetics, piezomagnetism)

Thomas Erber has been my colleague at Illinois Institute of Technology for
more than four decades. I have enjoyed his enthusiasm, his fresh and original ap-
proach to substantive issues, and his frequently heretical but always thoughtful
assessments of current trends in physics. In addition, he has been a “cheer-
leader” to me and to quite a few other colleagues in offering timely advice,
suggesting new approaches, and proposing extensions of published work.

He gave me one particularly cogent piece of advice, to avoid what he called
“elsewhere physics” in written and oral presentations. Namely, be sure to ex-
plain ideas, principles, conclusions, and speculations as clearly as possible, and
never, never, never to state outright or imply indirectly that a particular result
has been explained “elsewhere”. Instead, the avid listener or reader deserves
to hear the “big picture”, as well as the “detailed conclusions” in any scientific
presentations.

Students fondly remember Tom Erber’s lectures as being lucid, coherent,
and elegant. He spoke clearly, and he almost never used written notes for
reference. He took particular delight in pronouncing the names of physicists
properly in the native language, and encouraging students to do the same. His
faculty colleagues have long admired the chalkboards that he left behind after
these lectures — with very clear writing, and almost “camera ready” copy on the
boards. In fact, his lectures were almost theatrical performances, and surely this
is a reflection of Tom’s and his wife Audrey’s lifelong involvement in amateur
theater.

In advanced courses in mechanics, electrodynamics, and statistical mechan-
ics, Tom frequently introduced modern topics in which he had been doing re-
search. He often got students involved in these projects, providing them with
their first introduction to the excitement of being engaged in basic research.

As a reflection of the breadth of Tom’s interests in physics, this Festschrift in
his honor contains articles by former students, colleagues at IIT, collaborators,
and friends, which deal with a disparate variety of topics. These contributions
are separated into categories, as follows:
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Category I: Physics Students of Tom Erber at IIT

Bryan Field Quantum Cryptography
Dave Gavelek Well Now Professor Erber
Bruce Harmon Magnetism Erber Alles
Chris Merrill A few memories of Prof Erber
Richard Olenick Two and Three-Dimensional Hysteresis

in a Simple Magnetic Cooperative System5mm

Category II: Current IIT Colleagues

Liam Coffey The Surface Coulomb Problem: Energy Minima
and Hausdorff Metrics

Sid Guralnick et al., A Mechanical Model for Simulating
Fatigue Failure in Metals

Porter Johnson et al. Energy Conservation: Science or Ideology?
Sud Nair The Tao Solution for the Stefan Problem
Harold Spector A Brief History of IIT Physics

Category III: Former IIT Colleagues

Robert Warnock Electromagnetic Whispering Gallery Modes
Harold Weinstock Hysteresis in Iron, Nickel and STMs
Dave White GEM and the K∗(892)

Category IV: Other Collaborators and Friends

Walter Dittrich The Heisenberg-Euler Lagrangian as an
Example of an Effective Field Theory

Michael E. Fisher For Professor Thomas Erber in
Recognition of his 80TH Birthday

Tony Leggett Majorana Fermions in Fermi Superfluids:
A Pedagogical Note

Adrian Melissinos “Running” Gravitational Constant?
Peter Milonni Quantum Fields in a Dielectric: Langevin and

Exact Diagonalization Approaches
Kim Milton et al. Exact Casimir Energies at Nonzero Temperature
Randall Peters A Contribution to the Tom Erber Festschrift
Seth Putterman Are the Navier Stokes Equations of Hydrodynamics

an example of a Gödel Theorem in Physics?
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Fritz Rohrlich The Completion of the Classical Dynamics of Charges
Jon Rosner The Mystery of Parity

The final article, by Tom Erber himself, is entitled “Eigenschrift: The End of the
Classical Theories of Radiation Reaction”. This article represents a survey of
work done on this topic over his career, as well as prospects for future research.
Tom definitely sees the big picture in science, and many who have known him
or have worked with him have been infused with his zest for exploration. It has
been an honor and a privilege to have initiated this project and even to have
carried through the laborious technical details that have inevitably been involved
in its creation. I have learned more than I ever wanted to know about layout,
file conversion, and enforcing compability in the various versions of WordR and
LaTeXR that are extant in the world. Still, it is important to me as well as to
others to tell his story and to honor his career.

Good luck, Tom.

Porter Wear Johnson
Chicago Illinois USA

Email: Porter.Johnson@iit.edu
Website: http://mypages.iit.edu/~johnsonpo/
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Theorem in Physics? 225

22 Completion of Classical Dynamics
of Charges 231
22.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
22.2 Differential Equation of Motion . . . . . . . . . . . . . . . . . . . 233
22.3 Consequences for Classical Electrodynamics . . . . . . . . . . . . 235
22.4 The Relation to Quantum Electrodynamics . . . . . . . . . . . . 236

23 The Mystery of Parity:
In Honor of Tom Erber’s 80th birthday 239
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
23.2 Quark and Lepton Patterns . . . . . . . . . . . . . . . . . . . . . 240
23.3 Geometry of Grand Unified Groups . . . . . . . . . . . . . . . . . 242
23.4 Expanded Symmetries . . . . . . . . . . . . . . . . . . . . . . . . 245
23.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246



0

24 Eigenschrift: The End of the Classical
Theories of Radiation Reaction 251
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
24.2 Classical Electrodynamics and

Radiation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 255
24.3 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . 258
24.4 Aftermaths of SLAC . . . . . . . . . . . . . . . . . . . . . . . . . 264
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1

Quantum Cryptography

Bryan J. Field1

University of Durham2

Here are my recollections of meeting and working with Thomas Er-
ber, a friend and colleague. I describe how we came to study quan-
tum cryptography together in the spring of 1999 and what we dis-
covered.

1.1 Introduction

During my time at IIT, I never had the pleasure of taking a traditional class
with Tom Erber – but he had always impressed me as a man of great intellect
in my encounters with him in the hallway and after colloquia. In many ways he
represented to me an ideal physicist. He was well read, diverse in his research,
and was always interested in sharing what he knew or, failing that, tackling a
new subject together. We all try to live up to these standards and Tom made
it look easy when I was an undergraduate.

That is how we came to study Quantum Cryptography together. IIT had
begun the Interprofessional Projects (IPROs) a few semesters earlier and the
impetus was on students to propose projects to faculty members who might
be willing to sponsor a project. Although participating in an IPRO was not
required for my class to graduate, I found them irresistible. I had just finished
a project the previous semester with Dr. Harold Spector on the threat due to

1bryan.field@durham.ac.uk
2Institute for Particle Physics Phenomenology, Durham DH1 3LE, United Kingdom
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2 1. Quantum Cryptography

Earth crossing asteroids when my good friend and colleague, John Katsoudas,
suggested the idea of starting another project on cryptography. John and I had
long played with several novel ideas on how to encrypt data as a hobby which
gave us a good reason to study number theory which always had a kind of siren
call for us. This had even lead us to part time jobs in the field of computer
security and we often toyed with breaking conventional computer cyphers as a
game.

However, the idea of using something brilliant like quantum mechanics to
encrypt data was the brass ring. What we knew about conventional code break-
ing was very mathematical, which we liked, but it relied on knowing a great deal
of math that is not typically taught to physicists and we often felt like we were
at a disadvantage to someone with a broader mathematical background. We
proposed that quantum cryptography might even the playing field. At that
time, there was a great anticipation that quantum entanglement could be used
as a method of key distribution to guarantee secure communication. We asked
Dr. Spector who might help us with a project such as this and only one name
came to mind – Thomas Erber.

John and myself along with two other students approached Tom and he
thought it was a great project and he was eager to hear what we had to say. We
would come to meet with Dr. Erber on Fridays and spent the rest of the week
with the project consuming our lives. It was wonderful, thought provoking, a
great deal of hard work, and extremely rewarding – in short, it was everything
we came to expect of working with Dr. Erber.

1.2 Conventional Cryptography

Cryptography is the study of hiding information [1]. We should briefly note that
the terms encrypt and decrypt can be offensive terms in certain cultures where
they refer to burial rites. The proper terminology would then be encode (decode)
or encypher (decypher), but I shall continue to use the standard American
terms. To introduce some other terms, plaintext is encrypted into cyphertext and
decrypted back to plaintext though the application of a cypher – an algorithm
to obfuscate data.

The history of codes is a long and fascinating one, a wonderful history can be
found in Ref. [2]. For our purposes, we can divide conventional codes into two
categories – symmetric algorithms and public-key encryption. An important
subclass of symmetric algorithms is known as a one-time pad which we will
discuss shortly. Symmetric algorithms have been used in cryptography since
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the very beginning of covert communication. However, simple symmetric algo-
rithms are often labeled by the community as “security through obscurity” and
can virtually always be decrypted to plaintext given a large enough sample of
cyphertext, time, and computing power. This is because a symmetric algorithm
is merely a mathematical operation – it may be a complicated set of functions
that are history dependent (like the German Enigma cypher or the Japanese
cypher known as Purple) but they are still just functions. These algorithms then
have to be protected as perhaps even more valuable than any of the messages
they encode. The modern approach to this problem is to make the algorithm
public, but with an enormous key-space – more on this soon. To successfully
use a symmetric code to transmit information, both parties have to be in close
contact and agree on an algorithm or rely on a trusted messenger of some kind
to pass the key. The problem of key distribution remains an open problem for
symmetric algorithms and led to the development of public-key encryption.

However, one-time pads do not have these drawbacks. It can be said that
if a one-time pad system is used correctly, it ensures perfect security – that is,
no amount of mathematical ingenuity or computational strength can decrypt
a message encoded with a one-time pad [3]. The concept of a one-time pad is
simple, Alice and Bob want to communicate secretly and (for this simplified
example) they share a favorite book – let’s say a very specific book to ensure no
differences between printings will arise, we’ll use Hamlet for our example. When
Alice wants to send a message to Bob, she writes her message and then compares
the message letter by letter to the Hamlet text and performs an operation on
the two letters (on a computer this is usually an xor operation) and sends the
result to Bob. Bob uses his copy of Hamlet to decode the message and crosses
out all the used letters and sends his reply starting from where the message
ended. The message is protected because without knowing that Alice and Bob
are using Hamlet, the message cannot be decrypted or even attacked. Each
character is essentially encrypted independently from one another, an idea that
will come back later. It is easy to see how to make the practice stronger – use
random strings of letters instead of Hamlet, and it is easy to see it’s weaknesses
– if a message is lost in transmission, no more messages can be decrypted, i.e.
messages must be decrypted in the order they were written. Also, Alice and Bob
have to agree on what pad to use before they begin passing messages which could
be very cumbersome for long messages and random pads. In practice, one-time
pads have several serious drawbacks – they require perfectly random pads, the
pads must be at least as long as the message it is encoding, the method is only
as secure as its ability to exchange pads between the sender and the receiver,
and the pads must be kept a secret forever and never reused. For now, we will
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leave our discussion of one-time pads.
To end our discussion of symmetric algorithms, let us look at how symmetric

cyphers are compared. Cyphers are “rated” by the size of their key-space – the
number of distinct keys that are possible and are usually written in terms of
computer bits. The bits referred to here are the bits in the binary representation
of the encryption key, so an n-bit algorithm has 2n keys. It is easy to see that
a 256-bit key-space is 2128 times the size of a 128-bit key (about 3× 1038 times
bigger). Obviously, knowing the nature of the algorithm here is of little help
if one has to look through a key-space of this size to decrypt a message by
force. However, exhaustive searches are rarely the most efficient way to break a
code. In the community, a cryptographic “break” is anything faster than a brute
force search but requires knowing something of how a message was encrypted.
Without getting bogged down in specifics here, most symmetric cryptosystems
have known breaks that produces results faster than an exhaustive search, albeit,
typically only marginally so.

The near universal use of symmetric algorithms changed forever in the twen-
tieth century with the invention of public-key cryptography. Public-key cryp-
tosystems are based on the idea of a trapdoor function as a way of solving the
outstanding problem of key distribution. The strength of public-key cryptogra-
phy is that it does not require any initial exchange of information. Here one uses
two keys – one public and one private. Let’s say Alice wants to send a message
to Bob. Alice generates a pair of keys and makes the public-key available to Bob
(and anyone else for that matter) in a public channel. Bob uses the public-key
to encrypt a message and sends it to Alice who uses her private key to decrypt
the message. The two keys are related in a way that makes it unfeasible (even in
principle) to discover the private key from the public key. This is the so-called
trapdoor function.

A trapdoor function (first publicly disclosed in Ref. [4]) is a function that is
simple to calculate only in one direction, but its inverse is exceedingly difficult
without privileged information or “key”. An everyday example of a trapdoor
function is the difficulty involved in reassembling a bowl of guacamole back into
an avocado. Most modern implementations of this idea revolve around factoring
the product of two large prime numbers. We should make the distinction here
that even though symmetric algorithms have a key-space that can only be solved
by a brute force trial of the key-space, public-key systems also have a key-
space that can be attacked by brute force but the complexity of exhausting
the public-key key-space dwarfs the complexity of attacking the factorization
problem directly even when the known cryptographic breaks are taken into
account.
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When we say a pair of numbers, we mean that two large prime numbers
were picked at random (which is a process that takes time to ensure it is truly
random). Since the density of prime numbers to choose from is small compared
to the regular integers (which includes the prime numbers), the number of bits
used for public keys must be very large to match the key-space of symmetric
algorithms. For instance, a public-key of 1024-bits has the equivalent symmetric
key-space of 80-bits and is only recommended (by RSA Security) to keep data
secure until 2010. An asymmetric 2048-bit key should keep data safe until 2030.
NIST claims that a 15260-bit key is needed to match a symmetric 256-bit key.
Clearly, the advantage of public-key encryption is not that it is “stronger” than
a symmetric scheme (at least not with current trap door functions) but their
strength lies in the computationally secure nature of the key exchange for the
transmission of data.

1.2.1 Conventional Computing

When we started our IPRO on quantum cryptography, we spent a fair amount of
time learning conventional cryptography to see what the state of the art was at
the time and what improvements were possible in the immediate future. As we
have seen, a big part of that equation has to do with conventional computational
speed so perhaps a recap of the progress in computing power over the past decade
will not be out of order.

The state of the art computing in 1999 was not all that different from today.
Chips have smaller transistor structures and clock speeds are faster than ten
years ago. It was not hard to see even then that conventional computer chips
would hit a physical roadblock in how many transistors could be packed onto
a chip without having quantum tunneling effects make conventional electron
switching difficult if not impossible. The then state of the art Intel Pentium III
sported a transistor feature size of 250 nm and ran at 500 MHz. Now in 2009,
the Intel Core i7 has a feature size of 45 nm and runs at 3.5 GHz with 32 nm
structures expected early next year. Quantum tunneling will become destructive
when the barrier inside a transistor approaches 5 nm which is projected in 2018.
However, in the last ten years the computing paradigm has shifted away from
simply packing more transistors onto a single chip with the introduction of
multicore chips. It also appears that some complex computing power may be
shifted to Graphical Processing Units (GPUs) taking some of the pressure off of
CPUs. GPUs have specialized instruction sets which make them better at many
mathematical operations. In the end, it may turn out that the key constraint
to conventional computing speed will be the time for an electron to flip spins
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[5].
Encryption key sizes can always be kept a step ahead of rising computational

speed when it comes to brute force attacks. All algorithms can be attacked in
an intelligent way to avoid these worst case scenarios. However, looming on the
horizon, there is always the possibility that an advance in algorithms could kill
conventional cryptography as we know it. The time is ripe to ask ourselves if
we can do better by going down a new path.

1.3 Quantum Key Distribution

The limitations of conventional cryptography leads us to the idea, what if we
could combine the strength of symmetric encryption codes with a better form
of key distribution, a distribution system based on quantum mechanics that
would guarantee secure communication? The idea here is to set up a system
where if a third party wants to eavesdrop he is forced to measure a quantum
state which would introduce an anomaly in the system that could be detected
and the communication would be aborted. It should be said that in this simple
scenario, it is possible to prevent any coded communications via a denial of
service attack (by making all channels insecure) even without an intention of
intercepting an encryption key. The real advantage here is that this system does
not rely on a trapdoor function, but rather security is a physical property of
the communication. If one truly had a secure system of communication, most
of the conventional paradigms of cryptography would need to be reexamined.

Information can be encoded into a quantum state, or qubit. Since the current
communications network has a backbone of fiber optics, we will talk about
the exchange of photons prepared into quantum states. Generically speaking,
there are two main classes of quantum key distribution – prepare and measure
protocols and entanglement based protocols.

An example of the prepare and measure system is known at the BB84 pro-
tocol [6, 7]. Let us imagine Alice wants to send a message to Bob while Eve
tries to intercept the message. Alice begins with two strings of bits, a and b,
each n-bits long and constructs n qubits,

|ψ〉 =
n⊗

i=1

|ψaibi〉, (1.1)

where ai and bi are the ith bits of a and b. The basis is given independently for
each element in the state vector (reminiscent of the one-time pad) depending
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Alice’s random bits 0 1 1 0 1 0 0 1
Alice’s random basis + + − + − − − +
Photon polarization ↑ → ↘ ↑ ↘ ↗ ↗ →
Bob’s random basis + − − − + − + +
Measured polarization ↑ ↗ ↘ ↗ → ↗ → →
Reveal bases
Secret key 0 1 0 1

Table 1.1: Illustration of BB84 Quantum Key Distribution

on aibi yielding four qubit states,

|ψ00〉 = |0〉, |ψ10〉 = |1〉,
|ψ01〉 = |+〉 =

1√
2
|0〉+

1√
2
|1〉, |ψ11〉 = |−〉 =

1√
2
|0〉+

1√
2
|1〉 ,(1.2)

such that the bi bit is the basis the ai bit. These are not mutually orthogonal
states, so it is impossible to determine all of a without knowing b. Alice trans-
mits the state |ψ〉 to Bob (and perhaps Eve). If Eve intercepts |ψ〉, Bob would
know and would ask for the message to be aborted. Once Bob has a copy of
the state he generates a string of random bits b′ with the same length as b and
compares it to |ψ〉. Bob may now publicly tell Alice he received the message
without it being overheard. Alice publicly announces b and Bob announces b′.
When Alice and Bob discard the qubits in a and a′ where b and b′ do not match,
they are left with a private key that they can both use. The key has been se-
curely communicated. This is illustrated in Table 1.1. We can see that this is
useful in generating a key, but would not be very helpful in sending a message
itself. However, this key could then be used in a symmetric cryptosystem and
the message could be passed by conventional means.

An example of a scheme that utilizes entangled states is known as the E91
protocol. This system is based on the idea that the polarization of two photons
can become entangled. Alice and Bob would observe a common source of entan-
gled photons that are created at random. Any eavesdropping on this common
source of photons would destroy the entanglement and could be detected. A
common secret key can be created by this method.



8 1. Quantum Cryptography

1.4 Conclusion

This is still a relatively young field in the physics community. Working imple-
mentations have been demonstrated using the BB84 protocol by several differ-
ent groups and even more commercial companies. A select handful of financial
transactions have been processed through such systems and the results of one
election were secured via quantum cryptosystems. It is not yet the age of quan-
tum cryptography, but many of the pieces are in place.

Our IPRO project consisted of myself, John Katsoudas, Jonathan David,
and Tony Di Lallo. Although the project did not end with a working quantum
cryptosystem as we had hoped, it did give us a solid foundation in the state of the
art. Even now, ten years later, I was able to pick up where I left my research
to write this review. Even though I did not continue any serious research in
cryptography, the experience was fantastic. I learned a great deal from Tom,
and I hope he feels the same.
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Well Now Professor Erber

Dave Gavelek1

Lockheed Martin2

“Invest more in the systematics of eikonal expansions” is representative of
the advice provided by Professor Tom Erber and preserved in my collection of
old exam papers. I begin with this as an example of one of the most noteworthy
truths of Tom’s attitude of always looking deeper, “peeling the next layer on the
onion.” A perfect mark on the examination may be awarded, but there is more
to be understood and other approaches that yield additional insight. There is
the contextual background and formative events in the lives of the scientists
who laid the foundations of the material under study. Tom’s lectures included
all of this and he expected his students to apply a corresponding effort.

I studied under the guidance of Professor Erber through the 80s, first as
an undergraduate, and then as a graduate student and Doctoral candidate.
Professor Erber served as my advisor for both my Masters and Ph.D. work. I was
awarded a Ph.D. in Physics in 1990 and accepted a job performing data analysis
and signal processing for military radars. I have worked all of the succeeding
years in this field in a variety of roles including individual contributing engineer,
team lead, project lead and functional (people) manager and I am currently a
Department manager of a group of about sixty engineers located across three
states.

My goal in writing this is to convey the lasting impact that Professor Erber

1Email: david.r.gavelek@lmco.com
2Department Manager, Sensor Systems Engineering
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has had upon me. I might have written about the research we pursued during the
course of my graduate studies and how that work has influenced my subsequent
career. I considered dusting off some of our unpublished work and offering that
as part of this collected tribute. I quickly dismissed these and other options for
this collection of recollections of snippets from Professor Erber’s lectures. Now,
almost twenty years later, these insights have become trusted reference points
aiding navigation through a career. Other contributions to this collection will
note Tom’s contributions to our understanding of the physical world around us.
I hope to recognize how Tom also contributed to his student’s understanding of
the world they were to emerge into and work within.

I must admit that I failed to follow the particular recommendation concern-
ing the investment in eikonal expansions. I suspect that my career, as it has
played out, has probably not been adversely affected by this particular failure.
In this tribute I intend to focus on a few of the anecdotes and adages that Tom
so liberally sprinkled into his lectures and conversations. It is these, at least
some small subset of them, which have stayed with me over the years. It is
these that I have frequently drawn upon to interpret the events, politics, mo-
tivations, successes and failures that I have witnessed and experienced. It is
these that I have so frequently found myself drawing upon as I teach. I hope to
try to describe how these snippets of wisdom have become so embedded in my
worldview that I am certain they are a lifelong influence.

Just as Science is understood through its framework of hypothesis and laws,
human experience is understood through our adages and anecdotes. Tom pro-
vided his students a deeper understanding of the working of Nature through his
explanation of Physics. He also prepared his students for the world they would
enter through his insight into the social dynamics of the working scientist.

In preparing to describe these vignettes, I turned to my collection of course
notes in search of examples of the insights and phrasing that were interspersed
in Tom’s lectures. I found that I failed to capture these in my notes. Frustrated
in my futile search, I realized that this offering is the realization of something
I wished I had done back in school, all those years ago. I distinctly recalled
listening to a lecture in one of the last courses I took with Professor Erber and
thinking that I should have captured all of the stories and anecdotes that Tom
had used during the many courses he had a taught me.

Each of Tom’s lectures was packed with so much information that I could
only capture in my notes a small fraction of the presentation and I was focused on
the Physics much more than the supporting stories and interpretations. Writing
this now, rather than as a student, suffers from all that I have forgotten. I am
certain that this is much. Alternately, that which has stuck has survived the
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crucible of experience and what follows is offered with respect and thanks to my
teacher.

As for the title, it was Tom’s typical way of beginning a conversation with
me, “Well now Mr. Gavelek” What better way to begin this recollection?

2.1 Peeling the Onion

I have already mentioned, “peeling the onion.” This phrase is not original to
Tom, but I do associate it with him. It is so characteristic of his approach to
science, and he certainly used this metaphor. I always think of this metaphor
when approaching an aspect of the engineering process that appears uninter-
esting. Many steps of a solid engineering process are unappealing to many
engineers; documentation, test planning, requirements management, and docu-
mentation are examples.

“I understand that these activities are necessary, but they’re not for me” is a
prevalent attitude. Most of us find the interesting and challenging work to lie in
the realm of design. I have found that although activities such as documentation
and requirements management may not offer as obvious a platform for creative
problem solving as design, they do offer these attractions if you look deeper; i.e.
“peel the onion”. Writing a useful product, or assembly guide is not easy. Why?
Certainly there are challenges and problems to be solved to create accessible,
useful documentation. But the interesting questions lurk beneath the surface
and are not explored when the task is treated as a required activity. Will the
documentation make sense to the typical user? How will it help the novice
or expert user? How will it be maintained as the product evolves? How can
the experience of the early adopters get effectively incorporated into the guides
and how are these experiences relevant to the late adopters? How best can the
documentation be translated and adapted to different languages and different
cultures? Peeling away at the layers of these questions reveals challenges as
difficult as any posed to the design engineer. It is more about the attitude you
bring to the task, the deeper you dig the more interesting it will get. If you
assume the task is trivial or boring, it almost certainly will prove to be so. If
you peel the onion you will be rewarded with a challenge.

As an engineering manager I see that one of my most valued employees is
the one I can ask to address a wide variety of concerns. The engineer I can
trust in diverse roles has innate adaptability but also an attitude of finding
interest in every task. I see this as an aspect of the “onion peeler” personality.
Another manifestation of the onion peeler personality is associated with the
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most innovative engineers. These are the people, who like Tom, keep digging
and looking for deeper insight. They are continually searching for and making
associations between problems, approaches, and finding the innovative solutions
that take the work forward. The onion peeler may be an innovator or a trusted
generalist, but either way, the onion peelers are among the most valuable players
to have on your team.

2.2 First with the Least or Next with the Best

I cannot remember a specific context in which Tom used this gem. I do recall
that it was one that he used frequently and I seem to recall that he would say
it in Latin, “You can be firstus with the leastus or nextus with the bestus,” but
that may just be a trick of memory. Although, Tom used this to characterize the
process of discovery and the development of physical theories, it also captures
a primary dynamic of the engineering development cycle. Let me reduce this
cycle to two, primary modes 1) creation of a new capability or product, and 2)
refinement of that capability or product.

The scientist or engineer working on a new product or concept is motivated
to quickly provide the basic capability or describe the essence of the idea. Be-
ing first allows the flag to be set on the shore, capturing a strategic position
for continued work. Delay risks the claim jumper, loosing recognition of being
first and arguably, more importantly, loosing the strategic position that First
provides. The engineer working at the leading edge is conflicted by the desire
to stake out as much territory as possible before filing with the claims office
and by the understanding that the claim will be worthless if someone else files
first. These concerns seem to have been one of the factors that lead to the long
delay between Newton’s insight into the nature of Mechanics and his eventual
publication of the Principia. I will return to this later. The psychology as-
sociated with making the decision to continue to protect the advancement or
announce the achievement seems related to business decisions such as keeping
a technology proprietary versus releasing as an open standard.

Once the new is established it will be built upon and developed. The next,
and all subsequent contributions, must be better than what came before. The
challenges faced by the First include convincing others of the promise and over-
coming resistance to the new. The challenge of the Next is demonstrating the
better. Of course, there will be political and financial hurdles complicating and
confusing the analytical/technological claims of improvement. Most of our work
as engineers and scientists is devoted to this process of building upon, making
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improvements to that which came before, and providing the best as next.
All engineers understand that each product release must be better than the

prior. The most successful engineers are those most in tune with the decision
makers, cost analysts, customers, competitors and peers who will play a large
role in the acceptance and utilization of their work. These are the people that
will establish the ground rules of the competition, the aspect(s) of the product
that need to be improved, and the metrics that will be used to establish the
improvement.

To be successful working at the cutting edge, the engineer must be able to
convey the vision and excitement of the new while being grounded enough to
know and understand what has come before. It is not easy to be first, but if you
are, you just need enough. Not being first is more typical, but not necessarily
easier; you must be better. It can be daunting to the new engineer to survey
the accomplishments of their more senior engineers and understand that they
will need to provide better to be next.

2.3 A Good Experiment

A good experiment is one where you learn something either way it turns out.
If the outcome of an experiment is that something has been learned, it will
contribute to the eventual solution to the problem. The resolution will be re-
vealed through the systematic application of experiments designed to inform
independent of the outcome. This is a criterion that Tom proposed and that I
have frequently drawn upon, both as a working engineer and as an engineering
manager.

The fast pace of engineering development drives several types of behavior.
Using a baseball analogy, I characterize one of these behavior types as the
“Slugger”. The Slugger is the engineer who likes to work for the quick break
through. Sometimes successful, but as in baseball, the Slugger will often strike
out. The slugger tends not to use a methodology that guarantees progress with
each experiment, and characteristically does not take the time to document
what is learned in the pursuit of a solution. Often, this type of engineer will
work through the available schedule and then report that “I worked hard, but
did not solve the problem.” My response typically includes, “Yes, I understand
that the problem is difficult and you worked hard, but what did you learn and
how did you advance the cause? What kind of experiments did you conduct?”

In contrast, the “Utility Hitter” will achieve few overnight breakthroughs,
instead setting a pace for continual progress. In baseball, the utility hitter will
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do whatever it takes to advance the runner. In engineering it is the utility hitter
that applies a systematic program of good experiments to advance the research.
If the problem is not yet solved, the utility hitter does not describe the effort
expended on the search for the solution, but rather on all that has been learned
and how the solution space has been narrowed. It is this type of engineer that
designs experiments that provide insight which ever way the results fall.

Working as an engineer I have been guilty of “swinging for the fences”. I
have been fortunate however; my third base coach was there to remind me what
I was doing before the third strike. As an engineering manager I have been
challenged to get the most out of my team. Sometimes I’ll let my Sluggers take
a couple swings, and sometimes they will be asked to lay down a sacrifice bunt;
at least that’s how it sometimes feels when I insist on a good experiment.

2.4 You Have to Live Long Enough

In his Statistical Mechanics course, Tom delved into Boltzmann’s work. The
mathematics and physical relevance of the ergodic hypothesis, the H-theorem,
the Boltzmann equation, etc. were covered in detail. In addition to the physics,
Tom described the human drama surrounding Boltzmann’s achievements. This
backdrop made the physical ideas all the more compelling. Boltzmann’s work
was challenged throughout his lifetime. Most famously, there were debates on
the reality of atoms with Ostwald and Mach; the recurrence (Wiederkehrein-
wand) objection of Zermelo; and the reversibility (Umkehreinwand) objection to
the H-theorem. The reversibility objection was raised by Boltzmann’s teacher,
Johann Loschmid, and subsequently haunted him for more than 20 years, if not
until his death. And, his depression and death by suicide, just as the atomic
view of nature, and Boltzmann’s own accomplishments, were becoming firmly
established. Yes, Boltzmann was widely known and respected during his life,
but he quit too soon to realize the full impact of his work. Tom said, “You have
to live long enough.”

As working scientists and engineers, we are all subject to, and guilty of the
same emotions of ego that affected the giants. Before our work is judged by
time, it is judged by our teachers and others who have worked the problem
before us. They are prideful of their efforts and eager to critique ours. We work
without the advantage of the clarity time eventually bestows on our concerns.
For all the reasons the human condition demands, our work will be a struggle,
but deserving work will be recognized if we continue the fight and live long
enough.
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This lesson has stayed with me because of the multiple times my work has
not been immediately accepted, because of the objections that have been leveled
by the gatekeepers, the ensuing debates, and the occasional victories. The work
is always a struggle (In fact I believe that if you are not struggling and causing
some turmoil, then you really aren’t trying.) and success requires good work,
perseverance and “living long enough.” Few are fortunate enough to succeed
in tackling a problem as significant as Boltzmann’s, but all of us must face
similar political challenges. I cannot say that Tom’s lectures on Boltzmann’s
endeavor for acceptance prepared me for the human factor challenges I have
faced I imagine that only experience can do that but his lessons did allow me
to recognize the struggle and understand that mine is not unique.

2.5 Locked in a Closet

Another historical story conveyed during one of Tom’s lectures concerned New-
ton’s writing and publication of the Principia. Newton had formulated the main
part of what was to become the Principia by the late 1660s, but did not publish
this work for almost 20 years. Newton suffered from reluctance to share his
work and only did publish under strong encouragement, and financial backing,
from his friend Haley and the threat that his rival, Hooke, was working on a
mathematical proof of the inverse square law. The lessons of this story was
that for twenty years one of Physics most important works was “locked in a
closet”, of no use to anyone during that time, and that this work might easily
have been lost altogether. Publication, marketing, engagement and other forms
of spreading the word is necessary if your work is to be known, appreciated and
used by others. Ultimately, the value of your work is measured by how it is
used, not how prettily it fills a closet.

I have witnessed many examples of the Newton syndrome. An engineer will
“complete” a strong piece of technical work and give a presentation, write a
technical memo, or even publish in a refereed journal. Some time later the
engineer will complain that no one has read the memo or observe that the work
has not been incorporated into the ongoing effort or object that the contribution
was not appreciated. I almost always use the example of Newton in my response.
Doing the technical work is a necessary but not nearly sufficient condition of
success. Completing the technical work is only the first step, and often the
easiest part of the path to success.

The most successful engineers and scientists are those that are willing and
able to explain their work using a variety of techniques, and able to tailor the
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message to their audience. They have their elevator pitch ready in the event
of a chance encounter with a senior decision maker. They have the cost-benefit
analysis ready for those motivated by cost. They have the detailed equations
clearly described and motivated for those who will accept the challenge of un-
derstanding the details once you capture their attention. They have a high level
overview with clear, illustrative diagrams and relevant examples available for the
large segment of their customer base that do not have the time to understand
every nuance of the project. Does it answer the requirement? Does it provide
too much capability? Is it too risky, or too expensive? It may be elegant but is
it practical? The most successful engineers create opportunities to explain their
work and refine their sales pitch and are able to speak to the concerns of the
decision makers.

One of my colleagues refers to a paper she read describing that, typically, a
new idea must be explained seven times before it is understood. It is certainly
consistent with my experience that new ideas must be explained multiple times
before they are grasped. I was again reminded of this reality this week working
as part of a proposal development team. Prior to the team’s first meeting
I provided a description of the capabilities that my modeling and simulation
team could provide for the technical baseline. During the first meeting of the
proposal team the leads identified a gap related to target modeling; one of the
capabilities I had identified as available. (The team leads’ expertise lie in other
aspects of the system, and the models used to describe the RF response of the
targets is equivalent to a new idea.) I interjected that we did in fact have an
in house capability to address this aspect of the emerging design and provided
additional detail on how the model had been previously used and why it was
appropriate for the current pursuit. In the next day’s meeting it was as if the
prior day’s conversation had never occurred; the lead began by identifying the
target models as the primary gap in our existing capability. During the course
of this meeting I twice described the relevance of our target models and then
arranged a conversation between the proposal leads and my target modeling
lead. After that meeting my modeling lead reported that the proposal leads did
not yet understand how our capability fit their need. I understand that we still
need a couple more explanations before we achieve breakthrough.

In this example, the fact that a solution is available is of no value until the
proposal team understands this and works the capability into our plan. The
solution has no value sitting in the closet or, more aptly, in the server. For
value to be realized the work needs to be understood and used by others and
that means that much work remains after the technical work is completed.

For many engineers the technical work is easy compared to the marketing
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and sales that are required to get the work out of the closet. For many engineers
it is difficult to accept that solving the hard problem is not enough for success
and that your added value is measured by your impact on the product not
the quality or volume of your work stored in the file cabinet. For me, Tom’s
interpretation of the publication of Newton’s great work is my navigation beacon
out of the treacherous closet.

The preceding sayings and anecdotes have been discussed in the context of an
engineering research and development workplace. The next two have made their
impact on me outside the workplace and contribute to my overall worldview.

2.6 Good and Bad Things About Everyplace

As I write this I find myself in California finishing a business trip and beginning
a family vacation. I recall a conversation I had with Tom as I was nearing
completion of graduate studies and preparing to relocate to Los Angeles. I
was somewhat nervous about leaving Chicago, the city in which I had lived my
entire life, and I mentioned my apprehension to him. My only exposure to Los
Angeles was that obtained through TV, and I thought it unlikely that I would
easily acclimate to the LA scene. Los Angeles, home of UCLA, was one of Tom’s
sabbatical favorites and I expected he would help sell me on the merits of the
city.

Tom told me, “There are good and bad things about every place. You need
to seek out and take advantage of the good things and avoid the rest.” I was
surprised by this neutral advice, having expecting a whole-hearted advocacy for
a place I knew he very much enjoyed. Needless to say, I did move to Los Angeles
and, consistent with his advice, found much to like. One example stands out.

One of the influences Chicago imparted on me was an appreciation of Blues
music. In fact, I wrote most of my Ph.D. thesis with the overnight Blues-format
radio station playing in the background. Very good Blues music was (and is)
readily available in the Windy City not so in Los Angeles but I was determined
to find a club that offered a good dose of the Blues. I tried multiple venues,
dragging my wife and new friends along without any success in finding the music
that would relieve my homesickness. The music may have been good and it may
even have been bluesy, but it was not like back home.

One Friday night we found ourselves in a small club in Hollywood or North
Hollywood, I am not quite sure. It quickly became clear once the band started
playing that it was to be more of the same more like rock than blues and no
sign of any soul. The band played just two songs when the lead stated that he
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was going to take a break and invited the audience to get-up and sing. Without
any hesitation a well-dressed (LA club style) lady sitting a couple of tables away
stood up and approached the microphone. She spoke a moment with the band,
they began to play and she began to sing. Wow! She was good! The band
caught the fever and for the first time since leaving, I was back in Sweet Home
Chicago. I thought that we had been tricked, that the guy who I thought was
the band lead was just the warm-up act and this was the feature, at least that’s
what I thought until the song came to its bittersweet conclusion and another
young lady from the other side of the room took the microphone for her chance
to impress. Yes, she was, as I recall, even better than the previous singer.
Too good I think, because the bandleader returned to his position and did not
relinquish it again until after we had lost patience and left the club.

Tom’s advice to me on this matter proved to be true. In this case it was
clear that LA might not offer Chicago style Blues, but the talent in the audi-
ence cannot be topped. Similarly, Tom’s advice has always proven as I have
relocated and changed employers and, for that matter, as applied to most all
life events. The grass may “look to be greener on the other side of the fence”
but most certainly there is a price to be paid for the green; i.e. there are good
and bad things about everyplace. There are good and bad things about being
married/single and bringing/not bringing children into your life. To me, this
perspective provides a more grounded philosophy than the more common at-
titude of “my team is better” - where “team” can be replaced by any type of
group that people associate themselves with.

I feel obliged to note that after 13 years living in the Boston area, I have still
not bothered to find a venue for the Blues, but still make it a point to visit a
club when I’m back in Chicago. Each destination has something good to offer.
Our challenge is to seek it out and appreciate it. I now also see Tom’s advice
to me as a reflection of his approach to life - certainly his approach to science.
Each problem holds something of interest to one who seeks it out and works
to find the unexpected implications and interrelations. The unexpected advice
Tom provided me that late fall afternoon has proven to be much more valuable
than the encouragement I sought.

The forms were Complete when Marie Antoinette went to the Guillotine
How often have we heard or seen the unjust but legal or the crazy consequence
of strict application of policy. Whenever I do, I hear Professor Erber saying,
“ . . . you can bet that when they took Marie Antoinette to the guillotine they
had all the forms complete.” Unfortunately I do not recall which injustices
were the objects of this retort, certainly there is no shortage of examples, and
correspondingly, this was one of the sayings he used more than once. Reflecting
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on this, two things come to mind. First, the breadth of coverage within each
of Tom Erber’s lectures; imagine, references to the injustices of the French
Revolution in a Physics lecture. Second, Tom’s penchant for the poetic; he
didn’t bother with some mundane comment about legal injustice, but rather
used a thought provoking turn of phase that said it all.

2.7 The Sincerest Form of Flattery
In preparing my first set of lecture notes for the undergraduate E&M course I
eventually taught several times, I drew heavily from the notes I took as Professor
Erber’s student through the full set of undergraduate and graduate E&M course
offerings. After the first lecture of a new term I was preparing to leave the
classroom when Tom entered to prepare for his class which happened to be in
the same classroom. I had not erased the boards and as Tom entered he glanced
at the remnants of the lecture I had just presented and immediately reflected,
“Imitation is the sincerest form of flattery.” I recall feeling a little awkward
having been caught red handed in my imitation, but I also recognized that the
interpretation was right; my lectures were a form of flattery to my teacher. I
also recall that this incident taught me to erase the boards after my lectures to
avoid providing an overdose of flattery.

Certainly Tom did not originate this saying; but I first heard it on this
occasion and I will always associate it with him. Just as Tom’s influence was
reflected in my E&M lectures, his influence can be found, for example, in how I’ll
often inquire about a person’s progress on a task. The phrasing he used with me
was “How is your knitting coming?” I tend to ask, “How’s your soup coming?”
but have also used Tom’s question verbatim. Certainly, my frequent referral to
his sayings and anecdotes is an affirmation of Professor Erber’s influence on me;
as well as my recognition of the thorough incorporation of these insights into
my worldview. Evidence of Tom’s influence must also lie in my technical work,
since he has always sat beside me critiquing the effort, “Would he be satisfied
with this explanation?” “Would he peel away another layer of the onion?” (And
he has been especially vocal in the preparation of this reflection.) I have but
infrequently managed to achieve the quality of his work, but offer the flattery
of my imitation.
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Abstract

This is a selected history of my time at IIT when I overlapped with
Tom Erber. Also mentioned are some selected ‘adventures in mag-
netism,’ which followed.

I grew up in Chicago, on the Northwest side. Early on I discovered the
electrical system of our house and blew quite a few fuses doing experiments.
That was also a time when chemistry sets were not so restricted by liability
concerns, and one could get kits to build radios and other devices (with vacuum
tubes). Neither of my parents, nor any adult acquaintances, had gone to college,
but they encouraged me to explore. Nonetheless, my knowledge outside the
neighborhood was limited. Taft High School was about six blocks north, but I
went to Lane Tech, which at the time had about 6000 students – all boys. It
became coed a few years after I graduated in January 1965. I went directly to
IIT, which admitted a fairly large midyear class. I remember getting a fairly
generous scholarship, and found out later it was based on my checking a box
on some application indicating that I was interested in metallurgy. I really
had no idea what that was. At IIT, one of my early physics classes used the
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second volume of the Feynman Lectures in Physics, a book I still consider one
of the greatest in the English language. I declared my major as physics, and
soon learned that metallurgists (at least students) were better compensated. I
graduated from IIT in June 1968, and the last two years I worked with Tom
Erber. I don’t remember how the first connection was made, but the adventures
with him and his group were directly responsible for launching me on my future
and continuing endeavors in physics.

The first and many later projects involved the little magnets. Each small
cylindrical magnet needed to be drilled dead center. There were questions about
the drilling rig and the quality of the hole bottom, which rested on a pin and
required minimum friction. I remember bringing in my own microscope, cutting
a small circular hole in the column and inserting a half silvered mirror so that one
could illuminate the bottom of the hole while viewing the hole bottom through
the eyepiece. It worked well, and confirmed that the holes and pin settings
were ‘clean.’ By itself, each magnet could spin on a pin for minutes; but when
inserted into the big array, the rather strong horizontal magnetic forces caused
additional friction. This rather quickly slowed the collective magnets to a stop.
One could reduce the horizontal forces and friction by increasing the distance
between magnets, but the complexity of the patterns and interactions were
reduced, even if the spinning and fluctuations went on for more time. Professor
Erber and his frequent collaborator at the time, Dr. H. G. Latal, worked out
the distance dependence of the octupole forces between the little magnets, and
showed how they were instrumental in causing a very complex energy landscape.
This landscape could be studied . . . that became my territory.

Coils were placed underneath the array of little cylindrical magnets and
were pulsed rapidly with strong currents. This got the magnets ‘boiling.’ When
the approximately random driving forces were stopped, the kinetic energy of
the magnets dropped quickly, the energy dissipation being caused by magnetic
hysteresis and friction. With a 30×30 and larger arrays of magnets the number
of possible patterns was quite large. My job for some time was to sit and push
the ‘on’ button to boil the magnets, then identify and tabulate the static pattern
the magnets had fallen into. Some patterns were common, while others were
so infrequent that they were like ‘who ordered that?’ occurrences. Professor
Erber joked that with enough time (or wine?) the pattern would spell ‘GOD.’
Boring? Yes! But also interesting how one ‘becomes one with the machine.’ The
machine was an insightful model for other phenomena I would encounter later,
such as protein folding, or just fast energy quenches in large multidimensional
spaces. The State-Area Principle developed by Professor Erber to describe the
quenching process was quite general and provided a wonderful heuristic picture.
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The little magnets provided more insight in the area of stress strain hys-
teresis. Another undergraduate summer student and I were playing with the
little magnets and noticed that observing the magnets with two extreme lat-
tice geometries gave quite different and incompatible patterns. Imagine four
magnets on pins at the corners of a square, then slowly change the angle of
one corner from 90o down to 10o, keeping the sides of fixed length. We knew
the patterns had to be different, but how did the pattern evolve? We went
to lunch at the IITRI cafeteria with the idea, and it being a hot summer day,
we had popsicles. That was it! We ran back to the lab, pushed pins through
the popsicle-sticks and changed the angle continuously. The directions of the
magnets changed continuously with angle, but at a critical angle the magnets
jumped discontinuously to a lower energy surface and a new pattern. That
turned into a larger project with a flexible array shielded from the earth’s field
by a large mu-metal cylinder . With more magnets, quite complex stress strain
hysteresis patterns emerged. Professor Erber, seeing generalizations in other di-
rections beyond magnetism collaborated with Professor Guralnick on a number
of papers and experiments dealing with real materials. For magnetic materials,
the Barkhausen effect sensitively measured by a squid magnetometer was used
to signal the energy jumps.

As a diversion one summer day I was invited to accompany the Erber group
for the attempt to achieve a megagauss magnetic field via explosive compression.
The experiment took place at an ordnance facility in Indiana. The ‘apparatus’
consisted of putting the explosives around a low mass pulsed electromagnet. I
was some distance from the bunkers when the countdown commenced, and the
explosion shook the ground. Running to the bunker and opening the door, I was
greeted with dust and darkness, and someone saying “Thanks for opening the
door.” The lights had been dislodged from the ceiling. After some searching in
the chaos, victory was declared when the oscilloscope trace showed more than
one megagauss had indeed been obtained.

I might mention another minor episode during this period that has continued
to influence me. Some Russian scientists were visiting, and Professor Erber
asked if I wanted to come along for lunch in Greektown. The Russians were
indeed lively, and I ended up consuming quite a bit of Retsina. I’ve been a
wine enthusiast ever since, although even my Greek friends sometimes wonder
about my continued fondness for strongly resinated wine, which nowadays is
very difficult to find even in Greece.

I graduated from IIT in June 1968 and started graduate school at North-
western in the fall. I thought I would become an experimentalist, but at that
particular period the exciting research I found was with the new department
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chairman, Art Freeman, who got me into computers and electronic structure.
My enthusiasm for magnetism never waned, and my thesis was the first spin-
polarized calculation for a rare earth material, hcp-Gadolinium. That got me a
postdoc at Ames Laboratory, and I’ve been at Ames ever since. I might have
some more titles, but the most important thing in my life has been riding the ad-
vancement of computer speed. Problems that I could only dream about solving
quickly became feasible, and then routine, as computers followed Moore’s law
to millions of times more capability. In high school I programmed in machine
language, and at IIT I used Fortran and cards. It just keeps getting better,
and later this summer I will help organize a national workshop on computa-
tional materials discovery, pointing to the anticipated development of exascale
computing (1015 floating point operations per second). I will be championing
magnetism and the need to develop better permanent magnets, not by theory
alone, but by using computational insights to finally join our experimental met-
allurgist colleagues as equal partners. It has taken some time for me to return
to my ‘metallurgy roots’ that got me to IIT so long ago.
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I came to IIT in the spring of 1983 as a freshman intending to major in
engineering. That summer I read two books: a biography of Einstein and an
introduction to quantum mechanics. That fall I decided to change my major to
physics because I was interested in its deep conceptual and philosophical issues
in particular, those of quantum theory. I’ve never regretted this choice.

Now I was warned at that time, though, that most physicists take a “Shut
Up And Calculate” approach when it comes to quantum mechanics. After
all, the theory is very successful at generating correct predictions for a wide
assortment of experiments – without having to worry about “what is really
going on” beneath the mathematical formalism. But I couldn’t shake the feeling
that somehow Einstein was right to think quantum mechanics was incomplete,
or maybe a kind of statistical mechanics of an objective, local reality. So when
I met Professor Erber I was pleased to find out he not only thought about
foundations of physics, he actively worked on them and was available for lively
discussion on the issues.

For instance, Prof Erber introduced me to the work of Hans Dehmelt at
the University of Washington, who at that time was attempting to isolate and
observe a single electron in an ion trap. I remember Erber telling me about
his experiment on a few occasions; because he thought it was possible (but
not likely) we’d learn something about the nature of quantum randomness if
Dehmelt succeeded in controlling the environment of a single ion, sufficiently so
to observe discrete quantum state changes.
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Of course, Dehmelt did succeed and won the 1989 Nobel Prize in Physics for
this work. But I’m not sure any progress was made on understanding exactly
why jumps occur where/when they do. Is it uncertainty about future boundary
conditions as well as present boundary conditions, as the traditional Heisenberg
uncertainty principle stipulates? I’ve always wanted to ask Erber more about
the interpretation of Dehmelt’s results.

And Prof Erber introduced me to conceptual conundrums involving quantum
mechanics far beyond anything I’d read, after he learned of my interest. I
remember he once quipped: ”If you think the story of Schrödinger’s cat is
weird, you should read about Wigner’s friend.”

I took all of my required Electromagnetism courses from Prof Erber. I
remember his beautiful, Shakespearean-like elocution in lectures. He would
always fluently pronounce the names of non-US born physicists in their native
tongue (“Al-bert INE-shtine”). He always came to lecture impeccably dressed
and well-prepared with an unusual array of handwritten notes very professorial.
And his notes were written not on normal-sized notebook paper, but on much
larger sheets of paper that he would unfold in class as he drew on the blackboard.

His diagrams were not simply copied from our E&M textbook, Corson &
Lorrain, but were usually better and more elaborate. He would diligently use
colored chalk to make it easier to distinguish the fields involved (e.g. the E field
is green; the H field is blue, etc.). E&M theory leans heavily on vector fields, so it
made sense to use large diagrams for illustrating Maxwell’s equations, Poynting
vectors, div grad curl and all that. Prof Erber knew this and his lectures were
always high quality.

He once admonished me in class for not knowing the answer to a question
posed in lecture, when I had a copy of Misner Thorne & Wheeler’s book on
Gravitation sitting in front of me on my desk.1 He motioned toward the book
and said “The real physics is up here”. I knew this wasn’t a slam on general
relativity, but a suggestion that I prioritize my studies toward the fundamen-
tals first – which is always good advice. He pointed out that deep mysteries
about space and time exist even within the realm of classical electrodynamics.
For instance, how the third time derivative of an electron’s position affects its
radiative reaction force (self-reaction). And, whether or not a field can have
momentum – if it doesn’t, then the Lorentz force law violates Newton’s Second
Law.

Prof Erber suggested I not worry about action at a distance until I learned
QED and quantum field theory, where the relation between particles, forces and

1The book rather conspicuously adds to the local spacetime curvature.
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fields is made explicit. This again was sound advice.
I eventually got my B.S. degree in physics and took a job in finance, but

my mind never left certain open questions and conceptual problems in physics.
And my conversations with Prof Erber, now over 20 years old, are a big reason
why.

If it were possible I’d ask him, with the benefit of additional years of accu-
mulated wisdom, this question:

In your opinion, what are the most important open questions in
theoretical physics?
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Two and Three-Dimensional Hysteresis:
Simple Magnetic Cooperative System

Richard P. Olenick1

Department of Physics
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Abstract

The interactions of two magnets (cylinders) described to up to oc-
tupole terms interacting with a homogeneous external field leads to
two-dimensional hysteresis. The inclusion of the octupole term leads
to discontinuities which are not present when only the dilatationally
invariant dipole terms are considered. We consider a simple two
magnet system and investigate the hysteresis with two (spacing and
external field strength) and three hysteresis coordinates (spacing,
external field strength, and external field direction). Experimental
and analytical studies reveal discontinuous transitions.

5.1 Introduction

Although James A. Ewing [1] coined the word hysteresis during his study of
ferromagnetism in 1881, the special properties of magnetite seem to have been
known and utilized by ancient Greek and Chinese civilizations at least in the
first and second millennia BC. The ancients constructed compasses that take

1E-mail: olenick@udallas.edu
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advantage of the remanence in magnetite, which is a consequence of hystere-
sis –or lag – in the applied magnetic field versus the resulting magnetization.
Although ferromagnetism offers a classical example, hysteresis also appears in
diverse areas ranging from material science to mechanical engineering, physics
to biology, and from electronics to economics.

Weiss [2] introduced the concept of a magnetic domain based on sponta-
neous magnetization and postulated that atoms in ferromagnetic materials had
permanent magnetic moments which were aligned parallel to one another over
extensive regions of a sample. This was later refined into a theory of ‘domains’
of parallel moments [3] in which the overall magnetization of a slab of material
is the vector sum of the domain magnetizations. In the demagnetized state, this
magnetization is zero but as an external field is applied, changes in the domain
configuration such as the relative widths of domains or orientations, allow a net
magnetization in the field direction. Weiss’ hypothesis was later confirmed by
direct observation by Bitter [4].

Studies by Erber et al. [5] for two dimensional n x n arrays of finite dipoles
(dipoles + octupoles + 32nd poles + ...) revealed that the effective range of the
weak, i.e., higher order, forces increases with extreme rapidity as the complexity
of the system is augmented. These results have implications for lattice calcu-
lations that rely on nearest neighbor approximations, micromagnetic models of
ferromagnetic fluids [6], and the origin of domain formation [7]. Indeed, the
collective effects of the strongest forces are not necessarily the controlling forces
in such situations such as Ewing lattices.

Ewing lattices consist of two-dimensional arrays of pivoted magnets that can
rotate in a plane. The potential produced by a single magnetized right circular
cylinder may be approximated by the standard expansion of terms for a finite
dipole and consists of terms varying as1/rl+1, where the l = 1, 3, 5, . . . terms
represent, respectively, the dipole, octupole, 32-pole, etc. contributions. If the
distance between the equivalent poles of the cylinder is denoted by d then the
expansion can be expressed in terms of the coupling constant ε = d2/(2r2),
where r is the distance from the center to the field point.

5.2 Two-Dimensional Hysteresis:
Spacing and External Field

The simplest Ewing lattice is a 2 × 1 lattice and this system can be used to
explore simple hysteresis when the spacing between magnets and the strength
of an external field are varied. To second order the potential of a magnetized
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Figure 5.1: Variables for two magnet system.

cylinder may be expressed as

V (r, θ) =
µ cos θ

r2

[
1 + ε

(
5 cos2 θ − 3

)]
(5.1)

where µ is the dipole moment. The interaction energy of a two magnet system
is

U = − µ2

2r3

{
cos α− 3 cos β − ε

[
13 cos α + 5 cos β + 5 cos2 α cosβ

−35 cos α cos2 β
]}

(5.2)

where α = ϕ1 − ϕ2 and β = ϕ1 + ϕ2, as shown in Figure 1, where ϕ1, ϕ2 are
measured from the normal to the line connecting the two magnets.

When a homogeneous external field is present, the interaction energy of the
magnets with the external field is given by
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Uext = −2µH cos
(α

2

)
cos

(
β

2

)
. (5.3)

The total Hamiltonian for the system therefore is

H = − µ2

2r3

{
cosα− 3 cos β − ε

[
13 cos α + 5 cos β + 5 cos2 α cos β

−35 cos α cos2 β
]}− 2µH cos

(α

2

)
cos

(
β

2

)
(5.4)

The physically realizable states are a subset of the extremals which are de-
termined by solutions of the equations

∂H

∂α
= 0, (5.5)

∂H

∂β
= 0. (5.6)

If we assume that α = 0, that is, at all times the magnets make equal angle
with respect to the direction of the external field, then Eq.(5.5) yields the trivial
case whereas Eq.(5.6) requires

3 sinβ − ε [−10 sinβ + 70 cos β sin β]− 2r3

µ
H sin

(
β

2

)
= 0. (5.7)

Introducing the natural dimensionless field strength h = H r3/µ and writing
β = 2ϕ, the extrema are defined by

cosϕ [3− ε (70 cos 2ϕ− 10)] = h. (5.8)

For the ideal dipole case, ε = 0, Eq.(5.8) implies that

cos ϕ =
h

3
, (5.9)

in other words perfect alignment with the external field (ϕ = 0)occurs when
the dimensionless field strength reaches the critical value h = 3, which was first
noted by Gallop [8].
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The physical states correspond to solutions which are local minima and are
determined by the necessary and sufficient condition that the Hessian,

H (α, β; ε,H) =

[
∂2H
∂α2

∂2H
∂β ∂α

∂2H
∂α ∂β

∂2H
∂β2

]
, (5.10)

is a positive definite matrix.2

Under the assumptions α = 0 and

∂2H

∂β ∂α
= 0 ,

the condition becomes
∂2H

∂β2
> 0 ,

so that stable states must satisfy the condition

h >
3 cos ϕ− ε

[−10 cos 2ϕ + 70 cos4 ϕ
]

cos ϕ
. (5.11)

By writing cos 2ϕ = 2 cos2 ϕ− 1 we may cast the condition of Eq. (5.11) in
the form of a cubic equation

cos3 ϕ + p cos2 ϕ + q cos ϕ + r = 0, (5.12)

where the coefficients are

p = 0, q = −3 + 80ε

140ε
, r =

h

140ε
.

For appropriately limited values of h and ε there exist three real roots of
which one root is greater than one and hence physically impossible. As h in-
creases, another root becomes physically unrealizable. Finally, the discontinuity
is manifest when all solutions φ are no longer real: that is, the solution consists
of two complex roots and one real root great than one.

Experimental measurements of the critical angles were made with magnets
of equal dipole moments of 7 G-cm3 on supports that could be dilated from
1.5 to 10.0 cm separation. A Helmholtz coil pair provided a uniform magnetic
field over the region with intensities ranging between −5 ≤ H ≤ +5 G. Table

2All eigenvalues of a positive definite matrix are positive.
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1 provides a comparison between theoretical and experimentally determined
angles for values of ε and h.

ε r (cm) H (G) h Φtheor(0) Φexp(0) htheor
crit hexp

crit

0.001 9.93 0.22 2.935 4.5 3.0 2.940 2.935
0.01 3.14 0.643 2.712 0.0 0.0 2.410 2.712
0.01 3.14 0.597 2.518 22.5 26.0 2.400 2.518
0.02 2.22 1.618 2.412 0.0 0.0 2.269 2.412
0.02 2.22 1.544 2.301 -58.5 -42.0 1.800 2.301
0.03 1.81 2.673 2.159 58.9 -2.0 2.356 2.159
0.03 1.81 2.577 2.081 -64.8 -50.5 1.200 2.082

Table 1 Experimental and theoretical values of critical points for the two
magnet system.

The values in Table 1 for ε = 0.001 represent nearly pure dipole interactions
and verify Gallop’s result. The smallest value of the coupling constant for which
hysteresis is observed is ε = 0.0088.

Figure 2 illustrates the onset of hysteresis for the case ε = 0.04 in which
there is a crossover between extremals at hc = 2.510 and again at 0.600. The
abrupt transition to complete alignment and unit magnetization is completely
unexpected since all forces vary smoothly. The variation of the external field
hysteresis coordinate prods the system along a phase space until singular points
are reached. The data also indicate that as the lattice spacing is decreased the
energy loss in the hysteresis, which is proportional to the area enclosed by the
magnetization versus applied field curve also increases.

5.3 Three-Dimensional Hysteresis:
Spacing, External Field, Rotation

More complexity IN the 2× 1 system is introduced when the external magnetic
field is not in a direction perpendicular to the axis containing the centers of the
two magnets but rather at any angle, as shown in Figure 3.

With the introduction of the external field rotated at an angle ψ with respect
to the perpendicular to the line joining the two centers of the magnets, the
Hamiltonian becomes
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Figure 5.2: Magnetization and energy for the case ε = 0.04 illustrating discon-
tinuities
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Figure 5.3: Parameters for three-dimensional hysteresis
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H = − µ2

2r3

{
1− 3 cos 2ϕ− ε

[
13 + 10 cos 2ϕ− 35 cos2 2ϕ

]

+4h (cos ϕ cosψ + sin ϕ sin ψ)} , (5.13)

where we assume that α = 0. The extremal condition leads to

h =
cosϕ [3− ε (70 cos 2ϕ− 10)]

cosψ [10 + cot ϕ tan ψ]
(5.14)

and stability requires

h >
3 cos 2ϕ− ε [−10 cos 2ϕ + 70 cos 4ϕ]

cos ψ [cos ϕ + tan ψ sinϕ]
. (5.15)

Table 2 compares the theoretical predictions and experimental results for
ψ = −50.

ε r (cm) H(G) h Φtheor(0) Φexp(0) htheor
crit hexp

crit

0.01 3.14 0.513 2.164 -52.6 -60.0 2.083 2.164
0.02 2.22 1.435 2.139 -58.0 -55.5 2.081 2.139
0.03 1.81 2.460 1.987 -66.4 -60.5 2.196 1.987
0.03 1.81 3.345 2.702 -9.4 -17.5 2.560

Table 2 Comparison of experimental and analytical values for critical points
for ψ = −50.

The predicted behavior of the dipole angle as a function of the applied field
for the case of ψ = −50 is shown in Figure 4 for several values of the coupling
constant.

Experimental checks of the validity of the assumption that α = 0 shows that
for the case of large lattice spacing and small fields that the percent difference
in the angles of the two magnets is approximately 10%. For smaller lattice
spacings (ε ≈ 0.1) the percent difference decreases to 3% and for stronger fields
the value is even lower, being approximately 2%.

Figure 5 shows a cross section of the energy diagram indicating the de-
velopment of localized “dips” in the overall energy curve due to the octupole
interactions. The instabilities occur when the dips spill out and prod the system
to a lower energy on the curve. The analysis and results presented here show
that for the simplest possible system the origin of hysteresis is the existence
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Figure 5.4: Magnet angle for stable configurations as a function of the applied
field h.
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Figure 5.5: Energy surface cross section for ψ = −5.0, h = 2.20, ε = 0.035.

of multiple metastable equilibria associated with the system dynamics under
consideration.

5.4 Discussion

This investigation shows how relatively simple systems can exhibit discontinuous
behavior, further illustrating how the saturation of forces in a complex system
can lead to behavior dictated by weaker forces. In addition, the study may
have application to a basic understanding of domain wall behavior. In general,
two grains meeting at a grain boundary are at an arbitrary crystallographic
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orientation to one another, and their easy magnetization directions are not
parallel [9]. If the applied field is not sufficient to rotate the grain magnetizations
out of their easy directions, there will be a discontinuity in the component of
the magnetization normal to the grain boundary, and free poles will be present.
The free poles may interact through higher-order forces from nearest neighbors
and suffer jump discontinuities.

Kittel and Galt [10] proposed that rigid domain wall motion could be mod-
eled by such interaction and that model has been widely used as a qualitative de-
scription of wall energetics and dynamics. Defects, such as dislocations, locally
modify the ‘constants’ characterizing the interaction and magnetocrystalline
anisotropy The resulting potential energy wells act as pinning sites, holding the
walls in place until sufficient energy is supplied to free them and cause a sudden
jump and irreversible behavior.

5.5 Tribute to Professor Thomas Erber

Each of us has the opportunity to shape the lives of those around us. For most
of us, we impact the lives of our brothers and sisters, parents, and friends.
Occasionally, an individual can influence the lives of a greater number of people
through their hard work and persistence. Truly exceptional, however, is the
individual who can influence an entire community or a city. Even rarer is an
individual who can impact humanity’s understanding in fundamental areas of
research. Such an individual is Dr. Tom Erber.

I vividly recall my Thermodynamics course that he taught during my under-
graduate days at IIT. He is the consummate professor who brought knowledge
of the field with presentations that made everyone yearn to learn more. He al-
ways had interesting stories to draw us in and then hook us with amazingly clear
derivations and discussions. Thermodynamics quickly was my favorite course as
an undergraduate. Sadly, my graduate course in it was the antithesis of Tom’s
and I grew to dislike that area.

I also was privileged to work with him on magnetic cooperative systems.
After explaining a project he wanted me to undertake, he let me loose in his
lab. I spent every free hour and weekends in the lab tinkering with magnets.
He even had Mr. Duda, a master machinist, create a device to dilate arrays
of magnets so that I could explore the effects of dilation on systems. Well,
when charged with the simple task of painting the aluminum surfaces so that
there wouldn’t be glare in photos, which back then were used to make angular
measurements, I foolishly spray painted the device and got paint on the bearings
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and ended up ruining the device. Professor Erber with great calm told me, “If
that is the only mistake you ever make, you will be alright.” Mr. Duda, on the
other hand, fumed and had harsher words for me, and rightly so. Although I
leaned more towards theoretical physics, I never lost my love for tinkering in
the lab trying to find novel ways to improve undergraduate labs.

This small paper presents unpublished findings of that undergraduate re-
search some 37 years ago. That experience sold me on physics. And Tom
Erber’s mentoring made me want to be as good a teacher as he was and aspire
to walk in his footsteps. Tom seems to have understood the potential within an
individual and prompted it to become real. An influential poet of the late 20th
century, William Stanley Merwin, expressed this notion in a poem entitled The
Unwritten.

Inside this pencil
crouch words that have never been written
never been spoken
never been taught
they’re hiding

Tom prodded those ideas crouching within us to move from shadow to reality
as we began professional careers.

One day in the lab I complained of a headache and he said, “Mr. Olenick
if physics gives you a headache then you should get out of physics.” Since that
day I have never had a headache from physics. On the contrary, I have been
very fortunate that my curiosity in physics was piqued by such a great, caring,
and respected scientist.

I’ll also never forget when he took me to the University of Chicago to hear
Werner Heisenberg speak. I still proudly tell my students in quantum mechanics
that I heard Heisenberg speak and over a dozen more Nobel Laureates since
then. Hearing the founders of areas of physics is something that undergraduates
nowadays rarely get to do. Even more fortunate are those whose careers are
launched by great physicists and I thank Tom Erber for launching mine.

Recently I saw a program on The Science Channel concerning futuristic
shields for spacecraft. The producers visited a high magnetic field lab identical
to the one Tom had in the basement of an old building at IIT forty years ago
when he was investigating high magnetic fields, implosion, and synchrotron
radiation. Tom was always a step ahead of everyone else!
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The Surface Coulomb Problem:
Energy Minima and Hausdorff Metrics

Liam Coffey
Illinois Institute of Technology

Abstract

Professor Tom Erber studied the surface Coulomb problem with col-
laborators in the late 1990’s. This paper provides a brief overview
of his contributions to this topic.

The surface Coulomb problem consists of finding the minimum and metastable
energy states of N equal charges on the surface of a unit sphere. Using a com-
puter search for the case 2 ≤ N ≤ 112, Erber and Hockney [1] identified 2054
such states. For N ≤ 15, a single minimum energy value was found. However,
starting at N = 16, metastable energy minima were detected with energies very
closely spaced above the minimum energy, with as many as 60 metastable states
being identified for N = 112, for example.

Furthermore, starting at N = 15, equilibrium charge configurations often
occur in chiral, enantiomorphic, pairs, with simple ordered arrangements of
charges for low values of N, such as N = 15, 16, 23, .., but increasingly irregular,
non-random, patterns for larger values of N . The Hausdorff-Mislow metric
[2, 3] was used by Coffey, Drapala, and Erber [4], to quantify the structural
similarities between these chiral, enantiomorphic, pairs.
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6.1 The Surface Coulomb Problem

The set of N unit vectors [~ri, 1 ≤ i ≤ N ] denote the positions of N point charges
constrained to lie on the surface of a sphere. The Coulomb energy of the system
is given by

E =
N∑

i=1

N∑

j>i

1
|~ri − ~rj | =

N∑

i=1

Ei(N) (6.1)

where the term Ei(N) is the partial energy associated with the ith charge. The
charge positions can also be described by angular variables on the sphere: the
colatitudes 0 ≤ φi ≤ π and longitudes −π ≤ θi ≤ π. The Coulomb energy is
then written as

E(φ1, θ1, · · · , φN , θN ) =

1
2

N∑

i=1

N∑

j>i

1√
[sinφisinφjsin2[(θi − θj)/2] + sin2[(φi − φj)/2]]

(6.2)

The function E(φ1, θ1, ...., φN , θN ) describes a 2N dimensional energy land-
scape.

Another quantity of interest is the dipole moment of a configuration which
is given by

~d(N) =
N∑

i=1

~ri (6.3)

This quantity should have a magnitude of zero for a spherically symmetric charge
distribution, but will be non-zero for the complex, non-random, equilibrium
charge configurations in the surface Coulomb problem.

6.2 Results

For 2 ≤ N ≤ 14, computer searches lead to a unique ground state energy E(N)
for each value of N . Erber and Hockney stored the charge configurations in a
standard configuration in which a configuration is rotated so that the charge
with the lowest partial energy is at φ = 0 and θ = 0, and the charge with the
second lowest partial energy is at zero longitude θ = 0 [1].

To illustrate the nature of the results, consider the N = 15 case. At N = 15,
a unique ground state energy E(N) = 80.67024411 exists, but the two charge
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configurations associated with this energy form an eniantiomeric pair. Out of
104 initial, randomized, configurations with which the N = 15 search is initiated,
4958 terminate in one of the two charge patterns, which is labelled CL(15), and
5042 with the other of this chiral pair, which is labelled CR(15). The capture
basin is essentially evenly divided between the two configurations.

The two N = 15 configurations consist of five parallel rings, each containing
3 charges. The three charges with the lowest partial energies form equilateral
triangles about a great circle. The other four triangles are obtained by imparting
a twist to the successive rings. Since these twists can be made clockwise or anti-
clockwise, the two resulting charge configurations of the enantomeric pair cannot
be superimposed by rotations or proper isometries. The angular co-ordinates of
the two N = 15 configurations are shown in radians in the accompanying table
to three decimal place accuracy. The results of Erber and Hockney determine
the two angles φ and θ to a much higher degree of precision of 10 decimal places.

CL(φL
1 , θL

1 , ......., φL
15, θ

L
15) CR(φR

1 , θR
1 , ........φR

15, θ
R
15)

Charge Colatitude Longitude Charge Colatitude Longitude

i φL
i θL

i j φR
j θR

j

1 0 0 1 0 0
2 2.094 0 2 2.094 0
3 2.094 3.142 3 2.094 -3.142
4 1.792 2.19 4 1.915 -1.074
5 1.915 -2.068 5 1.915 2.068
6 1.792 -1.012 6 0.979 1.653
7 0.979 1.489 7 1.792 -2.129
8 1.915 1.074 8 0.979 -1.489
9 0.979 -1.653 9 1.792 1.012

10 2.712 -1.354 10 1.010 -2.640
11 1.010 2.640 11 1.010 0.501
12 2.712 1.787 12 2.712 1.354
13 1.184 -2.687 13 2.712 -1.787
14 1.010 -0.501 14 1.184 -0.455
15 1.184 0.455 15 1.184 2.687
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As another illustration of the results, consider the case N = 16. Three
final configurations occur for N = 16. In the Erber/Hockney search, 75.7 %
of their 104 minimizing runs end in a state with E(16) = 92.91165530 which is
equally divided between two enantiomorphic configurations CL(16) and CR(16).
The remaining 24.3 % of minimizing runs end up in a state with E(16) =
92.92035396, and with a symmetric arrangement of four sets of rings outlining
a series of four relatively rotated squares with a charge at every corner.

As N increases, the number of states associated with each energy minimum
increases significantly, along with their structural complexity, and the number
of distinct chiral pairs for a given N .

If MC(N) denotes the number of charge configurations found for a fixed
value of N , a good fit to the data for 70 ≤ N ≤ 112 is obtained with

MC(N) = A(eνN − eν)/(1− e−ν) (6.4)

where A ' 0.382 and ν ' 0.0497.

The distribution of values of the energy minima, and the metastable state
energies, for 2 ≤ N ≤ 112 were investigated in the Erber/Hockney work.

If the lowest energy state for a given N is denoted by EG(N), for example,
the expression

EG(N) = 0.5N2 − 0.5513N3/2 (6.5)

fits the data with error bounds of 0.1% at N = 20 and 0.01% at N = 112. This
can be compared with the average energy of a set of random charge configura-
tions for fixed N which would yield

< Erand(N) > = N2/2 (6.6)

Lying above the lowest energy states given by Eq.(6.5) are the metastable states
which, as was discussed earlier for the example case N = 16, are very close in
energy with relative energy spacings of approximately

∆E(N)/EG(N) ' 10−6 → 10−4 (6.7)

The properties of the energies of the states for a fixed N were studied further
by comparing the distribution for partial energies Ei(N) of Eq.(6.1)to the dis-
tribution of total energies E(N). The ratio of these two distributions range in
value all the way from 0.26 for N = 32 to 305 for N = 45. Another quantitative
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measure of the the total and partial Coulomb energies is the energy diversity
ratio given by

De(N,m) = 100
ne(N, m)

N
(6.8)

where ne(N, m) denotes the number of distinct partial charge energies that
occur in the mth state of N charges. De(N,m) also ranges over a wide range of
values from 0 to 100, with the larger values clustering at large values of N > 70,
approximately.

Distributions of dipole moments, Eq.(6.3), were also studied for the lowest
energy, and metastable, states for a fixed value of N . For example, for the 52
states found for N = 100, the magnitude of the dipole moment was found to be
in the range

0 ≤ |~d| ≤ 0.0037 (6.9)

Taking together the data for all N values, a distribution of non-zero dipole mo-
ments is found ranging in value from 0.01322 for N = 11 down to 10−6 for
N = 38, with a clustering of values between approximately 10−4 and 10−3 for
80 ≤ N ≤ 112.

6.3 Hausdorff Metrics for the Surface
Coulomb Problem

The Hausdorff-Mislow metric was used by Coffey, Drapala and Erber to measure
structural information in the complicated arrangements of point charges on the
sphere for the charge configurations found by Erber and Hockney.

Distributions of Hausdorff distances were calculated between the two charge
configurations of a chiral pair for a given N by fixing one of the enantiomorphic
pair charge configurations, and rotating the other set of charges, corresponding
to the other member of the pair, relative to it. The resulting distribution of
Hausdorff distances yielded a type of ”structural spectroscopy”, measuring the
degree of similarity between the spatial configurations of the two members of a
chiral pair.

Furthermore, if CL(N) and CR(N) represent the two members of a chiral
pair for a fixed N , the lowest saddle point on the energy landscape separating
these two configurations was also investigated.

The Hausdorff distance between two sets of charges CL and CR is the small-
est number δ(CL, CR) satisfying the two conditions: (i) a spherical ball with
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radius δ centered at any point of CL contains at least one point of CR; and
conversely (ii) a spherical ball of radius δ centered at any point of CR contains
at least one point of CL. This definition ensures that δ satisfies all the criteria
for a metric.

In applying this metric to the Coulomb problem, the angular separation
between the ith charge of the configuration CL(N) and the jth charge of CR(N)
is calculated using

Ψij = cos−1(~ri.~rj) 1 ≤ i, j ≤ N (6.10)

where ~ri and ~rj denote the unit vectors locating the ith and jth charges on the
surface of the unit sphere.

If the resulting Ψij are tabulated in an N ×N array, the smallest Ψij values
are located in each of the N rows of the table. The maximum value of these N
values is then obtained

maxi minj Ψij = δ(CL → CR) (6.11)

The second step is to now collect the minimum values of Ψij in all of the N
columns of the array. The maximum value of these N values is then found

maxj mini Ψij = δ(CR → CL) (6.12)

Finally,the Hausdorff distance is found by

δ(CL, CR) = max [δ(CL → CR), δ(CR → CL)] (6.13)

If the CL configuration is kept fixed, and the CR configuration is rotated relative
to it through a grid of angles, a distribution of Hausdorff distances will result
which will have a minimum value: δmin(CL, CR). The distribution of Hausdorff
distances should be renormalized by a factor which changes with N value

Ψmax = maxRP
minl cos−1(~rl. ~RP ) (6.14)

where ~RP is the position of an arbitrary point P on the surface of the unit
sphere. Finally, the Hausdorff distance is defined as

d(CL, CR) = δ(CL, CR)/Ψmax (6.15)

Table 3 of reference [4] illustrates the 15 × 15 table of Hausdorff distances ob-
tained by this procedure for N = 15 case, for illustration. This procedure yields
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a distribution of minimum Hausdorff distances for all the 1824 paired configura-
tions for 15 ≤ N ≤ 112, the 912 values of which range from approximately 0.1 to
0.8. The larger values of dmin in this range, between 0.6 to 0.8 approximately,
cluster predominantly between the larger values of N from 80 to 112. This
trend confirms Mislow’s basic conjecture that complex configurations with the
least symmetry have the greatest chirality. The minimum Hausdorff distances
are shown in Figure 1 of reference [4].

The full distributions of Hausdorff distances for an icosahedral arrangement
of 12 charges on a sphere, and for the N = 15 enantiomorphic pair of the surface
Coulomb problem, are shown in Figures 3 and 4 of reference [4]. The equally
spaced sharp peaks, and the broader peak at the Hausdorff distance 0.856 of
Figure 3 of reference (4) derive from the ordered symmetrical charge configu-
ration of the icosahedron. Similarly, Figure 4 encodes structural information of
the less symmetrical N = 15 surface Coulomb chiral pair charge arrangements.

6.4 Saddle Point Heights on the Energy Landscape

The two N = 15 chiral pair charge configurations, which have been denoted by
CL(15) and CR(15), are two degenerate energy minima on the energy landscape,
corresponding to two different spatial point charge arrangements.

The variation in the Coulomb energy, E(15), as the CL(15) charge arrange-
ment is changed over to that of the CR(15) arrangement was studied in reference
[4]. The goal was to find the path passing over the minimum saddle point height
going from CL(15) energy minimum to that of CR(15). The interesting result
was that this deformation path corresponded to a saddle point whose energy
was only 0.2% higher than the degenerate energy minima of the CL(15) and
CR(15) states. The result is depicted in Figure 5 of reference [4].

One of the conclusions from this study is that sequential, one at a time,
movements of charges which evolve the CL(15) configuration into the CR(15)
configuration follow lower energy paths on the energy landscape than collective
displacements of charges would.
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A Mechanical Model for Simulating
Fatigue Failure in Metals

Sidney A. Guralnick,1 Jamshid Mohammadi, 2 3

and Amy M. Kephart4

Illinois Institute of Technology

Abstract

A model for simulating fatigue damage accumulation and the fatigue
failure process in metals is presented. The simulation is achieved by
modeling material behavior with a series of nonlinear mechanical
springs with randomized behavior. With each applied stress, a cer-
tain number of springs rupture. The damage accumulation process
is modeled by the number of springs that have ruptured during the
entire stress application cycle. When a sufficiently large number of
springs rupture, the entire system is considered to have failed. This
constitutes fatigue failure. This paper follows two previous publi-
cations by the first two authors and extends the model further by
incorporating additional random variables, investigating the signif-
icance of uncertainty in the spring behavior and simulation of the
hysteresis behavior of metals during the fatigue damage accumula-
tion process. Results similar to (1) the Wöhler S − N curve and

1Department of Civil, Architectural and Environmental Engineering,
2Department of Civil, Architectural and Environmental Engineering
3Correspondence: E-mail: mohammadi@iit.edu
4PDC Engineers, Inc., Anchorage, Alaska, USA
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(2) the hysteresis loss versus the number of stress cycle relationship,
observed in laboratory testing of metal specimens, are presented.

Key Words: Fatigue Damage, Damage Accumulation, Damage Modeling

Nomenclature

• F : Applied stress

• k : Stiffness

• m : Number of springs

• n : Number of stress cycles

• pn : Probability

• R : Resistance

• S : Length

• SX : Standard deviation of X

• u : Strain

• ∆U : Strain energy

7.1 Introduction
The fatigue failure process in materials is a complex process and is affected by
the material behavior at the macro level. The material behavior, the macrostruc-
ture arrangement in the material, applied stress level, size of the component,
existence of prior cracks are among the factors that are known to affect the
fatigue failure process. Uncertainties associated with these parameters are the
main source of large scatter often observed in fatigue failure behavior of ma-
terials. There have been efforts in the past to develop models for describing
fatigue behavior reported, for example, by Timoshenko [1], Jackel [2], Martin
[3] and Wetzel [4]. However, to date experimental investigations have remained
as the only reliable method to establish fatigue failure behavior in materials.
Previous mechanical models developed to explain the interlinked set of phe-
nomena needed to describe fatigue failure have been unsatisfactory to a greater
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Figure 7.1: Stages in progression leading to fatigue fracture or rupture
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or lesser degree because these models simulated only one or two of the many
gross macroscopic aspects of metal fatigue.

As may be seen in Fig. 1, the evolution of fatigue failure is assumed to
proceed through four stages prior to fracture or rupture. These are: (1) the
inception of isolated microscopic zones of plasticity; (2) the “organization” of the
microscopic zones of plasticity into macroscopic plastic regions; (3) the initiation
of cracks; and (4) complete separation or rupture. Conceivably, stage 1 occurs
at very low stress levels and, if stresses remain low, fatigue failure in steels with
a definite endurance limit does not occur. At stress levels higher than those
needed to initiate microscopic yielding, stage 2 occurs (curve marked P in Fig.
2). If the stresses are raised to still higher levels, then stage 3, or crack initiation
occurs (curve F in Fig. 2). This curve is sometimes called “French’s line of
damage”. When the stresses are raised to even higher levels, the cracks, which
first appeared in stage 3 propagate and eventually cause rupture as illustrated
by the uppermost curve in Fig. 2. This last curve is what is known as the S−N
(or Wöhler) curve in fatigue behavior of metals. As is evident from Fig.2, the
entire fatigue process (stage 1 through 4) is quite different in the low-cycle region
from that which occurs in the high-cycle region. Guralnick [5] describes fatigue
phenomena based on incremental collapse of a simple portal frame composed of
an elastic perfectly plastic material.

| | |
N1 N2 Nf 105

Endurance
Limit

N

Log of Number of Cycles to Failure

S

Stress
Amplitude

P

F
Conventional S vs N Relationship,
Complete Rupture

££°

σa

← High CycleLow Cycle →

N1 < N2 < Nf

Figure 7.2: Conventional process.

Available models, at best, can only simulate the first two stages of the pro-
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gression leading to fatigue failure depicted in Fig. 1. To overcome this short-
coming and to develop a model to simulate the fatigue behavior through the
S−N curve, such a model must be capable of describing the non-linear behavior
of the material as well as the many sources of uncertainties that result in the
large scatter observed in the S−N behavior. This means that the model, more
appropriately, requires a probabilistic formulation. Accordingly, Guralnick and
Mohammadi [6] developed a simple model to demonstrate the capability of prob-
abilistic formulations in providing a pathway through all four stages culminating
in rupture or fatigue. The model was intended for demonstration and consisted
of only a limited number of random variables. It was developed as an extension
of the model originally proposed by Jenkin [7] to simulate the elastic-plastic
mechanical behavior of materials. The model proposed by Guralnick and Mo-
hammadi [6] introduced a probabilistic concept in Jenkin’s model for simulating
the highly uncertain behavior of materials in fatigue-causing load environments.
This model is based on the behavior of a system of parallel springs, which un-
dergo a random stress cycle. Failures among the springs occur at random and
can be used as a means to simulate fatigue damage and fatigue behavior. When
a sufficient number of springs rupture, fatigue failure is assumed to have oc-
curred. The model used only a small number of random variables and was
intended as an initial step to verify its capability in simulating fatigue damage
and failure behavior. Additional developments in the model were considered
by Guralnick and Mohammadi [8] and Kephart [9]. These new developments
include (1) introducing additional random variables in the model; (2) investi-
gating the significance of uncertainties in the spring deformation behavior; and
(3) simulating the hysteresis loss versus the number of stress cycles exhibited
by metals in a fatigue failure process.

When a material is subjected to a cyclically varying load beyond the elas-
tic limit, the stress-strain behavior will be represented with a hysteretic loop
indicating the amount of energy loss in each cycle. In fact, as is known, the
area enclosed by the stress-strain curve is the strain- energy density called “hys-
teresis loss”. Each time the material undergoes a cycle of stress, there will be
a corresponding amount of hysteresis loss (∆Ui), where i is the number of the
stress cycle. The total hysteresis loss after the material has failed is called the
“fatigue toughness” and it is the area under the hysteresis curve when each of
the values of hysteresis loss is plotted against the number of stress cycles (N).
Three distinct regions are noted in the ∆Ui − N curve. In the first region,
a dramatic drop in the hysteresis loss is observed; while in the second region,
a practically constant hysteresis loss is noticed. The third region, just before
material failure, exhibits another dramatic drop in the hysteresis loss. When
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the hysteresis loss eventually drops to zero, the strain-energy of the material
has been depleted, and the material fails. Figure 3 shows these three zones
of the hysteresis loss curve for a cyclically loaded specimen. Of course, if the
loading stays below the elastic limit, presumably the stress-strain behavior in
the unloading and loading cycles will always be represented by a straight line.
However, most common steels will show the hysteresis type of behavior depicted
in Fig. 3 even if the stress lies below the elastic limit of the material. Each time
a fatigue test is done at a different level of stress, the hysteresis loss per cycle in
comparison to the number of cycles to failure will be different. At higher levels
of stress, the hysteresis loss will have a greater value, but take fewer cycles to
dissipate. At lower levels of stress the hysteresis loss per cycle will have a lower
value and endure for more cycles. The total area under the different curves
will be approximately equal because the material has a certain amount of strain
energy to exhaust (Kephart [9]).

Figure 7.3: Three zones in evolution of hysteresis loss per cycle.

Of particular interest in the behavior shown in Fig. 3, is Region 2, where the
hysteresis energy remains constant. In investigating the fatigue failure behavior
through simulations, in addition to generating the SN relationship, development
of the hysteresis energy loss curve versus the number of load cycles can also be
used to test the capability of the model used for simulation as it is demonstrated
later in this paper.
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7.2 Description of the Model

Figure 7.4: Model schematics.

Figure 4 illustrates the mechanical model used in this study to simulate
fatigue behavior. Parameter F plays the same role as the stress range does in
laboratory specimens used in fatigue failure investigations. The model consists
of m parallel springs, which resist the applied stress F . Each spring is a non-
linear element with the stress-strain behavior curve shown in Fig. 5. To be
consistent with actual stress-strain behavior in metals, the term strain is used
in defining the deformation capability of the springs in Fig. 5. To simulate
the uncertainties inherent in metal behavior in resisting cyclic stresses and in
exhibiting fatigue failure, several key parameters describing the behavior of the
springs are treated as random variable. The uncertainty in the spring behavior
can specifically be considered from two distinct sources. One is related to the
randomness in the variables that describe the stress-deformation curve in the
elastic region. The other is related to those variables that describe the stress-
deformation in the post-yield region and, specifically, in the strain-hardening
portion of the curve as depicted by variables u′y and uL and the slope of the
curve in the post-yield region (ke).

In the current formulation of the model, in addition to the spring behavior
curve, the number of springs (m) making up the model and the percentage of
ruptured springs (NL) that constitute fatigue failure are also treated as random
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Figure 7.5: Response of a single element model (spring).

variables. All of the random variables in the model are described with their
respective means and standard deviations and a prescribed distribution model
(e.g., normal). The model can also include the randomness in parameter F to
simulate the variations in the applied stress range in structural members such
as in highway bridges (Mohammadi, Guralnick, and Polepeddi [10]). However,
in most laboratory investigation, the variation in the applied stress is expected
to be minimal or even non-existent.

7.3 Basic Formulation

Probabilistic Formulation of Spring Failure The applied stress (F ) is distributed
evenly among the m springs (see Fig. 4); and as such, the stress in any spring
i is σi = F/m. Rupture in a spring will occur when the stress σi exceeds the
resistance RL (see Fig. 4). As the deformation and strain in a spring increases,
three steps can be recognize as described below:

• Step 1: In the first step, spring k (attached to the rigid bar) will stretch
until the stress in the spring has reached a level high enough to move the
block (Ryi). If the stress on the system is not greater than the elastic
limit, then the system will never undergo a failure due to fatigue. This
step corresponds to the initial linear portion in the stress-strain curve of
Fig. 5.
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• Step 2: In this step, the block will begin to slide and continue to slide
until the string has stretched to its full length (S). This corresponds to
the horizontal portion of the stress-strain curve of Fig. 5 and is similar
to the plastic portion of the behavior of metals such as steel. When the
spring (with constant k) is still in the plastic portion, the second spring
(with the constant k′) will not stretch at all.

• Step 3: In this step, the stress goes beyond the elastic limit, and the
model will begin experiencing perfectly plastic behavior. Once this step
has been reached, spring k will continue with its stretch; while spring k′

will just begin to stretch. The combined behavior of the two springs will
yield the spring constant ke, in which,

ke =
k k′

k + k′
(7.1)

Both springs will continue to deform until either the stress reverses or
spring k′ breaks. If spring k′ has not yet broken, the behavior will follow
the strain-hardening portion of the stress-strain curve of Fig. 5 as marked
with a constant spring constant ke.

• Step 4: If spring k′ has not yet broken, then the block will slide backward
and the stress-strain behavior will show a stress reversal pattern as shown
in Fig. 6. The element will recover a strain in the amount of (∆ux) which
is the total stress on the element (Rx) divided by the spring constant (k):

∆Ux =
Rx

k
(7.2)

In each cycle where the stress is greater than the yield stress (Ry), the initial
length of the string (S) will be reduced to a new length (Sn), which will in turn
reduce the ductility of the system. This is an important aspect of fatigue failure.
The load history plays a large role in the load capacity of a member. In this
model, the length of the string is proportional to the portion of the available
plastic region being used:

Sn − S
RL −Rx

RL −Ry
(7.3)

When the stress has returned to zero, the model returns to its original position,
but with a residual strain causing the string to be shorter in the next cycle.
When spring k′ breaks, the behavior changes (as shown in Fig. 7). However,
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Figure 7.6: Deformation recovery response (springs k and k′ intact).

after this stage, the broken element is removed from the system; and the burden
of carrying the stress F will be borne by the surviving springs. In such a case,
of course, each of the individual surviving springs will carry a larger stress value
than was previously the case.

Considering again the system before any element has been removed and
upon application of the first stress cycle, the probability of failure p1 in any one
spring is,

p1 = P (RL ≤ σi) (7.4)

Let Z1 = RL − σi, then pi = P (Z1 ≤ 0).
From Fig. 5, RL and consequently Z1 can be written as,

RL = Ry + ∆R = Ry + kx (uL − u′x) (7.5)

Zt = Ry + ke (uL − j′y)− F

m
(7.6)

where ke = k k′/(K +k′), as described by Eq.(7.1) . Parameters Ry, ke, uL and
u′y are all treated as random variables. Using a first order approximation, the
probability term in Eq.(7.4) can be written in the following form,

pt = Φ
(

0− Z̄1

S1

)
(7.7)
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Figure 7.7: Strain recovery response (spring k′ broken).

in which Z̄1 and S1 are the mean and standard deviation of Z1, respectively,
and Φ(·) represents the normal probability distribution function. They can be
estimated using the first order approximation (Khisty and Mohammadi [11]) in
terms of the mean and standard deviations of all random variables describing
the spring behavior as depicted in Fig. 5. Upon the application of the first
stress cycle, the estimated number of springs that survive the load is (1−p1)m.
After the second cycle, the probability of failure of a given spring is p2, where,

p2 = P (Z2 ≤ 0) = Φ
(

0− Z̄2

S2

)
(7.8)

and
Z2 = Ry + ke (uL − u′y)− F

m (1− p)
(7.9)

Again Z̄2 and S2 are the mean and standard deviation of Z2, respectively. The
number of springs that survive after the second stress cycle is (1−p1) (1−p2)m.
In general, after the nth stress cycle, if pn is the failure probability of a given
spring, then,

pn = P (Zn ≤ 0) = Φ
(

0− Z̄n

Sn

)
(7.10)

and
Zn = Ry + ke (uL − u′y)− F

m (1− p1) · · · (1− pn)
(7.11)
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Again Z̄n and Sn are the mean and standard deviation of Zn, respectively. Note
that the product (1−p1) (1−p2) · · · (1−pn)m is the number of springs surviving
after the nth stress cycle. Using the first order approximation, a set of general
equations for the mean and standard deviation of Zn can be written as follows,

Z̄n = Ry + ke (uL − u′y)− F

m (1− p1) · · · (1− pn)
(7.12)

S2
n = S2

Ry
+ S2

ke
(ūL − ū′y)2 + k̄2

e (S2
uL

+ S2
u′y

) +
S2

F

m (1− p1) · · · (1− pn)
(7.13)

in which a bar over each symbol indicates the mean value of the respective
random variable; whereas, s term such as SX indicates the standard deviation of
a random variable X. Although, parameter F in deriving Eqs. (7.12) and (7.13)
is treated as a random variable, when simulating fatigue failure of laboratory
test specimens, the variation in F expected to be small or non-existent. Thus,
the standard deviation of F in Eq.(7.13) can be taken equal to zero.

Simulation of Fatigue Failure Fatigue failure occurs when a significantly
large number of springs have failed. Depending on the type of material, this
number is also random; and, in this paper, we used a random variable describing
the number of spring failures which constitute fatigue failure. In a given case
of applied stress, a random value for NL is selected. This random value can be
generated using a mean value N̄L and a standard deviation SML . Solution Pro-
cess Simulating Cyclic Damage Process Equations 10 and 11 can be solved in
a step-by-step manner starting with n = 1 and continuing the computations un-
til system failure occurs. Before each computation run, the mean and standard
deviation of all parameters describing the spring behavior are selected. A ran-
dom number is then generated for the required percentage of ruptured springs,
that constitutes fatigue failure (i.e., NL) and the total number of springs that
make up the entire model (i.e, the parameter m). The computation of the terms
pn is then achieved using Equations 10-13 after each stress application. Upon
each stress cycle, the percentage of ruptured springs is computed and compared
against NL to determine whether fatigue failure has occurred. Once the per-
centage of ruptured springs is equal to or exceeds NL, then the cycle number
corresponding to this stress application is recorded. This is the number of stress
cycles causing failure.



7.4 Simulation of Hysteresis Loss ... 65

7.4 Simulation of Hysteresis Loss
vs. Number of Stress Cycles

With every cycle of loading that is beyond the plastic region, there will be an
associated loss of recovered strain energy. This loss of recovered strain energy
is the hysteresis loss per cycle (∆Ur). The variable (r) is the number of cycles
beyond the elastic limit of the element. If the stress is smaller than the elastic
limit of the element, there will be no hysteresis loss and the elements can be
loaded an infinite number of times without experiencing fatigue. The hysteresis
loss for each element is the area under the stress-strain curve for each individual
element. The hysteresis loss for the entire model will be the sum of the hysteresis
for all elements. If spring k′ has not yet broken and the system undergoes a
stress reversal process as shown in Fig. 6, The hysteresis loss will be

∆U1 =
RY

2
uy + Ry (u′Y − uY ) +

RX + RY

2
(u′X − uX)− RY

2
∆UX (7.14)

However, if spring k′ fails, as was described earlier, from Fig. 7 the hysteresis
loss is,

∆U2 = Ry (uX − uY ) (7.15)

If upon each stress cycle, m1 elements, of the total of m, survive, then the total
hysteresis loss is

∆Ur = m1 ∆U1 + (m−m1)∆U2 (7.16)

The hysteresis loss per cycle at the beginning of the strain-hardening region,
is shown in Fig. 8a (when spring k′ has not yet broken). With each cycle of
applied stress, the size of the available stretch in the string (see Fig. 4) will be
decreased, and therefore the length of the plastic region will become shorter.
This corresponds to a loss of ductility similar to the loss that occurs in metals
when they are cyclically loaded above their elastic limit. This loss of ductility
has been noted by Puskar and Golovin [12]. The hysteresis loss when spring k′

breaks is shown in Fig. 8b for comparison. Figure 9 shows the hysteresis loss
near the end of the strain-hardening region of the stress-strain curve. Of course,
this is only possible if spring k′ does not break. It is important to note that
the strain-energy produced by a failed element is larger than that of a surviving
element. When the hysteresis loss is no longer decreasing, a sufficient number
of elements have failed; and as such, the model simulates the condition similar
to fatigue failure in metals.
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Figure 7.8: Hysteresis loss: beginning of strain hardening region.
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7.5 Determination of Model Parameters

Spring parameters depicted in Fig. 5 can be determined from simple tests of
materials. The standard deviations of individual parameters are the measures
of uncertainty in materials behavior and can be estimated from published data
on variations observed in metal yield and ultimate strain values. The strain-
hardening behavior shown in Fig. 5 appears to play a crucial role in the overall
behavior of the material in producing random fatigue failure results (as described
later). This strain-hardening behavior can also be investigated by means of a
limited number of simple tension tests. The limited number of tests needed
to calibrate the spring behavior would require, by far, much less labor and
cost compared with the numerous tests needed to investigate the fatigue failure
behavior using conventional laboratory investigations. As is evident from the
formulation, the parameter m plays an important role in the model and in
the simulation process. Generally, m will be proportional to the inverse of the
probability of failure pn. One can begin with a large m as a starting value and
revise it later if such revision becomes necessary.

7.6 Special Cases

In extreme conditions, where the applied stress is either very small or very large,
special cases for fatigue failure are observed. When the stress is very small, the
value of pn does not change from one stress cycle to another. This case will
especially occur when RL is large (i.e., the ratio mRL/F is very large). And as
such, Zn will be large and result in a nearly zero failure probability. If after a
very large number of cycles, there is still no or very little change in pn, failure
is unlikely. This case corresponds to a very low stress range smaller than the
“endurance” limit in fatigue behavior of steel. In another extreme condition,
when F is very large and RL is small (i.e., the ratio m RL/F is very small),
the value of pn changes dramatically and approaches a large value rapidly after
only a few stress cycles. This condition corresponds to low-cycle fatigue, where
after a few stress cycles, failure occurs.
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7.7 Example

Table 1: Variability in Model Parameters
Variable Unit Mean Coefficient of Variation

Ry psi 1 0.2
uy in 0.067 0.05
u′y in 0.183 0.05
uL in 0.283 0.05
k, k′ `bs/in3 20 0.14
ke `bs/in3 10 0.2

To demonstrate the model, the number of elements is taken to be 10, 000.
All of the model parameters are treated as random variables and defined with
their respective means and coefficients of variation. These values are shown in
Table 1. The stress has a range of values between 3, 000 psi and 15, 000. The
mean value of the parameter NL is selected as 25 percent with a coefficient
of variation equal to 0.20. Several random numbers for this parameter are
also generated using a normal distribution. The random values range from
20.45 to 31.40 percent. The number of elements, m can also be treated as a
random variable to further increase the variations to be expected in typical
fatigue failures. Within each stress value, the results of the total number of
cycles to failure are random and show a rather wide range. Within each stress
level, 25 randomly-generated simulations were conducted. The number of cycles
to failure and the percentage of surviving elements upon failure were obtained
and averaged for the 25 simulations. Table 2 summarizes the total number of
stress cycles obtained for various stress values applied to the system.
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Table 2: Results of Simulated S-N Relation
Applied Stress Average Number of Average Percentage

(psi) Cycles to Failure of Surviving Elements
15, 000 3 65.1
14, 000 5 62.6
13, 000 10 52.1
12, 000 20 49.0
11, 000 42 49.0
10, 000 119 49.0
9, 000 317 49.2
8, 000 1, 063 40.5
7, 000 4, 139 41.4
6, 000 17, 190 42.1
5, 000 26, 659 21.6
4, 000 71, 913 18.2
3, 000 326, 365 10.9

Figure 7.10: Simulation of Wöhler S−N Diagram (stress vs. logarithm of cycles
to failure).

As is evident from Table 2, at stresses below 3, 000 psi, a very large number
of stress cycles will be required to cause failure. A stress value below this
constitutes the “endurance limit”, at which failure will not occur. Figure 10,
shows the results in graphic form using a semi-log scale. This figure clearly
depicts the usual S − N (or Wöhler-type) curve. One of the more interesting
aspects of the strain-hardening region is the hysteresis loss per cycle. Because
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(r) can have such a large range, the hysteresis loss for each of the stress levels
must be analyzed for several different (r) ranges. Table 3 shows the values of
the hysteresis loss per cycle at different stress levels. This table is just one
example of the values that the hysteresis loss can take on at these stress levels.
The randomness inherent in the model output also affects the hysteresis results.
Upon repeating the same stress levels in a new run, different results will be
generated within the uncertainties implemented in the model parameters. When
the (r) values of hysteresis were plotted at stress levels of 13, 000 psi, 11, 500
psi, and 10, 000 psi the behavior is similar to what would be seen for an actual
metal under different stress levels. Figure 11 shows this relationship. This
further shows that the model is capable of simulating the fatigue behavior in
metals.

Figure 7.11: Simulated hysteresis loss vs. cycles for various stress levels.
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Table 3: Hysteresis Loss at Different Stress Levels
Stress → 13, 000 psi 11, 500 psi 10, 000 psi
Cycles ↓

1 1159 1326 999
5 1072 994.199 762.179
10 1061 984.844 757.384
15 1049 974.66 752.327
20 1035 963.469 746.974
25 1017 951.033 741.286
30 999.208 937.039 735.214
35 0 921.127 728.699
40 0 903.238 721.666
45 0 887.25 714.018
50 0 0 705.628
55 0 0 696.327
60 0 0 685.877
65 0 0 673.934
70 0 0 659.974
75 0 0 643.141
80 0 0 621.922
85 0 0 593.448
90 0 0 556.209

7.8 Sensitivity of Results to Variation in Material
Properties

An important feature of the model presented herein is its ability to portray the
scatter in fatigue life, which is often observed in experiments with metals. To
further explore the main sources of this scatter, the influence of the variation in
model parameters on the final outcome for fatigue life was investigated. Specif-
ically, three sources of parameter variations were evaluated. These were: (1)
variation in the parameters describing the elastic portion of the spring behavior
curve; and (2) variation in the parameters describing the post-yield region (i.e.,
strain-hardening region and the onset of plastic behavior) in the spring behavior
curve. The results indicate that the variability in the parameters describing the
material behavior in the post-yield region has the most significant effect on the
variation observed for fatigue life. The variability in the parameters describ-
ing the elastic region of the spring behavior curve is not a major factor in the
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fatigue life scatter. This variability will be shown to have negligible influence
on fatigue life. Figure 12 presents the significance of variability in the param-
eters describing the post yield region of the spring behavior curve compared
with the variability in parameters describing the elastic region of the curve. As
may be seen in this figure, as the variability in the elastic parameters increases,
the change in the variability in fatigue life is only marginal. However, when
the variability in post-yield parameters increases, there is a dramatic change in
the variation obtained for fatigue life. These results are consistent with actual
fatigue behavior in metals. As explained earlier (see Fig. 1), the inception of
fatigue damage starts by the formation of microscopic zones of plasticity and the
organization of these zones into macroscopic plastic region which lead to crack
initiation. To a great extent, the scatter inherent in fatigue life is affected by
randomness in the plastic regions which is predominately affected by material
non-linearity. In our model, this non-linearity is represented by parameters de-
scribing the strain-hardening and the onset of the plasticity region in the spring
behavior.

Figure 7.12: Effect of parameter uncertainty on variation in fatigue life.

7.9 Summary and Conclusions

The model presented in this paper can be used to study fatigue process in metals
without an excessive appeal to empiricism. The model’s capability is demon-
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strated in developing the S−N relationship with characteristics similar to those
associated with analogous curves obtained in actual experiments with metals.
To apply the model to a broader fatigue study, several additional developments
will be necessary. Specifically, an approach must be developed that can be used
in calibrating the parameters describing the spring behavior in the model for a
given material. We believe that this can be achieved with a limited number of
simple laboratory tests on material behavior and calibration of the spring model
parameters with a few cyclic load test results (as described earlier). This area is
under further investigation by the first two authors in a series of comprehensive
studies on understanding the inception and origin of fatigue behavior in metals.
Specifically, a methodology based on the minimization of the difference between
the strain energy of the spring model and a specific metal specimen is being
investigated to obtain realistic values for the model parameters.

The following summarizes the main conclusions:

• A model made of a large number of nonlinear parallel springs can be used
to simulate fatigue failure in metals.

• The results from simulating fatigue behavior from this model show that
most of the variation in fatigue life is inherent in the strain-hardening and
plastic behavior of the non-linear springs.

• Specific capabilities of the model are in simulating (1) the S−N relation-
ship; and (2) observed mechanical hysteresis behavior in metals subject
to cyclic stresses and fatigue failure.
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8

Energy Conservation: Science or
Ideology?

Porter W. Johnson1

and David Atkinson2

Illinois Institute of Technology

“I no longer believe in the existence of – nor the conservation of –
energy.”

- Thomas Erber (October 1976)

8.1 Introduction

One topic of long-standing interest to Tom Erber has been his exploration of
the nature of energy conservation and its limitations in practice. We shall make
a few comments on this topic here.

Energy conservation appears to be a direct and inevitable consequence of
Newtonian mechanics, in that, for systems which interact through conservative
potential fields or which undergo elastic collisions, it leads directly to conser-
vation of energy. The work-energy theorem accounts for the energy balance,
the net work being either stored as potential energy, or else presumably con-
verted into other forms of energy. Indeed, in the context of the special theory
of relativity, energy and and momentum conservation are placed upon the same

1Professor of Physics, Emeritus. E-mail: johnsonpo@iit.edu
2Professor of Physics, Emeritus, University of Groningen (NL)
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footing, since for either of them to be satisfied in every inertial frame, they
must both be met. Although the connection between conservation of energy
and conservation of momentum is more tenuous in Newtonian mechanics, the
relativistic extension of this theory treats these requirements on a unified basis,
and tied to basic symmetries of space-time invariance. How could one imagine
a “physical reality” without these cornerstone principles?

8.2 Zeno Balls

Actually, there has been a substantial amount of recent exploration of this
question – by philosophers (see References [1] - [3]) rather than by physicists3,
who apparently have been pre-occupied with the “Zen” aspects of such things as
the Higgs boson, superstrings, and dark matter. These analyses have pointed
out certain difficulties, which can be encapsulated in the classic elementary
demonstration apparatus known as Newton’s balls.

¾

&%

'$

m0

v0

½¼

¾»

m1

m

m2

f

m3

c...
*

Figure 1. Collision of an infinite number of progressively smaller balls

Here one places a series of identical masses precisely in a row, and gives
the first mass a velocity v0 toward its nearest neighbor. After a sequence of
collisions, the last mass in the row proceeds off with velocity v0 in the direction
of the initial motion, with all other masses being at rest. This demonstration is
a classic and concise demonstration of energy and momentum conservation in
classical mechanics. However, what happens if there is no “last mass”? That is,
what occurs if there is an infinite sequence of masses in the row. Do the energy
and the momentum simply disappear into the continuum of mass?

3It is an interesting coincidence that the mathematician Anatole Beck, who attended Peter
Stuyvesant High School in New York City at the same time as Tom Erber, has written an
analysis of the related problem of the hare and the (fixed) tortoise. He made the point
that the standard specification of the velocity of the hare at a discrete set of locations that
accumulate at the location of the tortoise is not sufficient to guarantee that the hare actually
catches the tortoise. Furthermore, the result is still correct if the position of the hare is
continuous and infinitely differentible. For details see Reference [4].
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Within a few heartbeats, a physicist might point out that such a system
is “unphysical”, inasmuch as it would require an infinite amount of mass, and
that it would be impossible to align the masses so as to maintain collinearity of
the collisional process, without introducing friction or other dissipative effects.
We will set aside the second objection for the present, since within the context
of classical mechanics there is no intrinsic level of uncertainty or misalignment
implicit in the formalism, and that it should be only a matter of sufficient care
and cleverness to achieve a given level of precision. Does the requirement of a
finite total mass in the system fix the problem? Remarkably, the answer is NO!

Let us consider an infinite sequence of masses (m0,m1,m2, · · · ) aligned in
order along a line, as shown. Suppose further that the mass m0 is given a
velocity v0 toward the first mass m1, which is at rest, along with all the other
masses. After the collision the mass m0 leaves with velocity V0, and the mass m1

goes forward with velocity v1. The mass m1 strikes the mass m2, leaving with
velocity V1, the mass m2 going forward with velocity v2. This collisional round
continues until all subsequent balls have been undergone two collisions. The
requirements of energy and momentum conservation in this round of collisions
are

mk vk = mk Vk + mk+1 vk+1

1
2
mk v2

k = 1
2
mk V 2

k + 1
2
mk+1 v2

k+1

where k = 0, 1, · · · . Equivalently, we have

vk =
mk+1 + mk

2mk
vk+1

Vk = vk+1 − vk =
mk −mk+1

mk + mk+1
vk

Let us write these relations as

vn+1 =
2

1 + µn
vn

Vn =
1− µn

1 + µn
vn

where µk =
mk+1

mk

Rather complete discussions of these collisional sequences are given in References
[5] -[7]. Here we shall draw special attention to the case in which all particles
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recoil with a common speed; i. e., Vn = V for all n. When this occurs, the
particles move in lock step after the first round of collisions, and there are no
subsequent collisions. In terms of the parameters

αn =
1 + µn

1− µn

the requirement of a constant recoil speed V may be written as

vn+1 =
2

1 + µn
vn

αn+1 V =
2

1 + µn

1 + µn

1− µn
V

αn+1 =
2

1− µn
= 1 +

1 + µn

1− µn

αn+1 = αn + 1

There is a one-parameter family of solutions to this latter recursive formula for
αn:

αn = λ + n

where the parameter λ > 1 is otherwise arbitrary. The intermediate velocities
are

vn = αn V = (λ + n)V

and the parameter λ may determined from the original velocity of the incident
ball:

λV = v0

The corresponding mass ratios are

µn =
αn − 1
αn + 1

=
λ + n− 1
λ + n + 1

We may determine the masses themselves:

mn

m0
=

n−1∏

k=0

µk =
λ (λ− 1)

(λ + n) (λ + n− 1)

Therefore, the total mass of all the balls is

M =
∞∑

n=0

mn = λm0
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The initial momentum and kinetic energy are given by

Pi = m0 v0

2 Ti = m0 v2
0

and the final values are

Pf = M V = m0 v0

2 Tf = M u2 =
mv2

0

λ

For this case, as well as for a wide variety of other cases, momentum is conserved
whereas energy has been lost. The intermediate velocities vn increase with n,
and in the limit the intermediate kinetic energy approaches a non-zero limit:

2 T lost
n = mn V 2

n = m0 u2 λ (λ− 1)
(λ + n) (λ + n− 1)

(λ + n)2 → m0 v2
0

(
1− 1

λ

)

This amount of energy disappears into the continuum in the process.
The case of a common recoil speed can be compared with the completely

inelastic collision of a particle of mass m0 and initial speed v0 with a solid body
of mass M − m that is initially at rest. The two masses coalesce during the
collisions, and afterward the entire system of mass M moves with speed V . For
the collision the momentum is conserved:

m0 v0 = M u

whereas this amount of energy is lost – presumably converted into “heat”.

2 T lost = m0 v2
0 −M u2 = m0 v2

0

(
1− 1

λ

)

This energy is converted into “heat” in this inelastic process.
The original collision sequence could be interpreted as a microscopic rendi-

tion of this corresponding inelastic collision, without the requirement of “bind-
ing forces” to keep the final mass intact. However, it is a mystery as to how an
elastic collisional sequence could possibly mimic an inelastic process.

Note also that the intermediate speeds (λ + n) v become arbitrarily large
at large n, and this fact might suggest that our result might be a spurious
nonrelativistic limit of an more appropriate relativistic process. We will discuss
the relativistic version in the next section.
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8.3 Relativistic Collisions
The relativistic equations reflecting energy and momentum conservation for the
nth collision (with c = 1) are

γ(vn)mn = γ(Vn)mn + γ(vn+1)mn+1

γ(vn)mn vn = γ(Vn)mn Vn + γ(vn+1)mn+1 vn+1

where γ(w) = 1/
√

1− w2 is the Lorentz factor. By adding and subtracting
these equations we may obtain

ε(Vn)− ε(vn) = µn (1− ε(vn+1))
ε−1(Vn)− ε−1(vn) = µn (1− ε−1(vn+1))

where ε(w) = (1− w) γ(w) =
√

(1− w)/(1 + w). Equivalently, we have

ε(Vn) =
ε(vn+1)
ε(vn)

=
µn + ε(vn)

1 + µn ε(vn)

For the relativistic version of the constant recoil process, the final speeds Vn

have a common value V , so that ε(Vn) = ε(V ) = η for all n. We may then solve
recursively to obtain

ε(vn) = ηn ε(v0)

The corresponding mass ratios we obtain

µn =
η − ε(vn)

1− η ε(vn)
=

η − ηn ε(v0)
1− ηn+1 u(v0)

The masses themselves are

mn = m0 ηn (1− ε(v0)) (η − ε(v0))
(1− ηn ε(v0)) (η − ηn ε(v0))

and the total mass is

M =
1− ε(v0)

1− η

The quantities ε(vn) asymptotically approach zero, so that the corresponding
speeds vn approach the speed of light. The limiting energy of the nth ball after
the first collision is

En = mn γ(vn) =
mn

2

(
ε(vn) +

1
ε(vn)

)
→ m0

2 ε(v0) η
(η − ε(v0)) (1− ε(v0)) = E′
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This quantity is also equal to the asymptotic value of the momentum at large
n, so that both energy and momentum are lost in this collisional sequence.

It is instructive to compare this process with one in which a mass m0 with
initial speed v0 collides with a solid object of mass M−m, initially at rest. After
the collision sequence the mass M that recoils with speed V , and also a massless
particle of energy E′ – such as a photon – is produced. The requirements of
energy and momentum conservation are

m0 γ(v0) + (M −m0) = M γ(V ) + E′

m0 γ(v0) v0 = M γ(V )V + E′

Equivalently,

m0 ε(v0) + (M −m0) = M ε(V )
m0 ε−1(v0) + (M −m0) = M ε−1(V ) + 2E′

The first equation, written in terms of η = ε(V ), is

M = m0
1− ε(v0)

1− η

whereas the second relation gives

E′ =
m0

2 ε(v0) η
(η − ε(v0)) (1− ε(v0))

Thus, this process has the same kinematical form as the relativistic collisional
sequence.

In summary, the elastic relativistic collisional sequences with a constant ve-
locity of recoil are microscopic renditions of single collisions in which a massless
particle is produced.

8.4 Classical Statistical Mechanics

Suppose that an infinite set of masses {mn}, with finite total mass M , as in
the previous two sections, is confined by walls to a one-dimensional region of
finite length. Suppose, as before, that initially the heaviest particle, with mass
m0, has speed v0, the rest of the particles being at rest. Let the particles
subsequently collide elastically with one another, and subsequently at the walls.
This seems like a simple extension of what we have done above, but it is not.
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To see this, given the case of constant recoil, as in Sect. 1.2 (nonrelativistic), or
Sect. 1.3 (relativistic), let us consider the state of the system after all the balls
have collided with one another, but before any of them have reached a wall.
They are all moving with the same speed towards the left, and will continue
to do so until they hit the leftmost wall. Or will they? Which ball will strike
the wall first? No ball can do so, for if ball number n were to hit the wall, its
neighbor to its left should have struck the wall first, and this applies to any
ball at all. The inconsistency is identical to the one discussed by Alper and
Bridger [8], in which an additional ball approaches the point of accumulation
of an infinite set of balls that are all initially at rest. Indeed, by looking at
the constant-recoil scenario from a co-moving frame of reference, we see a wall
moving to the right, approaching the point of accumulation of the positions of
an infinite set of stationary balls: exactly the Alper-Bridger case. In Ref. [9]
we have advocated a radical way around the impasse, namely that of embracing
Aristotle’s “potential infinity”, in contrast to “actual infinity”. The distinction
is that between the limit of a finite system, as the size grows without bound, and
an infinite system ab initio . A merely potentially infinite set of balls can collide
with a wall, and moreover energy and momentum are both conserved throughout
all collisional processes. We shall accordingly consider the statistical mechanics
in one dimension of a finite, but large number of balls, with a view to inferring
what happens in the limit of an infinite system.

Let us assume that the non-relativistic collisional system evolves into a con-
dition of statistical equilibrium. In equilibrium, we suppose that it would be
equally likely for a particle to lie anywhere within the region of phase space cor-
responding to a given total energy. Let us consider a system of N non-interacting
non-relativistic particles with masses

mn = m0/2n where n = 0, . . . , N − 1

which is confined along a line of length L. The amount of phase space of this
system for energy E is

Ω(E) =
∫

dx0 . . .

∫
dxN−1

∫
dp0 . . .

∫
dpN−1 δ (E − E0 − . . .− EN−1)

where the single particle energies are

En =
p2

n

2 mn

For the case of impenetrable particles along the line, the conditions

0 ≤ x0 ≤ x1 ≤ . . . ≤ xN−1 ≤ L
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must be maintained. Thus the volume integral is

∫ L

0

dx0

∫ L

x0

dx1 . . .

∫ L

xN−2

dxN−1 =
LN

N !

When the system achieves thermal equilibrium at an (absolute) temperature T ,
the quantity Ω(E) must be multiplied by the Boltzmann factor exp(−βE) to
determine the occupation probabilities. The partition function is

Z(β, N, mn) =
∫ ∞

0

dE Ω(E)e−β E =
LN

N !

N−1∏
n=0

f(β, mn)

where f(β, mn) =
∫ ∞

−∞
dpn exp(−β p2

n/(2 mn)) =
√

2 π mn

β

Thus we obtain

Z(β,N,mn) =
LN

N !

(
2π

β

)N/2
(

N−1∏
n=0

mn

)1/2

The average single particle energies are

En = − ∂

∂β
log f(β,mn) =

1
2 β

=
kB T

2

and the total energy is

E = − ∂

∂β
log Z =

N

2 β
=

N kB T

2

The energy is partitioned equally among all the particles – The Equipartition
Theorem. In particular, the heaviest particle, with mass m0, would have an
average speed of

u0 =
√

2 E

Nm0

whereas the lightest particle, of mass m0/2N−1, would have an average speed of

uN−1 =

√
2N E

Nm0
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For the case of “potential infinity” (i. e., the limit N → ∞ with total energy
fixed) each particle would have a negligible amount of energy, with the heav-
ier ones moving slowly and the lighter ones moving rapidly. This system in
equilibrium would produce an average force

F =
1
β

∂

∂L
log Z =

N

β L
=

N kB T

L

on the immovable walls at each end of the containment region. This relation is
the one-dimensional analogue of the Ideal Gas Law. The force of containment
is finite, but the only possible equilibrium temperature is absolute zero.

Whether or not statistical equilibrium ever arises, we still expect the lighter
particles to have more substantial speeds, with the heavier ones moving more
slowly over the course of time, as a result of the approach to equilibrium. In
a preliminary numerical study of one-dimensional collisions a finite number of
distinguishable, impenetrable balls, we obtain results that are consistent with
this viewpoint. Namely, when the initial kinetic energy of the balls is fixed, and
the number of balls is increased, the energy is seen to be shared with all the
balls, when averaged over a sufficiently large time interval.

The relativistic case is rather similar in character. The amount of Lorentz
invariant relativistic phase space for total energy E is

Ω(E) =
∫

dx0 . . .

∫
dxN−1

∫
dp0

E0
. . .

∫
dpN−1

EN−1
δ (E − E0 − . . .− EN−1)

where the single particle energies are

En =
√

p2
n + m2

n

The corresponding partition function is

Z(β) =
LN

N !

N−1∏
n=0

z(β, mn)

where

z(β, mn) =
∫ ∞

−∞

dpn√
p2

n + m2
n

exp
(
−β

√
p2 + m2

n

)

= 2
∫ ∞

0

dt exp(−β mn cosh t) = 2 K0(β mn)
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where K0 is the modified Hankel (Kelvin) function of order 0. For asymptotically
limiting cases we obtain

z(β,mn) =





2 log 2/(β mn) β mn ¿ 1

√
2 π/(β mn) exp(−β mn) βmn À 1

The average single particle energies are

En = − ∂

∂β
log z(β, mn) =





1/β β mn ¿ 1

mn + 1/(2β) β mn À 1

The kinetic energies of the particles approach kBT/2 when kBT ¿ mn, whereas
when kBT À mn they approach kBT . For intermediate masses they lie between
these limits. The full partition function is

Z(β) =
(2L)N

N !

N−1∏
n=0

K0(β mn)

and the total energy is

E = − ∂

∂β
log Z =

N−1∑
n=0

En

Thermal equilibrium can occur only at absolute zero temperature, as was true
for the non-relativistic case.

The force at the ends of the region of containment are

F =
1
β

∂

∂L
log Z =

N

β L
=

N kB T

L

This one-dimensional version of the perfect gas law4 remains valid for a finite
number of particles with an arbitrary distribution of masses. It remains valid
even for an infinite number of particles.

We find that, at thermal equilibrium, the mechanical energy of the one
dimensional closed systems remains constant over the course of time. However,
whatever the dimension, when the number of particles N is increased with a fixed
amount of mechanical energy, the equilibrium temperature T decreases. In the

4The three-dimensional version, P = N kB T/V is also correct for relativistic systems.
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limit N →∞ that temperature must approach absolute zero. Consequently, the
energy is still present inside the one-dimensional box, but it cannot be recovered
by thermal contact with a body at finite absolute temperature.

In Sections 1.2 and 1.3, we encountered violation of the first law of thermo-
dynamics (that is, the law of conservation of energy) with an actual infinity of
balls. In the present section we considered a potential infinity of balls (i.e., the
limit of the energy of N balls, as N → ∞), but they are confined to a finite
interval. Although the first law of thermodynamics is observed, the second law
of thermodynamics ensures that the energy is irrecoverable. In the next sec-
tion we shall see that quantum mechanical considerations do not alleviate this
situation.

8.5 Quantum Statistical Mechanics

Over a century ago, it was pointed out by Rayleigh and Jeans that the Planck
quantum hypothesis for the description of electromagnetic radiation within a
cavity was deficient. In effect, the thermal energy inside would have to be
shared among the infinite set of modes of electromagnetic radiation in the cav-
ity – leading to an impossibility. It was subsequently realized that the higher
frequency modes of cavity radiation had simply been “frozen out” in the Planck
formula, as a result of quantum effects. Furthermore, a classical description was
inadequate, and an explanation involving the quantum theory was required.

Surely, a quantum mechanical description is also required to analyze the in-
teraction of these systems, which contain an infinite number of particles. In the
quantum mechanical formulation, we might like to drop the notion of impen-
etrability of the masses. Furthermore, we would be able to analyze individual
collisions of localized mass states for a very short time interval, and would
achieve no insight as to the long-term behavior of the system. Therefore, we
will consider the situation in which the masses are confined to a one-dimensional
region, and also are in a state of thermal equilibrium.

For N (distinguishable) particles of individual mass mn, each moving freely
in the region [0, L], the (non-relativistic) Hamiltonian is

H =
N−1∑
n=0

Hn =
N−1∑
n=0

p2
n

2 mn
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The single-particle eigenstates for the nth particle are

ψ{k}n (x) =

√
2
L

sin
k π xn

L

Hn ψ{k}n (x) = E{k}
n ψ{k}n (x)

E{k}
n =

k2 h2

8 mn L2

where h is Planck’s constant and k = 1, 2, · · · . We use these eigenstates as an
orthonormal basis in calculating the quantum mechanical partition function:

ZQM (β,N,mn) = Trace exp(−β H) =
N−1∑
n=0

f(β, mn)

where the single particle traces are

f(β, mn) = Trace exp(−β Hn) =
∞∑

k=1

exp(−β E{k}
n )

For the case β E
{1}
n ¿ 1, many lower-lying energy eigenstates are likely to be

populated. Roughly speaking, the eigenstates E
{k}
n are populated with signifi-

cant probability when k = 1, . . . , K, where

β E{K}
n ≈ 1

Consequently

f(β,mn) ≈ K ≈
√

8 mn L2

β h2

For the other extreme case, β E
{1}
n À 1, only the state k = 1 is occupied with

significant probability, and we obtain

f(β, mm) ≈ exp
(
−βE{1}

n

)
= exp

( −β h2

8 mn L2

)

The average energy for the nth particle is

< En >= − ∂

∂β
log f(β,mn) =





1/(2β) = kB T/2 β E
{1}
n ¿ 1

E
{1}
n = h2/(8mL2) β E

{1}
n À 1
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and the average force induced at the walls by this particle is

< Fn >=
1

βL

∂

∂L
log f(β, mn) =





1/(β) β E
{1}
n ¿ 1

h2/(4mn L3) β E
{1}
n À 1

In both cases note that < Fn >= 2 < En > /L. The average energy and force
on the walls for all N particles are additive:

< E > =
N−1∑
n=0

< En >

< F > =
N−1∑
n=0

< Fn >

So long as the condition
h2

8 mnL2
¿ kB T

is met, the total energy and force on the walls are

< E >=
N kBT

2
and < F >=

N kBT

L

in accordance with the results of classical statistical mechanics.
However, when this condition is not met, only a few low-lying states are

significantly populated, and the equilibrium state of the system differs signifi-
cantly from that of its classical counterpart. In this circumstance, the energy
and force on the walls become significantly larger than they are in the classical
system. In the extreme case

h2

8 mnL2
À kB T

the mass mn lies predominantly in its ground state, k = 1.
The problem of particles in a box stands in strong contrast to that of cavity

radiation, as considered by Planck. There are an infinite number of modes of
electromagnetic radiation inside the cavity, with corresponding frequencies νn.
When the walls of the cavity are held at temperature T , each mode for which

h νn ¿ kB T
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contains a large number of quanta kn of electromagnetic radiation – photons.
On the other hand, for

h νn À kB T

the modes contain very few photons, if any, on average. In fact the very high
frequency modes are completely unpopulated – they do not participate in the
dynamics. The fact that the occupation number kn can be zero for modes of
cavity radiation of high frequency νn is responsible for the reduction of their
contribution to the energy and force on the walls. This fact is responsible for
the difference in quantum effects for the two systems.

In summary, the difficulty in the statistical treatment of the system of Zeno
balls persists in the quantum theory. Indeed, quantum effects serve to increase
the agitation of light particles that are confined.
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[4] Beck, A.: Hase und Schildkröte (Deutsch), Selecta Mathematica V, Band
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Abstract

The problem of a freezing front moving into a liquid in a one di-
mensional semi-infinite domain with arbitrary initial and boundary
conditions was solved by Tao in 1978 using the heat polynomials and
the repeated integrals of the complementary error function. As the
field equations in the frozen and liquid domains are linear, solutions
may be constructed using the Laplace transform. The problem is es-
sentially nonlinear due to the interface conditions. Here, an alternate
derivation using this approach is provided, which demonstrates cer-
tain symmetry between the temperature distributions in the frozen
and liquid domains. A Laplace inversion integral operator is used in
this derivation to obtain the repeated integrals of the complemen-
tary error function and their derivatives of arbitrary orders in their
respective power series, which play a crucial role in the Tao solution.
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9.1 Introduction

Moving or free boundary problems arise naturally in many physical phenom-
ena. A classical example is the freezing of water (or melting of ice) where the
interface separating the two phases is a moving boundary. The presence of such
interfaces renders otherwise linear heat conduction problems nonlinear. The
freezing problem was first considered by Neumann in his unpublished lecture
notes (circa 1860). He found exact solutions for a frozen front moving into a
semi-infinite domain due to an applied sub-zero, constant temperature at the
origin, using a similarity variable. On the basis of a special case of the Neumann
solution published by Stefan previously, this class of problems are known as Ste-
fan problems in the literature (Carslaw and Jaeger [1]). Analytical solutions for
the semi-infinite domain problem with arbitrary initial and boundary conditions
were unavailable for the Stefan problem for over a hundred years until the series
solutions due to Tao [2–7].

Meanwhile, a host of approximate methods have been proposed to solve the
one dimensional Stefan problem. The approximate methods may be classified as
analytic, numerical or mixed. The solutions using the perturbation method, due
to Weinbaum and Jiji [8] and Charach and Zoglin [9] fall under the first group.
As in all perturbation solutions the need for a small parameter limits the ap-
plicability of these solutions. Finite difference and finite element methods form
the bulk of numerical methods. Detailed appraisals of these methods have been
published by Rubinstein [10], Ockendon and Hodgkins [11], Wilson, Solomon,
and Boggs [12] and Fukusako and Seki [13]. Under mixed methods falls the use
of a sequence of global approximating functions for the temperature or enthalpy
distribution. The heat balance integral method due to Goodman [14] is an ex-
ample of this. A mixed method due to Dursunkaya and Nair [15], using spectral
methods on a transformed problem gives a simple system of ordinary differen-
tial equations as an approximation for certain ranges of parameters. Another
class of mixed methods stem from the integral equation formulation of moving
boundary problems by Kolodner [16], Boley [17], Nair [18] and Tao [19]. The
formulations by Kolodner and Tao employ the Green’s functions of moving heat
sources at the interface while Boley and Nair use overlapping extended frozen
and liquid domains with variable boundary temperatures to satisfy the interface
conditions. An extensive bibliography on the moving boundary problem can be
found in a book by Crank [20].

In what follows, we provide an alternate derivation of the Tao [2] solution
using the Laplace transform formulism. The present derivation reveals certain
symmetry in the temperature distributions in the frozen and liquid regions.
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Moreover, the approach presented here appears to be more convenient than
that employed in the original solution. A number of algebraic complexities
can be avoided by using the present approach. The repeated integrals of the
complementary error function and their derivatives of arbitrary order come out
in series form. We also avoid the formula for the multinomial coefficients (see
Abramowitz and Stegun [21]) through the use of a recurrence relation. The
present formulation may be of use for numerical implementation and extensions
to other problems.

9.2 Formulation
We consider a liquid with freezing point T0, occupying the region 0 < x < ∞
with the initial temperature W̄ (x) > T0. At time t = 0, the boundary x = 0
is subjected to a temperature U(t) < T0. Denoting the liquid properties by
symbols with a bar over them and the solid properties by plain symbols, we
have

α
∂2T

∂x2
=

∂T

∂t
, 0 < x < s(t), (9.1)

ᾱ
∂2θ̄

∂x2
=

∂θ̄

∂t
, s(t) < x < ∞, (9.2)

where α and ᾱ represent the diffusivities and s(t) is the solid-liquid interface
location.

The boundary and initial conditions are

T (0, t) = U(t), θ̄(x, 0) = W̄ (x). (9.3)

For this freezing problem the interface conditions are

T (s, t) = T̄ (s, t) = T0,

[
k

∂T

∂x
− k̄

∂T̄

∂x

]

x=s

= ρL
ds

dt
, (9.4)

where k and k̄ are the conductivities, ρ is the density and L is the latent heat.
The temperatures may be scaled by introducing

θ = T/T0 θ̄ = T̄ /T0,

u(t) = U(t)/T0, w̄(x) = W̄ (x)/T0 (9.5)

The resulting equations are

∂2θ

∂x2
=

∂θ

∂t
,

∂2θ̄

∂x2
=

∂θ̄

∂t
, (9.6)
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θ(0, t) = u(t), θ̄(x, 0) = w̄(x), (9.7)

θ(s, t) = θ̄(s, t) = 1,

[
S

∂θ

∂x
− S̄

∂θ̄

∂x

]

x=s

=
ds

dt
, (9.8)

where

S =
k T0

ρL
, S̄ =

k̄ T0

ρL
. (9.9)

It is useful to consider certain properties of the Laplace transform before we
attempt a solution of the above equations. We define

f(p) = L[f(t), t → p] =
∫ ∞

0

f(t) e−p t dt, (9.10)

with its inverse

f(t) =
1

2πi

∫

C

f(p)ept dp =
1

2πi

∫

C

(p/t)f(p/t)ep dp/p

= I [(p/t)f(p/t)] , (9.11)

where the integral operator I, which is independent of time t and its operand are
of use in extracting the time dependence explicitly from the Laplace transforms,
in particular, when the transforms are in the form of power series in p or

√
p.

The inverse integral is performed over the Bromwich contour C.
The Tao solution [2] involves a representation of the solution in terms of

the heat polynomials and the repeated integrals of the complementary error
function. We note that the complementary error function has the series repre-
sentation (Abramowitz and Stegun, [21]),

erfc
(

x

2
√

t

)
=

∞∑

k=0

(−1)k

k! Γ(1− k/2)

(
x√
t

)k

, (9.12)

when x/
√

t is finite. As this series is absolutely convergent, by term-by-term
integration, the Laplace transform is obtained as,

L
[
erfc

(
x

2
√

t

)]
=

1
p

e−
√

px =
1
p

∞∑

k=0

(−1)k

k!
(x
√

p)k. (9.13)

When, in our calculations, evaluation of the inverse of
√

p- terms are needed,
evaluating through integration in the complex p-domain,

I
[(p

t

)(k/2−1)
]

=
1

tk/2 Γ(1− k/2)
. (9.14)
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Applying this to the series in (9.13), we recover the series representation (9.12),
as long as x/

√
t is finite. We caution that in general Laplace transforms f(p)

which are unbounded as Re(p) → ∞ do not have an inverse. If (
√

p)k where
k > 0 are interpreted as belonging to the derivative of the error function (9.12)
at x = 0, the term-by-term inversion gives the correct result and serves as a
useful operational approach.

In the Laplace transform domain the differential equations (9.6) become

∂2θ

∂x2
= p θ − w(x),

∂2θ̄

∂x2
= p θ̄ − w̄(x), (9.15)

where w(x) is an unknown (fictitious) initial condition for the frozen domain.
The solutions of these can be readily written as

θ = a(p)e−qx +
1
p
(1−D2/q2)−1w(x), q2 = p/α, (9.16)

θ̄ = ā(p) e−q̄x +
1
p
(1−D2/q̄2)−1w̄(x), q̄2 = p/ᾱ, (9.17)

where a and ā are arbitrary functions of p, and D is the differential operator
∂/∂x.

Using the initial condition on θ,

a(p) = u(p)− 1
p

(1−D2/q2)−1 w(0), (9.18)

where Dnw(0) denotes Dnw(x) evaluated at x = 0.
Following Tao [2], we assume the boundary condition at x = 0 to be analytic

in
√

t and the initial condition analytic in x. In series representations

u(t) =
∑
n=0

un(αt)n/2/Γ(1 + n/2),

{u(p), a(p), ā(p)} =
1
p

∑
n=0

{un, an, ān}/qn,

{w(x), w̄(x)} =
∑
n=0

{wn, w̄n}xn/n!, (9.19)

(1−D2/q2)−1{w(x), w(0)} =
∑

m=0,2

{∑
n=0

wn+mxn/n!, wm

}
/qm. (9.20)
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From equations (9.18) and (9.19) we have

an = un − wn en (9.21)

where en is 1 when n is 0 or even and it is 0 when n is odd.
Using the inversion operator with explicit time, and τ =

√
t, the solutions

become

θ = I
[∑

n=0

anτne−qx/τ/qn +
∑
n=1

∑
m=0,2

wn+mxnq−mτm/n!

]
(9.22)

and its spatial derivative

Dθ =

I
[
−

∑
n=0

anτn−1e−qx/τ/qn−1 +
∑
n=1

∑
m=0,2

wn+mxn−1τm−1q−m/(n− 1)!

]
, (9.23)

and the corresponding functions for the liquid domain are obtained by attaching
the bar to q, an and wn.

If x is replaced by s(t), the interface conditions (9.8) can be expressed in
terms of the above expressions. Thus,

I
∑
n=0

[
an τn e−qs/τ/qn +

∑
m=0,2

wn+msnτmq−m/n!

]
= 1, (9.24)

I
∑
n=0

[
ānτne−q̄s/τ/q̄n +

∑
m=0,2

wn+msnτmq̄−m/n!

]
= 1, (9.25)

SI
[
−

∑
n=0

anτn−1e−qs/τ/qn−1 +
∑
n=1

∑
m=0,2

wn+msn−1τm−1q−m/(n− 1)!

]

−S̄I
[
−

∑
n=0

ānτn−1e−q̄s/τ/q̄n−1 +
∑
n=1

∑
m=0,2

wn+msn−1τm−1q̄−m/(n− 1)!

]

=
ds

dt
. (9.26)

Assuming
s/τ = s0 + s1τ + s2τ

2 + · · · =
∑
n=0

snτn, (9.27)
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τ
ds

dt
=

∑
n=0

(n + 1)snτn, (s/τ)k =
∑
n=0

τnZ(k)
n , (9.28)

where Z
(k)
n are related to the multinomial coefficients (see Tao, 1978). We may

use the recurrence relations

Z(1)
n = sn, Z(m+1)

n =
n∑

k=0

Z(m)
n sn−k, (9.29)

to construct the full matrix of Z
(k)
n . We also note that Z

(k)
n = 0 whenever n < 0.

To isolate the various powers of τ we need the elementary result,
∞∑

n=0

∞∑

k=0

τn+kAnk =
∞∑

n=0

τn
n∑

k=0

Ak(n−k). (9.30)

Matching the coefficients of equal powers of τ and using the inversion relation
(9.14), and the derivative of s from (9.28), equations (9.24) - (9.26), can be
written as

m∑
n=0

[Amn an + Bmn wn] = δm0, (9.31)

m∑
n=0

[Āmn ān + B̄mn w̄n] = δm0, (9.32)

S

m∑
n=0

[Cmnan + Dmnwn]− S̄

m∑
n=0

[
C̄mnān + D̄mnw̄n

]
= (m + 1)sm/2, (9.33)

where δm0 is the Kronecker delta, and with ne representing the largest even
integer less than or equal to n,

Amn =
∞∑

k=0,1

(−1)k

k!
(
√

α)n−kZ
(k)
m−n

Γ(1− k/2− n/2)
,

Bmn =
ne∑

k=0,2

1
(n− k)!

(
√

α)kZ
(n−k)
m−n

Γ(1 + k/2)
, (9.34)

Cmn =
∞∑

k=1,2

(−1)k

(k − 1)!
(
√

α)n−kZ
(k−1)
m−n

Γ(1− k/2− n/2)
,

Dmn =
ne∑

k=1,3

1
(n− k − 1)!

(
√

α)kZ
(n−k)
m−n

Γ(1 + k/2)
, (9.35)
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and Āmn, B̄mn, C̄mn,and D̄mn are obtained from the above by replacing α by
ᾱ.

We note that the system of equations ((9.31)-(9.33)) are, as expected, tri-
angular and it can be solved sequentially. In equation (9.31), when an are
expressed in terms of the boundary and initial condition coefficients un and wn

using (9.21), equation (9.31) can be solved for wn in terms of un and sn. Simi-
larly equation (9.32) can be solved for ān in terms of w̄n and sn. This illustrates
the symmetry of the solutions in the two phases. Finally, equation (9.33) gives
sn.

From the series representation for Ann, it can be seen that

Ann = in erfc
(√

αs0/2
)
, Ānn = in erfc

(√
ᾱs0/2

)
, (9.36)

as seen in Tao [2].

9.3 Conclusion

A brief alternate derivation of the Tao solution for the Stefan problem is given
using the Laplace transform and its inversion formula. This new derivation
clearly illustrates the symmetry between the solutions in the frozen and liquid
domains in regard to their structure. The initial conditions for the frozen do-
main solution and the boundary conditions for the liquid domain solution form
a sequence of unknown coefficients which can be solved recursively from the
triangular system of equations. Instead of the Taylor series employed by Tao
using repeated differentiation of the repeated integrals of the complementary er-
ror functions, the explicit-time representation of the inverse operator used here
allows isolation of the various powers of

√
t directly. The present approach has

the advantage of reducing the algebraic manipulations by retaining the above
mentioned symmetry, avoiding Faa di Bruno differentiation rules and, to some
extent, replacing the multinomial coefficients through a recurrence relation. In
view of the detailed solution given by Tao [2], we do not discuss the existence
and convergence questions here.
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A Brief History of IIT Physics

Harold N Spector1

Illinois Institute of Technology

The physics department at IIT can trace its origin to the early years of Armour
Institute of Technology, which is one of the predecessors of IIT. When I joined
the department in 1966 as an associate professor, Robert Malhiot was the acting
chair, having succeeded Paul Copland, who had been the chair for several years
up to 1964. The following people were faculty members at that time:

Ray Burnstein exper. high energy
Forrest Cleveland atomic spectroscopy
Nguyen Dzoan exper. plasma
Tom Erber megagauss fields and complex systems
Fred Ernst theor. high energy
Leonard Grossweiner exper. condensed matter: color centers
Arthur Harris exper. condensed matter
Isadore Hauser theor. high energy
Caroline Herzenberg Mössbauer effect (lunar rocks)
Jordan Markham (IITRI chair) theor. condensed matter: color centers
Robert Malhiot theor. high energy
Esther Segal exper. nuclear
Robert Warnock theor. high energy
Harold Weinstock exper. condensed matter
Earl Zwicker exper. condensed matter: color centers

1Professor of Physics, Emeritus: E-mail: spector@iit.edu

103



104 10. A Brief History ...

Robert Estin, who had been heavily involved in physics education, left the
department shortly before I arrived. Howard Rubin, an experimental particle
physicist, joined the department at the same time as I did. Caroline (Little-
john) Herzenberg left the physics department the year after I arrived, going to
IITRI to investigate lunar rocks using the Mössbauer effect. Arthur Harris and
Nguyen Dzoan also left in the late 1960s. Art went to Zenith Corporation and
Dzoan took a position in the electrical engineering department at Notre Dame
University.

The department hired three new assistant professors, Cheuk Chau, who col-
laborated with Harold Weinstock in the Low Temperature Laboratory, Robert
Quigley, a theoretical condensed matter physicist who would collaborate with
Jordan Markham, and Porter Johnson, a theoretical particle physicist, who col-
laborated with Robert Warnock. Fred Ernst dropped research in particle physics
to return to his first love, the general theory of relativity. He organized a rel-
ativity group at IIT together with Robert Malhiot and Isadore Hauser. Fred
gained renown in discovering and developing the Ernst equation. Richard Isaac-
son joined the relativity group as a visiting assistant professor. Robert Malhiot
became the chair in 1968, a position he held until 1970. He was promoted to
the rank of professor.

Robert Quigley left IIT after several years to join the physics department
at Western Washington University, where he switched from condensed mat-
ter physics to astronomy. He became a professor there and served for several
years as chair of the department. Fritz Herlach, who had been at Frascati Na-
tional Laboratory in Italy, joined the department as associate professor and
collaborated with Tom Erber on generating megagauss magnetic fields. After
conducting a successful experiment at SLAC exploring the effects of such fields
with Erber, he was promoted to professor. Herlach left after a few years to take
an academic position at the University of Leuven, in Belgium.

In 1970, Leonard Grossweiner became chair of the department, a position
he held until 1981. He switched his research interests from condensed matter
physics to biophysics, an area in which he continued to work for the rest of
his life. William Brennan, a former student of Len’s, was hired as an assistant
professor and also served as assistant chair, staying for a few years until he left
the department for a job in industry. Porter Johnson then took on the position
of assistant chair. Forrest Cleveland retired during this period because he had
reached the age of 65 for mandatory retirement. He then went to the University
of Kentucky. Jeff Davis, a condensed matter experimentalist working on optical
properties of solids, was hired as an assistant professor. Together with Fritz
Herlach and me, he explored the effect of megagauss magnetic fields on the
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optical properties of semiconductors.
Jeff left IIT for San Diego State University where he became a professor

and a fellow of the Optical Society of America. In the early 1970s, Porter was
promoted to associate professor and Cheuk left IIT to join the California State
University in Chico. Wu-Ki Tung, a particle theorist, joined IIT as an associate
professor. Richard Isaacson left IIT to take a position with the National Science
Foundation in Washington and became one of the driving forces in pushing
for LIGO. Esther Segal left the department at about the same time. Peter
Silverman, a condensed matter experimentalist, came to IIT as an assistant
professor for potential collaboration with Harold Weinstock in low temperature
physics. He played an important role in setting up the Copland Laboratory, but
soon left IIT for a job in industry.

Also, during this period of time, Gerald Cohn and Joseph Baugher were
hired as assistant professors to work in the area of biophysics, and Chumin Fu
was hired as an assistant professor in the area of experimental particle physics.
It was in the early 1970s that the department reached its maximum size of
over 20 faculty members. From 1977-79, Nicholas Karnezos, who got his degree
from the University of Athens, was hired as a visiting assistant professor. While
he was in the department, he collaborated in the low temperature laboratory
with Harold Weinstock, investigating the effects of radiation damage on the
properties of superconductors. When he left the department he joined AT&T
Teletype, which later became Lucent Technologies.

Several people were promoted to the rank of professor during the 1970s.
Harold Weinstock and Ray Burnstein were promoted in the early 1970s while
I was promoted in 1976. Bob Warnock left the department to to move to
San Francisco, where his wife took a faculty position at a prominent medical
school there. Tim Rynne, who had received his Ph.D. from IIT working with
Tom Erber, became a visiting assistant professor in the department where he
continued to work with Tom on megagauss physics and with me on free carrier
absorption in semiconductors in strong magnetic fields. Chumin Fu, Gerald
Cohn, and Joe Baugher all left IIT after a few years. Joe went to AT&T Teletype
where he remained until around 2000. Gerald Cohn went to Abbott Laboratories
where he remained for several years. In this period, Jordan Markham retired
from the department, moving to North Carolina and then to Arizona.

Tom Hsiang, a condensed matter experimentalist, and Leonard Lis, an exper-
imental biophysicist, were hired to replace them. Jim Hanlon, an experimental
particle physicist was hired to replace Chumin Fu. In 1980 Wu-Ki Tung was
also promoted to professor. Tim Rynne left IIT and founded his own company,
and was replaced by John Collins, an elementary particle theorist who came
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at the rank of associate professor. John gained some renown for his work in
renormalization groups in particle physics.

In 1981, Len Grossweiner stepped down from the chairmanship of the de-
partment after having served in this position for eleven years. Len continued
to do research in biophysics, changing his direction so as to promote the use
of photodynamic therapy for the treatment of various cancers, especially that
of the esophagus. He established a collaboration with people at Ravenswood
Hospital which he maintained even after he retired from IIT in 1996. Wu-Ki
Tung then became chair of physics, a position he continued in for three years
until 1984.

During Wu-ki’s term as chair, Fred Ernst, Porter Johnson and Isidore Hauser
were all promoted to the rank of professor. Tom Hsiang left IIT for a position
in an electrical engineering department at the University of Rochester. John
Zasadzinski, a condensed matter experimentalist working on tunneling in su-
perconductors, who had received his Ph.D. at Iowa State, and Dmitri Niarchos,
another condensed matter experimentalist who received his Ph.D. in Greece,
were hired as tenure track assistant professors. In 1983, Carlo Segre, another
condensed matter experimentalist who received his Ph.D.from UCSD, was hired
as assistant professor. In 1983, Leonard Lis left IIT for Kent State University
and Jim Longworth, an experimental biophysicist who had received his Ph.D.
from University of Sheffield in England was brought in as a visiting associate
professor. Jim had been at Oak Ridge and had been president of the Photobi-
ology Society.

In 1984, Porter Johnson became chair of the department. When he assumed
the chair, the physics department (as well as several other academic depart-
ments) was faced with severe budgetary constraints, forcing the elimination of
several positions. Several faculty members left IIT during this period. Jim Han-
lon took a staff position at Fermilab, and Dmitri Niarchos returned to Greece.
Isadore Hauser retired after having spent a sabbatical leave in Mexico. Harold
Weinstock left to become a program director at AFOSR. Fred Ernst left the
department for a position at Clarkson University. A year later, Robert Malhiot
retired from IIT.

In 1987 Tim Morrison, who received a Ph.D. from the University of Illinois
at Urbana, left Argonne National Laboratory to become an associate professor.
Together with Carlo Segre, Tim took initiatives that led the beginning of the
Synchrotron Center at IIT. As a result of his successful efforts, Grant Bunker,
who obtained a Ph.D. from the University of Washington, was hired as an as-
sociate professor. Grant succeeded in starting the BIOCAT beamline at the
Advanced Photon Source. Tim received tenure around 1990 and Grant in the
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mid 1990s. Two other new faculty members were hired in the 1990’s. Liam
Coffey, a condensed matter theorist who received his Ph.D. from the University
of Chicago, was hired as an assistant professor in 1990. Dan Kaplan, an ex-
perimental particle physicist who had been at Northern Illinois University, was
hired as an associate professor in 1994.

In the early 1990s the department lost two of its three theoretical particle
physicists: Wu-Ki Tung, who went to Michigan State University, and John
Collins who went to Pennsylvania State University. Also, Earl Zwicker retired
in 1991, although he remained active in some of the educational programs,
including the SMILE program, until 2006. In 1993, the biology and chemistry
departments were merged, with Tim Morrison and Carlo Segre becoming the
chair and associate chair, respectively, of the merged department. Also, at this
time, Nobel Laureate Leon Lederman, former director of Fermilab who had
been at the University of Chicago, joined IIT and became a member of the
department.

In 1995, the physics department was merged with the chemistry and biol-
ogy departments to form an umbrella Department of Biological, Chemical and
Physical Sciences, ending the era of physics as an independent academic de-
partment. Physics has remained as a division within the merged department.
At the time of the merger, Dean Chapman from Brookhaven National Labora-
tory was hired as an associate professor to be the director of the synchrotron
center.

After the merger in 1995, Liam Coffey was promoted to the rank of associate
professor. Chris White in experimental particle physics and Linda Spentazouris
in experimental accelerator physics were hired as assistant professors in the
physics division of BCPS, and both subsequently received tenure. Dan Kaplan
and Grant Bunker had also been granted tenure. In addition, Dan Kaplan, Tim
Morrison, and Grant Bunker, and Carlo Segre were promoted to the rank of
professor.

In 1999, Tom Erber was given the rank of Distinguished Professor at IIT.
In 2000, Larry Scott, a theoretical biophysicist, came to IIT at the rank of
professor and as the chair of the BCPS department, and remained chair for a five
year term. John Zasadzinski subsequently became the next chair of the BCPS
department. Ray Burnstein and I retired in 2001. In 2008 both Tom Erber and
Porter Johnson retired. All of us have remained professionally active.
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Electromagnetic Whispering Gallery
Modes

Robert L. Warnock1

SLAC National Acccelerator Laboratory
Stanford University

Abstract

Coherent Synchrotron Radiation (CSR) from electron storage rings
is now well established, in both continuous and bursting modes,
following initial observations of the bursting mode reported in 2000-
2002. The phenomenon was studied theoretically in 1988, on the
basis of two models of the storage ring vacuum chamber: a smooth
torus with rectangular cross section, and a cylindrical pillbox. Both
models predict coherent radiation into “whispering gallery modes”
in which fields of very short wavelength (much shorter than the wave
guide cutoff of the chamber) are concentrated near the outer wall.
The Fourier spectrum of the field at multiples of the particle revolu-
tion frequency shows a series of sharp peaks, each peak resolved into
contributions from closely spaced modes having phase velocity close
to the particle velocity. Bergstrom at the Canadian Light Source
made the important observation that CSR spectra measured at the
NSLS VUV synchrotron light source in 2001 show peaks that fit this
theory, evaluated with the actual parameters of the machine. Finely

1warnock@slac.stanford.edu
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resolved spectra from the CLS show similar peaks, which are ten-
tatively understood as whispering gallery modes. To confirm this
interpretation is not so easy as at NSLS because the outer vacuum
chamber wall at CLS has large deviations from circular form. There
is urgent need of a theory including wall perturbations that would
clarify the physical picture and allow comparisons with experiment.
The paper is dedicated to Thomas Erber on his 80th birthday, and
the last section contains some recollections of life with Tom and
others at Illinois Institute of Technology in the early 1960’s.

11.1 Coherent Synchrotron Radiation (CSR)
Imagine N electrons moving in a circle of radius R with angular velocity ω0.
Suppose that their angular positions θi relative to a reference particle are inde-
pendent identically distributed random variables with probability density λ(θ).
Then the expected value of power radiated at angular frequency ω = nω0 is

P (n) = (ω0e)2ReZ(n, nω0)

((
1
2π

)2

N + N(N − 1)|λn|2
)

. (11.1)

where λn is the Fourier transform at mode number n of λ(θ)) and Z(n, ω)
is the radiation impedance at wave number n/R and frequency ω. The first
term is understood as the incoherent power due to radiation from N electrons
acting individually. It represents the bulk of power radiated in a storage ring,
and has a broad spectrum ranging up to a cutoff proportional to γ3. The
second term, the coherent power, comes from electrons radiating collectively at
wavelengths for which the bunch form has appreciable Fourier components. Its
N2 dependence makes it interesting for a high intensity radiation source, but
its presence depends on the bunch form having Fourier components where the
impedance is appreciable.

The radiation impedance depends on the electromagnetic environment. For
free space the physics was largely understood as early as 1912, through investiga-
tions of G. A. Schott [1]. The impedance can be derived from Schott’s approach,
which is recounted in text books such as Jackson and Landau and Lifshitz. Be-
ginning with an unpublished report of Schwinger [2] dated 1945, attention was
given to the effect of nearby conductors. Betatron accelerators were being de-
veloped, and it was necessary to understand the effect of the metallic vacuum
chamber on the electron’s motion. Schwinger and later Nodvick and Saxon [3]
modeled the vacuum chamber by two infinite conducting parallel plates, with
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the beam circulating in the midplane. The impedance for this model displays
an exponential cutoff, being negligible for wavelengths greater than a “shielding
cutoff” given by

λ0 ≈ 2h(h/R)1/2 , (11.2)

where h is the plate separation. If h and R are typical for storage rings (one
or a few centimeters for h, and a few meters for R), this is much less than the
waveguide cutoff for the structure, which is of order h. By (11.1) and (11.2) one
cannot expect to see coherent radiation unless λn is appreciable for

n >
2πR

λ0
≈ π(R/h)3/2. (11.3)

Conditions for producing CSR were achieved by Nakazato et al.[4] at Tohoku
University in 1989. They used a short bunch from a linac, which probably had
a ragged form with short wavelength components, and a single bend with small
R in a relatively roomy vacuum chamber.

In storage rings as they were usually operated before ca. 2000, the bunch
would normally have a smooth, Gaussian-like form, and would be so long as to
have no significant Fourier components with n satisfying (11.3). Around 2000
strong evidence of CSR began appearing in the storage rings of several syn-
chrotron light sources [5, 6, 7, 8, 9, 10]. Without unusual values of h, R, and
σ (the nominal bunch length), the necessary conditions were obtained through
an instability of the bunch form, giving it a “microstructure” with Fourier com-
ponents at mode numbers satisfying (11.3). At high peak beam current, this
instability can be induced by the coherent radiation of the bunch acting on it-
self, a coherent “radiation reaction”. The CSR induced through an instability
comes in bursts, with a time between bursts being a substantial fraction of the
longitudinal damping time τ of the ring (the damping being due to incoherent
radiation in quanta and the attendant diffusion in phase space).

A theoretical model of bursting was given in [11], based on the parallel plate
model of radiation shielding and Vlasov-Fokker-Planck dynamics. The mecha-
nism of the model is roughly as follows: (a) with high peak current the coherent
radiation reaction causes microbunching, which gives high Fourier components
satisfying (11.3), and a burst follows; (b) rapid mixing in phase space due to the
nonlinear and time dependent self-force causes a lengthening and smoothing of
the bunch, until (11.3) is no longer satisfied and the burst is terminated; (c) the
damping from incoherent radiation shortens the bunch gradually over a time
comparable to τ , which increases the peak current, again causing microbunch-
ing, satisfaction of (11.3), and a consequent burst.
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11.2 Effects of a Closed Vacuum Chamber

When I first arrived at SLAC in 1987, one of the widely experienced accelerator
physicists, Phil Morton, suggested that I look at fields induced by a beam circu-
lating in a torodial chamber with rectangular cross section. (In fact he put it a
bit more strongly than a suggestion; it would be in my “best interests” to do the
problem). This would be essentially different from the parallel plate model in
not allowing radiation of energy to infinity. Phil had been thinking in terms of
an eigenfunction expansion, the eigenfunctions of the structure being so-called
cross products of Bessel functions ([12], §9.1.32) A knowledge of zeros of the
cross product is required to satisfy the boundary conditions. By an elementary
method for differential equations I was able to avoid the eigenfunction expan-
sion, getting an expression stated directly in terms of Bessel functions without
reference to their zeros [13]. In parallel work unknown to us at the time, K.-Y.
Ng treated the problem with eigenfunctions [14]. He and I later joined forces
to analyze the sub-resonant frequency region by my method, which I think was
essential for that case [15].

The analysis showed that the physics is almost the same for the torus and
the cylindrical pillbox, provided that in the toroidal case the beam is not too
close to the inner radius. In either case the wave function is concentrated near
the outer wall, so presence or absence of the inner wall has little effect. Here I
review and later extend the theory for the pillbox. The analysis is in cylindrical
coordinates (r, θ, z) with the polar axis along the axis of the circular cylinder.
The radius of the pillbox is b and its planar ends are at z = ±g, h = 2g. The
walls of the chamber are taken to be perfectly conducting, but Ref.[13] shows
how to incorporate wall resistance. All components of electric and magnetic
fields can be expressed in terms of the axial components Ez, Hz. The first
step is to make a Laplace transform of the fields in the time t, and Fourier
developments in θ and z, choosing the trigonometric functions in z so that the
boundary conditions on the planar surfaces (tangential E and normal H equal
to zero) are satisfied term-by-term in the z-series. Thus the axial fields are
represented as

Ez(r, θ, z, t) =
∫

Imω=v

dωe−iωt
∞∑

n=−∞
einθ

∞∑
p=0

cosαp(z + g)Eznp(r, ω) , (11.4)

Hz(r, θ, z, t) =
∫

Imω=v

dωe−iωt
∞∑

n=−∞
einθ

∞∑
p=1

sin αp(z + g)Hznp(r, ω) , (11.5)
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where v > 0 and αp = πp/h is the vertical mode number. The initial values from
the Laplace transform are put equal to zero. The other field components and the
charge and current densities have similar developments with the trigonometric
functions of z chosen by the following scheme:

(Er,Hθ,Hr, Eθ, ρ, Jr, Jθ, Jz) ↔ (sin, cos, cos, sin, sin, sin, sin, cos) . (11.6)

The Laplace-Fourier coefficients of Ez, Hz satisfy Bessel equations with sources.
With SI units,

1
r

∂

∂r

(
r
∂Eznp

∂r

)
+

(
γ2

p −
n2

r2

)
Eznp = Zoαpcρnp (11.7)

1
r

∂

∂r

(
r
∂Hznp

∂r

)
+

(
γ2

p −
n2

r2

)
Hznp = −1

r

∂

∂r
(rJθnp) , (11.8)

γ2
p =

(ω

c

)2 − α2
p , αp =

πp

h
, Zo =

(µo

εo

)1/2 = 120π Ω . (11.9)

Since in the model studied the particles of the beam have only azimuthal motion,
Jr = Jz = 0. The general solutions of (11.7) and (11.8) that are regular at r = 0
have the form

Eznp(r, ω) = AnpJn(γpr) + eznp(r, ω) ,

Hznp(r, ω) = CnpJn(γpr) + hznp(r, ω) , (11.10)

where eznp and hznp are particular solutions regular at r = 0. From these
solutions one can express all fields, using formulas obtained by algebra from
Maxwell’s equations after the Laplace-Fourier transform, namely,

Ernp = − 1
γ2

p

[
αp

∂Eznp

∂r
+ Zo

ω

c

n

r
Hznp

]
, (11.11)

Hθnp =
i

γ2
p

[
1
Zo

ω

c

∂Eznp

∂r
+ αp

n

r
Hznp

]
, (11.12)

Hrnp =
1
γ2

p

[
1
Zo

ω

c

n

r
Eznp + αp

(
∂Hznp

∂r
+ Jθnp

)]
, (11.13)

Eθnp = − i

γ2
p

[
αp

n

r
Eznp + Zo

ω

c

(
∂Hznp

∂r
+ Jθnp

)]
. (11.14)

The boundary conditions at r = b are Hr = 0, Ez = Eθ = 0. By (11.13)
and (11.14) these conditions are satisfied if

Eznp(b, ω) = 0 ,
∂Hznp

∂r
(b, ω) = 0 , (11.15)
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since the current is zero at the boundary. By applying (11.15), (11.10), (11.13),
and (11.14), it is seen that the boundary conditions immediately determine the
unknown coefficients as

Eznp(r, ω) = −Jn(γpr)
Jn(γpb)

eznp(b, ω) + eznp(r, ω) , (11.16)

Hznp(r, ω) = − Jn(γpr)
γpJ ′n(γpb)

h′znp(b, ω) + hznp(r, ω) , (11.17)

where primes indicate derivatives.
To specify the source terms in (11.7) and (11.8) let us take a simple model

of the charge density of a bunch of total charge q, namely

ρ(r, θ, z, t) = qλ(θ − ωot)H(z)W (r) ,
∫ 2π

0

λ(θ)dθ =
∫ g

−g

H(z)dz =
∫ b

0

W (r)rdr = 1 , (11.18)

where λ(θ + 2π) = λ(θ) and H and W are some functions concentrated near
z = 0 and r = R, respectively. Thus the form of the longitudinal density λ(θ)
is time independent, but a generalization to allow a deforming density λ(θ, t)
is possible. The parallel plate model with deforming bunch is discussed in [16];
the pillbox model could be treated similarly. The current density which with
(11.18) satisfies the continuity equation is

(Jr, Jθ, Jz) = (0, βcρr/R, 0) , (11.19)

where the revolution frequency is βc/R = ω0. The Laplace-Fourier transform
of ρ for Imω > 0 is

ρnp(r, ω) =
1
2π

∫ ∞

0

dteiωt 1
2π

∫ 2π

0

dθe−inθ 1
g

∫ g

−g

dz sin αp(z + g)ρ(r, θ, z, t)

=
iqλnHpW (r)
2π(ω − nω0)

, (11.20)

with

λn =
1
2π

∫ 2π

0

e−inθλ(θ)dθ , Hp =
1
g

∫ g

−g

sin αp(z + g)H(z)dz . (11.21)

By using the method of variation of parameters and the value of the Wron-
skian of Bessel functions ([12], §9.1.15) one finds the required particular solutions
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of (11.7) and (11.8). Choosing for simplicity the radial distribution

W (r) =
δ(r −R)

r
, (11.22)

and applying (11.20,11.19), the solutions can be stated explicitly as

eznp(r, ω) = −π

2
ZoαpcΦpn(γpr, γpR)Θ(r −R) , (11.23)

hznp(r, ω) = −π

2
βcγpΦqn(γpr, γpR)Θ(r −R) , (11.24)

Φ =
iqHpλn

2π(ω − nω0)
, (11.25)

where Θ(x) = 1 for x ≥ 0 and 0 otherwise. Here and in the sequel the notation
for cross products of Bessel functions follows Ref.[12]:

pn(x, y) = Jn(x)Yn(y)− Yn(x)Jn(y) , (11.26)
qn(x, y) = Jn(x)Y ′

n(y)− Yn(x)J ′n(y) , (11.27)
rn(x, y) = J ′n(x)Yn(y)− Y ′

n(x)Jn(y) , (11.28)
sn(x, y) = J ′n(x)Y ′

n(y)− Y ′
n(x)J ′n(y) . (11.29)

From the above results and (11.14) one can assemble Eθnp, which is the
main quantity of interest since it gives the component of the electric field in the
direction of motion of the beam, hence the work done by the field on the beam,
equal in magnitude to the energy radiated. In practice it is adequate to work
with the average of Eθ with respect to the transverse distribution,

Eθ(θ, t) =
∫ b

0

rdr

∫ g

−g

dzW (r)H(z)Eθ(r, θ, z, t) =

=
∫

dωe−iωt
∑
n,p

einθEθnp(R, ω)
∫

dz sin αp(z + g)H(z)

=
∫

dωe−iωt
∑
n,p

einθEθnp(R, ω)gHp . (11.30)

Accordingly, the impedance Z(n, ω) is defined by

Êθ(n, ω) = g
∑

p

HpEθnp(R, ω) = −2πR Z(n, ω)Î(n, ω) , (11.31)

Î(n, ω) =
iqω0λn

2π(ω − nω0)
. (11.32)
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Here Î(n, ω) is the Laplace-Fourier transform of the current

I(θ, t) =
∫

dr

∫
dzJθ(r, θ, z, t) ,

so that (11.31) is “Ohm’s Law” with voltage per turn of −Êθ(n, ω)/2πR.
Now the impedance can be assembled from (11.14,11.16,11.17,11.23,11.24,11.31).

The result is [17]

Z(n, ω) = iπ2Z0gR

∞∑
p=0

H2
p

[
ωR

c

J ′|n|(γpR)

J ′|n|(γpb)
s|n|(γpb, γpR)

+
n

β

(
αp

γp

)2 J|n|(γpR)
J|n|(γpb)

p|n|(γpb, γpR)
]

. (11.33)

The properties of Bessel functions under a reflection n → −n have been used
to write the result in a form valid for both signs of n. The threshold for CSR
in this model comes at the lowest frequency for which a Bessel function in the
denominator of (11.33) has a zero, assuming ω = nω0. This in turn is about
where γpb = n, since the Bessel function begins oscillating about zero when its
argument is close to n. From this the threshold for the p-th vertical mode is as
stated in Eq.(90) of [13],

n > n0p =
πpb√
2h

(
R

b−R

)1/2

. (11.34)

Now from the inversion theorems for Laplace and Fourier transforms the
so-called induced voltage can be retrieved [16],

V (θ, t) = −2πRE(θ, t) =
∑

n

einθ

∫

Im ω=v

dωe−iωtZ(n, ω)Î(n, ω) , (11.35)

together with the radiated power as the negative of the work done on the beam
per unit time ([16], Eq.(20)),

P(t) = qω0

∑
n

einω0tλ∗n

∫

Im ω=v

dωe−iωtZ(n, ω)Î(n, ω) . (11.36)

The integral over ω can be evaluated by deforming the contour to an infinite
semi-circle in the lower half-plane. This can be done because Z(n, ω) is analytic
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in ω except for poles on the real axis, and tends to a constant at infinity in
complex directions [16]. Poles come from zeros of the factors Jn(γpb), J ′n(γpb),
and γ2

p in the denominators of (11.33). With the usual notation jns, j′ns for
zeros of Jn, J ′n, the positive pole positions are defined as follows:

ωTE
nps =

c

b

[
j′2ns + (αpb)2

]1/2
, s = 1, 2, · · ·

ωTM
nps =

c

b

[
j2
ns + (αpb)2

]1/2
, s = 1, 2, · · ·

ωWG
p = αpc (11.37)

Let us label the positive pole positions as ωj , where j is a multiindex such
as j = (TE, n, p, s). Each pole at ωj has a counterpart at −ωj , and with an
appropriate definition [16] of γp(ω) at complex ω one has the reflection property
Z(−n,−ω) = Z∗(n, ω). The notations TE, TM, WG mean “transverse electric”,
“transverse magnetic”, and “waveguide”. The nomenclature is not the usual
one, since here the transverse direction is transverse to the axis of the cylinder,
not transverse to the beam as in discussions of wave guide modes in a beam
tube. On the other hand, the notation WG is to recognize that αpc is the
waveguide cutoff frequency for a guide formed by infinite parallel plates with
separation h.

To evaluate the integral write R(n, ωj) for the residue of the pole at ωj , and
recall that Î has a pole at nω0, for now supposed distinct from all the other
poles. Deformation of the contour gives

V (θ, t) =
∫

Im ω=v

dωe−iωtZ(n, ω)Î(n, ω) = qω0

∑
n

λnZ(n, nω0)ein(θ−ω0t)

+qω0

∑
n

einθλn

∑

j

[
e−iωjtR(n, ωj)

ωj − nω0
− eiωjtR(n,−ωj)

ωj + nω0

]
. (11.38)

Notice that if nω0 should hit exactly one of the ±ωj , which will happen only
“by accident” for a general choice of ω0, then the second term of (11.38) has a
polar singularity but it is canceled by a corresponding pole from the first term
since

Z(n, nω0) ∼ R(n,±ωj)
nω0 − ωj

. (11.39)

Thus the electric field is finite at the TM and TE resonances, which seems en-
tirely reasonable. On the other hand, one reaches the false conclusion that
the field is infinite when nω0 = ωj if the Fourier transform with respect to
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time is used in a formal and unjustified way, in place of the well justified
Laplace transform. The true Fourier transform does not exist, simply because
fields do not decay at t = ±∞. The formal Fourier transform of I(θ, t) is
Ĩ(n, ω) = qω0λnδ(ω − nω0) in place of (11.32). Since this is not analytic in ω,
one cannot account appropriately for the poles of Z(n, ω) which constitute its
essence. Rather, the formal Fourier inversion is an integral along the real ω-axis
giving only the first term V1 of (11.38) which blows up if nω0 → ωj :

V1(θ, t) = qω0

∑
n

einθλn

∫

Im ω=0

dωe−iωtZ(n, ω)δ(ω − nω0)

= qω0

∑
n

ein(θ−ω0t)Z(n, nω0) . (11.40)

Figure 11.1: Typical TE radial wave function, p = 1, s = 1 (s = 0 in previous
notation)

When the chamber is given finite conductivity, as it was in Ref.[13], the
resonance pole positions acquire a negative imaginary part, so that the second
term in (11.38) vanishes at large t; in practice “large” is a matter of a few
revolution times. There is also a new contribution from a branch cut [0,−i∞),
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Figure 11.2: ReZ(n, nω0) for parameters of NSLS light source, vs. wave number
1/λ in units of cm−1. All vertical modes up to p = 25 are included.

but it vanishes as well at large t. Thus with resistive walls V1 is effectively the
full result for V , and similarly for the power P (t), which is time-dependent at
large t.

11.3 Possible Observation of Whispering Gallery
Modes

Let us now plot ReZ(n, nω0) using the resistive wall model, with a choice of
parameters for the NSLS VUV synchrotron light source at Brookhaven National
Laboratory as stated in [19]: R = 1.91m, w = 8 cm, h = 4 cm, where R is the
bending radius and w is the horizontal width of the chamber. Since I do not
know exactly the horizontal location of the beam relative to the chamber, I put
the beam at r = R and adjust the outer wall radius b to fit the data. This gives
b = 1.948 cm, meaning that the beam is 2mm off center in the chamber. The
toroidal and pillbox models give nearly identical resonant frequencies, agreeing
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to about three digits.
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Figure 11.3: Contribution to ReZ(n, nω0) from TE modes with p = 1 only.

The plot in Fig.11.2 includes all vertical modes up to p = 25. More and
more of these can be excited as n increases. The plot of Fig.11.3 shows just the
TE modes with p = 1; these tend to dominate at the lower frequencies. Note
that in these plots many values of n and many closely spaced resonance poles
contribute to each peak. Every n is plotted, with graphical interpolation as
though n were a continuous variable. For a discussion of the spread of n within
a peak and close-up graphs of peaks, see Section 7 of [13]. The spread is given
by

∆n

n
=

R

dQ
, d = b−R , (11.41)

where Q is the quality factor determined by the wall resistance, 104 − 105 for
an aluminium chamber in the examples of [13].

Remarkably, an observation of the far IR spectrum at NSLS VUV by Carr
et al. showed a series of peaks in correspondence with Fig.(11.2) [19]. Their
data are shown in Fig.11.4. The spectrometer was a Michelson interferometer
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with resolution down to 0.01 cm−1. The spectrum is obtained as the cosine
Fourier transform of the interferogram produced by scanning the path length
differential between the two halves of a split beam [21]. The radiation goes to
the instrument through a diamond window, which does not allow transmission
for wavelengths longer than 5mm. At longer wavelengths a large glass window
was used with microwave RF measurement techniques complementing interfer-
ometry. The measured long wavelength spectrum is shown in Fig.11.5, with
open circles for the RF data and the black circles for interferometry. The spec-
trum of Fig.11.4 appears in both incoherent and coherent radiation, the latter
in bursting mode. The spectrum of Fig.11.5 was taken with coherent radiation
only, since there was not enough incoherent intensity.

Figure 11.4: Far IR spectrum measured at NSLS

To get an idea of how the theoretical spectrum appears with smoothing
over small structures, I convolved the graph of Fig.11.2 with a Gaussian kernel,
choosing the sigma of the Gaussian to be 0.19 cm−1 (230 units of n). This was
to imitate experimental resolution and give peaks with widths something like
those of Fig.11.4. As shown in Fig.11.6, this raises the floor and leaves mostly
large peaks close to the TE modes. The low frequency experiment had better
resolution, so for its range I convolve with a narrower Gaussian with a sigma of
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Figure 11.5: Low frequency spectrum measured at NSLS. The black dots are
IR data from an interferometer, the open dots from RF measurements.

0.037 cm−1 to get the plot of Fig.11.7.
Now I will compare the positions of peaks in Figs. 11.6 and 11.7 with the

data. The power spectrum depends on the unknown bunch spectrum |λn|2,
and its relation to experiment involves experimental frequency resolution and
detector efficiency. The main emphasis should then be on positions of peaks, not
their height, although height still does correspond to intensity in some vague and
rough sense. Table 1.1 gives experimental values read from the graphs (since I
have not had access to data tables); entries with a star (∗) correspond to small
shoulders that could be questioned as authentic signals. Theoretical values are
from the plot files for Figs. 11.7, 11.6. In Fig.11.8 I display results of Table 1.1
graphically, omitting the doubtful starred entries.

It is remarkable that the model fits so well with the actual machine param-
eters. The first ten theoretical lines shown in Fig. 11.8 agree very well with
experiment. The experimental line at 0.93cm−1 is unexplained. It is striking
that the theory accounts for the unequal spacing of peaks at the lowest wave
numbers. As is seen in Table 1.1, even the starred data from small shoulders
seem to have counterparts in theory. At higher wave numbers the experimental
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Figure 11.6: High frequency part of spectrum of Fig.11.1, convolved with a
Gaussian to average small structures.

peaks are in one-to-one correspondence with theory, but are consistently lower
in position. The average experimental spacing for k ≥ 9cm−1 is 1cm−1, in
agreement with the constant theoretical value. Remember that the radial wave
function of the s-th TE mode has s nodes, so the resemblance to theory at high
wave numbers is evidence for up to 19 nodes of the field in the radial direction!

Microwave signals at wave numbers less than 0.5 cm−1 are below the CSR
threshold of 0.827 cm−1. Here a resonance-like peak is not displayed, and the
signal could be due to an ordinary broad band impedance from some element
of the vacuum chamber, not related to curvature of orbits, provided that the
bunch had strong Fourier components around 4 cm wavelength. In fact, evidence
was found for such components in streak camera data showing large density
modulation around 5 cm wavelength [19]. This could be associated with the
sawtooth oscillations in bunch length found in simulations of the same storage
ring [11]. The signal at 0.93 cm−1 is slightly above the CSR threshold but
cannot be explained as a curvature effect. Nothing forbids machine impedance
effects above the threshold. It would be interesting to do simulations including
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Figure 11.7: Low frequency part of spectrum of Fig.11.1, convolved with a
Gaussian.

both radiation and machine impedances to see if their effects mix near the CSR
threshold.

This correspondence of NSLS VUV data with theory was first noticed by
Jack Bergstrom in 2007 [20]. Rather than using a plot like Fig.11.2, he made
the useful observation that a plot of R/Q as a continuous function of frequency
ω = nω0 conveys similar if not identical information, since it has maxima at the
resonances; the formulas used are Eqs. (112),(113) of [13].

The authors of Ref.[19] attempted to understand their spectra in terms of
interference between direct light and light reflected with a π phase shift from
the chamber wall. As far as I know this has not led to a predictive theory,
and is criticized by Bergstrom for requiring implausibly complete destructive
interference, and also for being unable to account for the non-uniform spacing
of the lowest modes that comes out of our model automatically [20].

Bergstrom’s motivation to understand the peaks in the spectrum came from
measurements at his own laboratory, the Canadian Light Source (CLS), using
a spectrometer with resolution down to 0.001 cm−1. This instrument, a Bruker
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Table 11.1: Theoretical spectrum compared to data of Figs.11.4,11.5

Exp. Thy. Exp. Thy.
0.80 0.827 6.10 6.31
0.93 — 7.25 7.32
1.32 1.21 8.25 8.32
1.57 1.60 9.00 9.29
2.10* 2.04 10.0 10.28
2.40 2.48 11.1 11.29
2.76* 2.94 12.0 12.33
3.10* 3.26 12.8 13.31
3.30 3.41 13.8 14.3
3.66* 3.62 15.0 15.3
3.88* 3.90 15.8 16.3
4.20 4.38 16.7 17.3
5.25 5.34 18.0 18.3

IFS 125 HR, gives finely resolved spectra like that of Fig.11.9. The storage ring
provides CSR in a bursting mode at 2.9 GeV, or in a continuous mode at 1.5 GeV
by means of low momentum compaction. Salient features of the interferograms
are remarkably stable under changes of the machine set-up. Changes in energy,
synchrotron parameters, and number of bunches leave prominent structures
unchanged [20]. This suggests that spectral patterns are indeed determined by
the vacuum chamber, as the whispering gallery theory would predict.

Although beautiful spectra are produced at CLS, it is not as easy to compare
with experiment as at NSLS VUV. Vacuum chambers in dipole bends at NSLS
have a smooth circular cylindrical wall following the beam, just as in the simple
theory, whereas the chamber at the IR port of CLS is far different, having
the triangular form with a secondary triangular excursion around a vacuum
pumping port as shown in Fig. 11.10. The average distance d from the beam to
the wall is something like 21 cm, as compared to 3.2 cm in the pipes going into
and out of the dipole chamber. The dipole chamber forms a sort of cavity, and
the question arises of its effect on whispering gallery modes. Are there modes
which are resonances of the entire vacuum chamber of the ring but which have
localized field patterns that depend sensitively on the local wall profile near the
IR port? The spectrometer would see the spectrum of these local fields, since



126 11. Electronic Whispering Gallery...

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

k = 1/λ    (1/cm)

Figure 11.8: Comparison of experimental and theoretical spectra. Solid lines
are from experiment, dashed lines from theory.

the IR is extracted in that neighborhood.
To get some hint about this question, Bergstrom devised a procedure of

averaging the impedance of the pillbox model as a function of varying wall
location b(θ). He averages over just the large triangular chamber with the IR
port, not over the whole ring, and finds spectra agreeing with experiment in
some limited domain. At present there is no theoretical justification for this
local averaging, but it is certainly interesting that it seems to work.

Having doubts about the effect of the wall on the spectra, since it is so far
from the beam, Bergstrom and colleagues proposed an experiment to modify
the wall. They will drop a metallic tube into the chamber through the cir-
cular pumping port that already exists. The calculation of averaged pillbox
impedance indicates that a big shift in the spectrum should occur. The experi-
ment was approved and is scheduled for April, 2010.

If the spectrum shifts as expected, that would provide a big boost to the
whispering gallery theory in a qualitative way. It will still be important to
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Figure 11.9: Spectrum of CSR with high resolution spectrometer at CLS
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provide a quantitative theory for CLS and other storage rings. The challenge
for theory is both to fit complex spectra as in Fig. 11.9 and to give a physical
picture of perturbed whispering gallery modes. A further motivation for im-
proved understanding comes from the striking observation at CLS of coherence
of radiation from successive bunches in a train, for up to 8 bunches, this with
CSR in continuous mode [23]. This leads to superintense radiation proportional
to (NNb)2, where Nb is the number of bunches. The coherence requires the
bunches to have nearly identical charge distributions, presumably describable
as Haı̈ssinski equilibria. A model of the wake field from the radiation impedance
in the perturbed vacuum chamber would be a big help toward understanding
these distributions.

Figure 11.10: Dipole vacuum chamber at IR port of CLS.

11.4 Reminiscence of IIT at Mid-century
I arrived at IIT in 1962, after nine years of a soft life in graduate school and
post-doctoral research at big universities. The transition was slightly shocking.
You could still smell the Chicago Stock Yards, even though they had been closed
for several years, and the neighborhood around the campus had a bombed-out
look after “urban renewal”. Trains rumbled past on both sides of the campus,
so loud as to bring a lecture to a dead stop. The teaching load was cruel,
and graduate courses could be taught only with heavy use of black coffee since
they were all at night. The elegant buildings of Mies van der Rohe, which had
attracted me to IIT in the first place, were ice cold in the winter and like an
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oven in the summer. Along with the Mies buildings there were some shabby
old structures still in use, and a late-Victorian red brick survivor called Main
Building. The latter had a stained glass window bearing the message “From
heaven falls light for youth if youth will walk thereby”. Unfortunately it turned
out that many among our youth were indeed expecting enlightenment to fall on
their heads, without much work on their part.

All that aside, I immediately felt at home because of the vitality of Chicago
and a warm welcome from Tom Erber and other good colleagues including
Izz Hauser, Bob Malhiot, Jordan Markham, Len Grossweiner, and Caroline
Herzenberg. Tom’s office in Siegel Hall was next to mine and was a center
of discussions, with students and various colleagues, often mathematicians and
engineers, coming and going. Although his research and mine went in different
directions, it was easy to find topics of conversation since Tom was interested in
almost anything. In teaching we both admired the European style of exposition
in its great years: Sommerfeld, Born, Pauli, Whittaker and Watson, et al.. We
both thought that mathematics and good physics ought to join hands, not be
at odds as so often happens. Tom did very wide reading, often in odd corners
of the literature. At my job interview before joining the department he gave
me a reference to a paper by Aronszajn on Herglotz functions, something that
came up in a paper I had just written. I was awfully impressed with such
erudition. As in his reading, Tom’s research ranged over all sorts of topics,
with wit and élan. Above all he loved electrodynamics, and I hope that he
will find the above story amusing. He indirectly contributed to this work by
putting me in touch with Gerald Baumgartner, who helped me understand
the tricky asymptotics of Bessel functions. Baumgartner’s thesis with Tom on
the asymptotics of Whittaker functions was motivated by a hard problem in
quantum electrodynamics having some relation to synchrotron radiation.

I must also mention the pleasure of working with George Bart, then an IIT
graduate student who benefited from Tom’s famous course in electrodynamics
and did his thesis with me. His later work with Fenster and me introduced some
of the methods used in [13] and our paper [18] launched me on my late career
in accelerator physics.
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Hysteresis in Iron, Nickel and STMs

Harold Weinstock1

Air Force Office of Scientific Research2

I don’t think that in my more than 50 years engaged in basic research in one
form or another that I have ever met a scientist with a more global knowledge of
physics than Tom Erber. Certainly one long-term highlight of my 2 decades as
an IIT faculty member in Physics was my interaction with Tom, and especially
the interaction that occurred during the 1982-83 academic year when I was on
a sabbatical at the Naval Research Lab (NRL).

When I first arrived at NRL, the plan had been to learn how to use a Super-
conducting Quantum Interference Device (SQUID) in the form of a second-order
magnetic gradiometer and then use this system to detect magnetic signatures of
prototype cryogenic refrigerators. The only problem was that not one of these
refrigerators was delivered that year or ever. I did hit upon other potential appli-
cations that included the first measurements using a SQUID for non-destructive
evaluation and taking the SQUID gradiometer to NIH to perform neuromag-
netic measurements on patients with epilepsy. However, the major activity was
devoted to a suggestion Tom made. Namely, Tom wanted to test a hypothesis
concerning magnetic hysteresis. Specifically, he wanted to know if the mag-
netic gradiometer could observe the change in ambient magnetic field when a
particular magnetic domain reoriented itself. This behavior in which a domain
reorients itself due to a change in external magnetic field or due to some other

1Email: harold.weinstock@afosr.af.mil
2Arlington, VA 22203-1768
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ambient change (such as an increase in temperature) is known as a Barkhausen
jump.

In order to measure the change in the magnetic field near the surface of a
magnetic field, a number of conditions needed to be satisfied. First, one needed
a high purity iron specimen with randomized magnetic domains. That part was
easy thanks to a five-nines pure iron cylinder the size of a pill supplied by an NRL
colleague. The harder part was to be able to randomize the magnetic domains
in a region with almost no magnetic field and then immediately afterward to
slowly apply a magnetic field and observe the change in response of the SQUID
magnetic gradiometer placed just above the iron “pill.” When I explained this
problem to another NRL scientist, he recalled that there was a very special facil-
ity at the NASA Goddard Space Flight Center (GSFC), about 20 miles north of
NRL. This was exactly what was needed. The NASA facility was in a relatively
small building in a forest, technically still on the grounds of GSFC, but reach-
able only via a private road and a couple of miles from the main GSFC campus.
The building was constructed entirely of non-magnetic material, and cars had
to be parked at least some minimum distance from it. Inside this rather special
building was a 3-axis Braunbeck coil configuration, with each set of coils being
12.7-meters in diameter, in other words, 3 mutually perpendicular Helmholtz
coils. Using a set of 3 orthogonal flux-gate magnetometers outside these coils
and a feedback system of current into the Braunbeck coils, it was possible to
create a spherical region of about 2 meters in diameter in the center that was
only about 10−6 of the earth’s magnetic field. This facility had been built and
used initially to check on the magnetic moment of the lunar excursion module
used by astronauts on the moon, and it was used also to simulate tumbling of
rockets in the earth’s magnetic field. By the time I contacted NASA in 1983,
this special facility had little use, so those in charge of it were happy to have
visitors who would pay $250 a day to use the facility and thus help employ the
technician assigned to it.

This technician spent most of his time in a nearby building at the controls
of the magnetic coil system. Thus, I was basically alone to carry out a set
of procedures that Tom had suggested. Once the iron specimen was properly
degaussed in the zero-field environment inside the Braunbeck coil region, I would
slowly ramp up the current through one set of coils in an orthogonal direction
to the axis of the cylindrical iron specimen. This was done in small increments,
after which I cycled the field back to zero. This was then repeated many times,
but each time increasing the maximum field by a little more than in the previous
cycle. By monitoring the SQUID output signal as a function of time on a strip-
chart recorder - an instrument perhaps unknown to young scientists today -
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it was possible to track the relatively slow change in ambient field. However,
beyond some threshold field, it was possible to observe a sharp shift in field
value due to a Barkhausen jump, that is, a reordering of one or more magnetic
domains in the polarizing field. While at this special NASA facility, I often
called Tom while the experiment was in progress, and we had many fruitful
discussions. He made major contributions to the experimental aspects of this
research.

The details of what transpired are found in a 19-page Physical Review paper
[1] that Tom and I coauthored with my NRL colleague, Marty Nisenoff, whose
major contribution was to educate me on the operation of the SQUID system.
Briefly, a major finding of this research (as Tom had anticipated) was that there
is a magnetic field threshold for producing Barkhausen jumps and correspond-
ingly, a threshold for hysteretic behavior. By cycling the external field back to
zero, one can anneal away the jumps that occurred at all fields less than or equal
to the highest field used in this sequence of “training” exercises, thus extending
the range of magnetic field that one could operate in without experiencing hys-
teretic behavior. However, this magnetic training worked only up to a point, or
rather only up to a second threshold. Beyond this second threshold, no amount
of cycling back and forth to zero applied field could eliminate the Barkhausen
jumps.

Tom had anticipated the behavior just discussed because he had been study-
ing hysteretic behavior in a variety of physical systems, and I’m sure there are
other contributions to this volume that deal with this phenomenon, especially
in the area of structural mechanics. Nevertheless, I believe it is Tom’s ency-
clopedic knowledge of basic physics and his multilingual skills that resulted in
this seminal contribution to the study of hysteresis in magnetic systems. Tom
was able to show that this magnetic behavior was identical in form to that of
acoustic emission from metallic structures subjected to cyclic stress. Tom even
knew about the first report of this acoustic emission by a certain J. Kaiser in
a rather obscure (to me at least) German journal, Arch. Eisenhüttenwesen, in
1953. Tom always refers to this phenomenon as the Kaiser effect. Although
there are metallurgists or materials scientists who use this nomenclature, if you
check WikipediaR for the Kaiser effect, it will refer to a cosmological occurrence
observed by a person named N. Kaiser.

When I returned to IIT in August 1983 from my sabbatical year, I was
armed with a vast amount of stripchart paper detailing not only the hysteretic
behavior of the aforementioned iron “pill,” but I also had similar types of data
associated with magnetic field cycles on iron whiskers, slender single crystals
that had been grown and studied in the laboratory of Professor R. V. Coleman
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at the University of Virginia. These iron whiskers had been found to have
typically only about 6 magnetic domains per whisker. Trying to mount them
in order to obtain cyclic data as was done for the cylindrical, multigrain iron
pill, was a considerable challenge, and again Tom had been most helpful. I
pointed out to Tom that there were no Barkhausen jumps to be seen, but there
did appear to be a threshold field at which hysteresis occurred, albeit quite
continuously as opposed to isolated Barkhausen jumps. Later on, in analyzing
the data I brought with me, Tom analyzed these 2 different sets of data using
an extension of ideas put forward in 1942 by Louis Néel, the French scientist
who was awarded the Nobel Prize in Physics in 1970 for his work on magnetic
materials. The paper Tom cited was written in French. Tom liked to point out
that even under Nazi occupation, Néel was able to do good scientific research.
With the data I showed Tom, he was able to create energy “landscapes” that
could explain both the Barkhausen jumps in the multicrystalline specimen and
in the iron whiskers. Tom analyzed just about every piece of data I had taken
and worked for untold hours to present an overall analysis that was the major
part of the Physical Review paper mentioned earlier.

I was fortunate to receive an ASEE Summer Fellowship to return to NRL in
1984. Again at Tom’s urging, I obtained a nickel specimen that I subjected to
the same type of regimen as was done on the iron specimens, with basically the
same general results. This work was the basis for our second publication [2],
this time in the Journal of Applied Physics.

I took a leave of absence for the 1984-85 academic year to be a visiting pro-
gram manager at the Air Force Office of Scientific Research (AFOSR), but I
returned regularly during the year to take care of some duties associated with a
grant from the Office of Naval Research. Naturally, I spent time with Tom dis-
cussing his favorite subject, hysteresis. At that time there was much excitement
about the invention of a new tool, the scanning tunneling microscope (STM) by
2 IBM-Zürich scientists, Gerd Binnig and Heinrich Rohrer, an invention that
would earn them the 1986 Nobel Prize in Physics. The key element in this
invention was the ability to achieve atomic resolution of a surface by changing
the voltage on a piezoelectric material known colloquially as PZT .3

Tom was concerned that the resolution of this now commonplace instrument
was compromised by hysteresis in the cycling of the piezoelectric actuator. In
those early years in the life of STMs and various related scanning instruments,
you needed to build one yourself. In mid 1986 I had taken a permanent position
at AFOSR, and one of the projects I managed was work on superconducting

3OK, it’s lead, zirconate, titanate. I’ll spare the reader the detailed chemical description.
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materials in the laboratory of Allen Goldman at the University of Minnesota.
Under other funding an STM had been constructed in his lab, and when I
told Allen what we would like to do, he volunteered to let Tom and me direct
a post doc and 2 grad students in setting up a series of cycles to check for
hysteresis. Of note is the fact that one of the students, Ed Nowak, had been
an IIT undergraduate majoring in Physics. (Ed is now a Professor of Physics
at the University of Delaware.) The experiment was designed to control the
vertical position of the STM tip through several cycles over the surface of a
graphite specimen. Once again, as Tom had predicted, there were regions of
reversible and irreversible responses. These results were published in the Journal
of Applied Physics in 1990 [3].

Over the years since, Tom and I have spoken often, always discussing, at
least in part, his universal interest in hysteresis. Additionally, he seems to be
in touch with a broad swath of what is going on in the world of physics. It is
sobering to realize that despite reaching the age of 80, he maintains his keen
insight into physical phenomena and discoveries, and although he only recently
attained emeritus status, he still maintains his quest for scientific discovery. I
believe Tom has been a member of the IIT faculty for over 50 years. He has
been an exciting teacher, and students whom I steered to his courses invariably
thanked me for this advice. Tom, by any account, has been a stellar member
of the IIT faculty during his long tenure. May he continue to flourish and to
achieve success in the golden years ahead.

Thanks Tom for your wisdom and friendship these many years.
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GEM and the K∗(892)

David White12

School of Science and Mathematics
Roosevelt University

Abstract

The Gluon Emission Model (GEM), which accurately describes the
widths of all known vector mesons, is a model for vector meson pro-
duction in which vector mesons arise by virtue of quark spin-flip with
accompanying gluon emission. Since the spin of the K∗(892) meson
is unity, application of GEM towards the K∗(892), long thought to
be an excited state of the kaon, is effected for purposes of ascer-
taining the likelihood that it may actually be itself a vector meson.
The current Meson Table published by the Particle Data Group
has the K∗(892) listed as a two-component system - the uncharged
K∗(892)0 with mass of 896 MeV and width of 50.8 MeV and the
charged K∗(892)± with mass of 892 MeV and width of 50.7 MeV .
Surprisingly, GEM indicates that the K∗(892) acts as a standard
vector meson stemming from a three-quark base formed by the up
(u), down (d), and strange(s) quarks. Specifically, based upon width
calculations through the use of GEM associated with various possi-
bilities as to the K∗(892)’s construction, the K∗(892) is best repre-

1Email:dwhite@roosevelt.edu
2“GEM and the K∗(892)”, republished here by consent of David King, Chair of the Intellect-

base International Consortium, who offers his congratulations on the contributions of Thomas
Erber over a long and productive career.
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sented as a linear combination, χ, of quark/anti-quark states given
by χ = c (uu∗ + dd∗ + ss∗), where c = 1/

√
3 and the ∗ indicates the

relevant anti-quark in the expression for χ. For such construction
GEM indicates a theoretical width for each mode of the K∗(892)
(charged and neutral) as virtually a match to published experimen-
tal determinations of same.

Keywords
gluon emission model; K∗(892); vector mesons; isospin = 1/2; quark spin-

flip

13.1 Introduction

Conventional wisdom has established the K∗(892) meson as an excited (J = 1)
state of the K meson. As such, the neutral mode of the K∗(892), the K∗(892)0,
is thought to involve a bound state of the down (d) quark and the strange (s)
anti-quark (s∗). Its anti-particle, herein designated by [K∗(892)0]∗, involves,
therefore, d∗ and s, again, by conventional wisdom ( PDG (2004), p. 20).
Meanwhile, the charged mode of the K∗(892), the K∗(892)±, would be charac-
terized by a bound state of the up (u) quark and the s∗ or vice versa, i.e., u∗

and s (PDG (2004, p.20). According to PDG (2004), p.28, the K∗(892) decays
nearly 100% into various π K products, and, presumably through the use of
coincidence analysis, experiments indicate that decays involving no net charge
associated with the decay products take place at essentially the same rate as de-
cays involving one unit of charge associated with same, as the decay width, Γ0,
of the K∗(892)0 is inferred to be essentially the same as the decay width, Γ±, of
the K∗(892)± [50.7±0.6MeV vs. 50.8±0.9 MeV , respectively]. Also according
to PDG (2004), p. 28, the neutral decay mode is associated with a meson mass
of 896 MeV , the mass, M0, of the K∗(892)0, while the charged decay mode
stems from a meson mass of 892 MeV , the mass, M±, of the K∗(892)±.

Above is recounted, as noted, the conventional wisdom straight out of PDG
(2004) and as it has been expressed in the literature for decades concerning the
K∗(892). Below, we wish to apply some “unconventional wisdom” to the situa-
tion, the results of which will show that a reinterpretation as to the structure of
the K∗(892) appears to be in order. Specifically, assuming the context of high-
energy colliding beams as providing for meson production, we apply the Gluon
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Emission Model (GEM) to the situation involving the K∗(892).3 Since J = 1
for the K∗(892), the stated application of GEM is valid, as we may assume that
the K∗(892) arises via quark spin-flip with accompanying gluon emission.4

The particular value realized through the application of GEM is that it yields
a formula for the width of any J = 1 meson in its ground state, a formula which
is highly sensitive to the assumed quark structure of the given J = 1 meson
under consideration. Specifically, GEMdetermined widths are each proportional
to

∑
i q4

i , where i represents a generic quark type (u, d, or s herein) comprising
the decay products common to the meson and qi represents the basic unit of
charge of the given quark type in units of the proton charge, i.e., qu = 2/3,
qd = 1/3, and qs = 1/3.

Hence, the conventionally assumed quark structure of the K∗(892)0 and the
K∗(892)± can be used for GEM width formulas, the theoretical results then
compared with experimental determinations. We will find significant discrep-
ancies with “conventional wisdom”, to be sure. However, GEM will allow for
a new picture as to the structure of the K∗(892) one that is as simple as it is
reasonable.

13.2 Application of GEM
From White (2008), Eq. 4, the GEM formula governing the width, Γv(GEM),
of any conventional vector meson, v, of mass, mv, in its ground state is given
by:

Γv(GEM) ≈
(

mρ

mv

)3
(∑

i

q4
i

) [
ln

mv

50 MeV

]−1

× 1960 MeV , (13.1)

where mv = 776 MeV is the mass of the ρ meson (PDG (2004), p. 4). As
noted in White (2008), however, the K∗(892) is not a “conventional” vector
meson, because it has an isospin value of 1/2, and so unlike the “conventional”
vector mesons such as the ρ, the φ, the J , and the υ, half of the K∗(892)’s
energetically allowed decay routes are forbidden, i.e., decays into a pion and
a kaon are allowed, but decays into pion pairs are not.5 For the time being,
considering the K∗(892) as a composite structure of charged and neutral modes
of average mass, 894 MeV , we postulate that its width is given by Eq.(13.1)

3For literature as to the roots of the Gluon Emission Model and its early application to
hadron production phenomena see Close (1979) and White (1985).

4See White (2008) and Dalitz (1977).
5For a discussion on isospin, see Ohanian (1987), pp. 439-441.
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above with the sum over q4
i as q4

u + q4
d + q4

s = 18/81, except that we must
multiply the right hand side by 18/35, because, as a composite structure, u, d,
and s quark types are common both to the meson and its collection of allowed
decay products, whereas the forbidden route only involves u and d quarks in the
decay products, so that the relevant sum over q4

i would be 17/81. Hence, the
allowed route is favored over the forbidden one by the factor 18 to 17.6 Denoting
the width of the composite structure as determined by GEM as ΓC(GEM), we
find from Eq.(13.1)

ΓC(GEM) ≈ 18
35

(
776
894

)3 18
81

[
ln

894
50

]−1

× 1960 MeV ≈ 50.80 MeV , (13.2)

a figure certainly well representative of the experimentally determined width of
either the K∗(892)0 or the K∗(892)± noted in the Introduction.

Now, building upon the composite structure idea, if we consider the K∗(892)0

as a linear combination of u, d and s quark / anti-quark pairs much in keeping
with the description of the ρ as a linear combination of uu∗ and dd∗ objects, or
of the φ as a linear combination of ss∗ (forming its kaon branch), uu∗ and dd∗

(together forming its non-kaon branch) objects whose decay products bear no
net charge, we can invoke GEM to obtain the theoretical width of the K∗(892)0

under the above assumption. Specifically, denoting its GEM-determined width
as Γ0(GEM), we find:

Γ0(GEM) ≈ 18
35

(
776
896

)3 18
81

[
ln

896
50

]−1

× 1960 MeV ≈ 50.42 MeV , (13.3)

a figure well in accord with the experimental finding of 50.7 ± 0.6 MeV noted
in the Introduction.

Proceeding similarly with the K∗(892)±, whose decay products would bear,
of course, one unit of charge and denoting its GEM-determined width as
Γ±(GEM), we find:

Γ±(GEM) ≈ 18
35

(
776
892

)3 18
81

[
ln

892
50

]−1

× 1960 MeV ≈ 51.18 MeV , (13.4)

a figure also well in accord with the experimental finding of 50.8 ± 0.9 MeV
noted above in the Introduction.

Obviously, to consider the K∗(892)0 as a construction containing only the
(conventionally assumed) d and s quark types would not lead to an accurate

6See White (2008), Section IV.
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width determination of it via GEM by any stretch of the imagination. The
term involving the sum over quark charges would be only 2/81, thus producing
the corresponding “weight factor” (scaling the allowed decay route) of 2/(2 +
1) = 2/3, since only the d quark type would be common to both the forbidden
decay products (pions) and the meson. The resulting width of the K∗(892)0 as
determined by GEM would thus be only 7.26 MeV . Neither would considering
the K∗(892)± as a construction containing only the (conventionally assumed)
u and s quark types give via GEM a determination of its width as accurate as
seen in Eq.(13.4). Here, the term involving the sum over quark charges would
be (17/81), thus producing a “weight factor” of 17/(17 + 16) = 17/33, since,
here, only the u quark type would be common to both the forbidden decay
products (again, pions) and the meson. The resulting width of the K∗(892)±

as determined via GEM would be 48.42 MeV , a figure lying outside the range
of experimental uncertainty. The most reasonable and, in our view, correct
assumption as to the actual structure of the K∗(892), as indicated by GEM,
therefore, would be that it comprises a composite structure of uu∗, dd∗, and ss∗

in equal measure.

13.3 Discussion of Results

The structure indicated by GEM for the K∗(892) charged mode or uncharged
mode – i.e., a linear combination of uu∗, dd∗, and ss∗ in equal measure, we will
represent by

χ =
1√
3

(uu∗ + dd∗ + ss∗) (13.5)

As such, the K∗(892) would not be characterized as a “strange meson” in the
usual sense, as said term usually denotes a structure of the form, χs = sx∗

(or s∗x), where “x” denotes a given type of quark other than “s”. Indeed, χ
is much more akin to the theoretical structures of the light, unflavored vector
mesons, such as the ρ and the φ. If one assumes the decay of χ takes place via s
(or s∗) joining either u∗ (or u) or d∗ (or d) on a random basis, all possible K π
decay products would show up with equal probability, such in keeping with the
widths of the charged mode and neutral mode being essentially equal. Under
our assumptions it is thus seen that all possible K π products are realized in
all possible permutations with equal likelihood consistent with experimental
findings. Hence, it appears eminently evident that the K∗(892) is not “strange”
at all. Rather, it clearly should be regarded as just another one of the garden
variety light, unflavored vector mesons joining ρ, ω, and φ as the third most
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massive in the group of four such objects.

13.4 Concluding Remarks

In a sense, GEM has provided for the discovery (perhaps “uncovery” would be
a better word) of a “missing link” between the ρ/ω and the φ. The ρ and ω, for
instance, are theoretically constructed from linear combinations of uu∗ and dd∗

structures, and, in keeping with that, give rise to various π decay products (no
Ks). The φ, on the other hand, is thought to be a linear combination of uu∗,
dd∗, and ss∗ objects, similar to our suggested construction of the K∗(892) (see
Eq.(13.5)), but the φ is massive enough to decay into two kaons, which it does
predominately. So, the predominant decay mode of the φ is characterized by s
joining u∗ and the associated s∗ joining u, for example, so that two Ks can be
emitted. Where is the vector meson less massive than the φ but more massive
than the ρ/ω which can give rise to the intermediate type of decay, i.e., a π plus
a K? It’s quite a mystery once one begins to think about it! However, much
as Arthur Conan Doyle’s famous purloined letter, we believe the missing meson
can be found in plain view for anyone who really looks for it: It’s right there on
p. 28 of PDG (2004) for all to see.

Epilogue: Personal Comments by Dave White

Thanks to Tom Erber I received my very first job opportunity in 1972 as a
part-time instructor at IIT while still finishing up my PhD thesis on the quan-
tum mechanical description of synchrotron radiation by electrons in uniform
magnetic fields. But it was more than that; it was a place to be . . . a place to
learn . . . to learn how to write for journals . . . to learn how to collaborate . . . to
learn to share ideas . . . to learn about things other than my prime interest . . .
things such as the quantum shifting of many-magnet systems, the generation
of quasi-random numbers via simple polynomials, and the few-loop theorem in
random number generation, which still fascinates me to this day. The place to
be was a desk dedicated to me in Tom’s magnet lab, a desk I frequented most
days a week, including lots of Saturdays (following Tom’s example), for eight
years, carrying me to the fall of 1980, at which time I obtained my first tenure-
track appointment at Roosevelt University. I’ll never forget the sight of Tom
(1973) almost running down the hall towards the magnet lab, he calling “White!
White!”, my first draft of my first single-authored physics paper, subsequently
published by Physical Review D, waving wildly in his right hand. “’This’ is
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for speaking,” he said. “Huh?” of course was my reply. “You have too many
’this-es’ in here; ’this’ is a word you use when you can point to what is meant
by ’this’. You don’t use ’this’ in anything meant for the written communication
of scientific ideas. And by the way . . . you have a ’soley’ in here, too.”

Today, believe me, I know that one “this” is one “this” too many in formal
scientific writing, something that I have passed on to all my physics students
at Roosevelt since. To this day, Tom is still the best pure scientist I have ever
known. He always insisted that things be done for the right reason (“we don’t do
it for the fame”). I learned to “do it” because I thought it was on a path towards
“the truth” and because it was fun to embark on such a path. Along those lines
I never met anyone so all business in the pursuit of fun stuff to pursue. I lost
the sense of fun in the pusuit of physics for one score years (1983 - 2003), during
which time I wrote science fiction for the pure, all business fun of it, and such
endeavor I see now as being necessary to get me from some measure of emotional
instability towards a better outlook on life. Now, I am “doing it” with gusto . . .
having tons of fun with it . . . but, maybe with . . . oh . . . 15.6% of the “business”
exhibited by my mentor over the entirety of his teaching career (sorry, Tom).
The last paper I published before my “hiatus from physics” was an extension of
the work I had been doing regarding hadron production via virtual synchrotron
radiation. I’ll never forget, either, how a major feature of said extension, viz., F.
Close’s Gluon Emission Model, found its way into that 1985 IJTP publication. I
was at my desk in the magnet lab one day circa 19827 when Tom walked in with
a load of books and papers in arm, a load which, in the manner of the Japanese
tea ceremony (more business + fun all wrapped together), he “placed/dumped”
on my desk. “I thought you might want to take a look at this; I think you’ll
find it interesting,” he said. “Close has a real interesting extension to QED;
you might be able to work it into your presentation. And by the way, you
could renormalize the absorption cross-section formula to a width, you know;
you might then obtain a standard as a check to your synchrotron results.” Boy,
did I have fun with that unsolicited pile of information! There was Close’s text
containing the Gluon Emission Model . . . also a small book by Feynman on
quarks and gluons, in which various QED processes were “analogized”. I went
straight to Merzbacher to find the absorption cross-section formula associated
with quantum states at rest which decay to the ground state and saw a way to
“analogize” the QED situation to a width formula for vector mesons, as well.
And . . . in 2004 that’s exactly what I picked up on again. To my amazement,
the meson data in 2004 had become not only voluminous, but also each vector

7I would still venture to my desk in the magnet lab on weekends until the spring of 1984.
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meson data set in the PDG’s meson table had become incredibly more “tight”
(precise) than was evidenced in 1983. Coupled with the personal computer
with its internally-borne EXCELTM spreadsheet programs, getting back into
physics again had all of a sudden become interesting and fun again. In a non-
trivial way, then, Tom’s guiding influence had always been present within me,
even during my hiatus. I just needed some time for the experimentalists to get
with it and start measuring things better and for the folks at INTELTM to
come up with a computer I could carry around with me. So . . . thanks, Tom!
The paper is an application of Close’s Gluon Emission Model . . . it was a blast
writing it (and no “this-es” will you find therein).
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The Heisenberg-Euler Lagrangian:
an Example of an Effective Field Theory

Walter Dittrich1

Institute for Theoretical Physics
University of Tuebingen (Germany)

14.1 Introduction

I consider it an honor to contribute an article to the ”Festschrift” on the oc-
casion of Professor Tom Erber’s eightieth birthday. Although our world lines
only crossed a few times in the past, I vividly remember our discussions at
UCLA in the nineteen eighties. What impressed me most was Tom’s universal,
encyclopaedic knowledge, which went far beyond our beloved physics. During
his active time he accomplished a series of brilliant works which have left their
marks on a large class of students and colleagues alike, especially those working
in classical and quantum electrodynamics. It is this field in which we shared
a common interest and about which I will reminisce in the following. In par-
ticular, I will outline the basic idea which lies behind any effective field theory,
taking as an example the Heisenberg-Euler non-linear effective Lagrangian.

The physics of effective actions has grown and diversified tremendously in
recent decades. So I thought it would be a good idea to sketch by way of example
the techniques of constructing an effective field theory starting from QED. But
before I start my contribution: I wish you, Tom, all the best for your future life,
scientifically and otherwise. Ad multos annos!

1eMail: qed.dittrich@uni-tuebingen.de

147



148 14. The Heisenberg-Euler Lagrangian ...

14.2 Hans Euler’s Ph.D. Thesis:
Scattering of Light by Light

Hans Euler’s celebrated Ph.D. thesis [1] had its origin in a question that Peter
Debye posed to Werner Heisenberg when they were both professors at the uni-
versity of Leipzig in the mid-thirties. Debye wanted to know whether it would
not be possible to calculate the amplitude for the scattering of light by light in
the framework of the newly discovered quantum theory of electrons and photons
by P.A.M. Dirac. Since light-light scattering implies violation of the superpo-
sition principle, this would thus require a modification of Maxwell’s equations
and hence the replacement of the linear theory of classical electrodynamics by a
nonlinear one showing the nonlinear corrections due to Dirac’s quantum theory
of electrons. This was achieved by Hans Euler.

In the thirties Heisenberg’s institute in Leipzig hosted scholars from all
around the world. In addition, he had some excellent young, promising stu-
dents like F. Bloch and E. Teller. However the person most relevant to our
subject of photon-photon scattering was his higly talented student Hans Euler.
Not much is known about him because he was killed shortly after Nazi Germany
started the war against the Soviet Union; more precisely: he was already miss-
ing on the east front on June 21, 1941, although the German attack officially
started one day later. Attempts after the war to find out more about the fate
of Hans Euler with the aid of his physics colleagues and Russian officials were
in vain.

Hans Euler’s Ph.D. thesis is a masterpiece in handling the calculation of low-
energy photon-photon scattering. (For Heisenberg’s evaluation of Euler’s thesis,
see the copy of the original, handwritten document, the German transcription
and its English translation below.) His final result, the effective Lagrangian of
QED, is presented in a form that is precisely the same as that which was later
rederived more elegantly by V. Weisskopf and J. Schwinger.



14.2 Hans Euler’s Ph.D. Thesis ... 149

Figure 14.1: Copy of Heisenberg’s recommendation of Euler’s PhD thesis (kind-
ness of the Universitätsarchiv Leipzig)
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Figure 14.2: Copy of Heisenberg’s recommendation of Euler’s PhD thesis (kind-
ness of the Universitätsarchiv Leipzig)
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English Translation of Heisenberg’s Evaluation of Euler’s PhD
Thesis

The topic of the present thesis goes back to the question that my colleague De-
bye once asked me. Dirac’s theory of the positron, according to which matter
can be transformed into radiation and radiation into matter - as can be ob-
served experimentally - leads to a scattering of light by light. Two light quanta
can, even if their energy is not sufficient to create an electron-positron pair,
be transformed into two other light quanta through the - so to speak - virtual
possibility of pair building, i.e., can be scattered by each other. The question of
how often these processes occur, which was to be calculated by the candidate, is
principally of great importance, since the problem is a special case of the more
general problem of how Maxwell’s equations are modified by Dirac’s theory.
The theoretical foundations for doing the calculations were laid by the work of
the referee [Heisenberg ]. The purely mathematical difficulties in performing the
calculations were, however, formidable. Euler had to use perturbation calcula-
tion to 4th order and then make an expansion to 4th order in the reciprocal
wavelength. Such a lengthy process of solving of equations could not be accom-
plished by a single person. This was done at my institute by Mr. Euler together
with Mr. Kockel. Euler and Kockel also conjointly published the result in a
preliminary publication. Since all the other significant ideas are attributable to
Euler, in particular the invariance discussions in §5 which were decisive for the
execution, it seemed to me only justified to assign Euler alone to work it out.
The results seem to me to be extremely important. They show, on the basis
of Dirac’s theory, that deviations from Maxwell’s equations appear in a form
similar to that already conjectured by Born on the basis of considerations of the
”self energy” of the electron. Due to the actual value of Sommerfeld’s constant
e2/~c, Euler’s numerical factor is of the same size as Born’s. Thus, Euler’s the-
sis possibly gives a first indication of a later theory of the value of e2/~c, the
main problem in relativistic quantum theory. – The simplicity of the results
further showed that there must be a more straightforward way than that chosen
here, solving formulas that lie at the limit of what is possible. Meanwhile Euler
and the referee (after finishing Euler’s work) were able to find a simple path
that finally also leads to the general deviations from Maxwell’s equations. The
prerequisite for this was, however, that the result had been found once before.
In accomplishing this work, Euler proved himself an independently thinking sci-
entist, able not only to calculate meticulously but also, when confronted with
difficulties, to surmount them with new physics ideas. I therefore advocate
acceptance of this work with the grade 1 (very good).
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1.11.35
Heisenberg

14.3 Photon-Photon Scattering, General Remarks
The quantum theory of photon-photon scattering in its full generality is a rather
complicated theory. It is, however, not my intention to consider photon-photon
scattering experiments over every possible energy regime. Having in mind the
creation of an effective purely electromagnetic classical field theory, I will limit
myself to photons in the incoming state with momentum transfer much less than
the electron mass. Most importantly, since we do not observe any electrons, we
integrate out - in the path-integral sense - the electron fields (heavy degrees of
freedom) which influence the dynamics of the ”light” fields, the photon fields,
or the classical electromagnetic fields in our case. Clearly, the effective action
should give a complete description of the dynamics of the photon field without
reference to the unobserved electron field. All of the interesting low-energy
effects of the fundamental spinor QED will be reproduced, while the high-energy
behaviour becomes distorted. This is the price of making low-energy photon
physics calculable.

The dynamics of self-interacting low-energy photons is determined by a La-
grangian which is assumed to be hermitean, invariant under Lorentz, gauge,
charge conjugation and parity transformations. The general Lagrangian there-
fore reads

L (F ,G) = −F + aF2 + bG2 + . . . (14.1)

where we have introduced the gauge and Lorentz invariants of the electromag-
netic field:

F =
1
4

Fµν Fµν =
1
2

(
~B2 − ~E2

)
,

G2 =
(

1
4

Fµν F̃µν

)2

=
(

~E · ~B
)2

, F̃µν =
1
2

εµνλσ Fλσ .

Euler, Kockel and Heisenberg [2] and, independently, Weisskopf [3] were the
first to discuss an effective Lagrangian of the type (14.1) and determine the coef-
ficients a and b. If we had no knowledge of standard QED, we could take (14.1),
representing a phenomenological theory of interacting photons, calculate vari-
ous Green’s functions and scattering amplitudes and then adjust the unknown
constants a and b to the measured photon-photon scattering cross setions at
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Figure 14.3: Friedrich Hund’s affirmation of Heisenberg’s recommendation
of Euler’s PhD thesis and signatures of colleagues (kindness of the Univer-
sitätsarchiv Leipzig)
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Figure 14.4: Doctoral certificate awarded to Hans Euler by the Universität
Leipzig (kindness of the Universitätsarchiv Leipzig)
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low energy. Fortunately, we possess a fairly good knowledge of QED in quite
a range of energy, which enables us to compute a and b from first principles.
To achieve this we merely have to require that the Lagrangian of fundamental
QED and the effective Lagrangian (14.1) yield the same results at low energy.
Ensuring that the predictions following from the effective theory (14.1) agree
with the fundamental theory to any order of accuracy is called matching. What
we are matching are transition amplitudes or Green’s functions in both theories.
These techniques are common to all those perturbatively renormalizable field
theories and their respective effective low-energy theories in which the heavy
degrees of freedom are integrated out.

14.4 One-Loop Effective Lagrangian in Spinor-QED

The simplest Feynman graph that leads to photon-photon scattering in QED is
given in Fig. 14.5:

electron
photon

Figure 14.5: Box graph for γ − γ scattering to 4th order

Assuming low frequency γ − γ scattering, i.e., treating the external photons
as external prescribed fields, we can, more generally, study the electron loop to
all orders in the external field, which is sketched in Fig. 14.6:

Figure 14.6: Electron loop in external field to all orders



156 14. The Heisenberg-Euler Lagrangian ...

Hence the central object we shall be interested in is the vacuum-to-vacuum
persistence amplitude

〈0+|0−〉A = exp
{

iW (1) [A]
}

.

Integrating out the unobserved electron degrees of freedom leads to the one-loop
contribution W (1) in the effective action:

exp
{

iW (1) [A]
}

=
∫

dψ dψ̄ exp
{
−i

∫
d4x ψ̄

[
γ ·

(
1
i

∂ − eA

)
+ m

]
ψ

}
.

(14.2)
The Gauß-type integral in (14.2) with anticommuting classical fields ψ, ψ̄

can be evaluated with the result

exp
{

iW (1) [A]
}

= det
[
γ

(
1
i

∂ − eA

)
+ m

]
= det

(
G [A]−1

)
.

This yields

W (1) [A] = i `n det G [A] = i T r `n G [A] .

Because action functionals are defined only up to a constant, we may exploit
this freedom to write

W (1) [A] = i T r `n (G [A] /G [0]) . (14.3)

Here, G [0] = G is the electron propagator in the field-free case, connected with
G [A] by

G [A] = G (1− eγ ·AG)−1
.

T r indicates the trace in both spinor and configuration space.
To explicitly calculate the effective Lagrangian for the effect which an arbi-

trary number of external photon lines can have on a single electron loop, I have
at least half a dozen strategies at my disposal. Some of them can be looked up
in ref. [4].

Limiting ourselves to a constant magnetic field B in z-direction, we obtain

L(1) (B) =
1

8π2

∫ ∞

0

ds

s3
e−im2s

[
(eBs) cot (eBs) +

1
3

(eBs)2 − 1
]

. (14.4)
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The integral in (14.4) can be explicitly computed, e.g., by dimensional or ζ-
function regularization with the result

L(1) (B) = − 1
32π2

{(
2m4 − 4m2 (eB) +

4
3

(eB)2
)[

1 + `n

(
m2

2eB

)]

+4m2 (eB)− 3m4 − (4eB)2 ζ ′
(
−1,

m2

2eB

)}
. (14.5)

The result (14.4), which was obtained for a pure magnetic field, can be gener-
alized for arbitrary constant external electromagnetic fields. One only has to
substitute for B the gauge-invariant Lorentz scalars F and G2. The resulting
expression was already achieved by Euler and Heisenberg in 1936.

For a derivation using the elegant Fock-Schwinger proper-time method one
should consult Schwinger’s superb paper of 1951 [5] or reproduce the corre-
sponding pages of his monograph [6] on source theory.

The result of the effective Lagrangian when constant electric and magnetic
fields are present simultanously is given then by

L(1) =
1

8π2

∫ ∞

0

ds

s3
e−im2s

{
(es)2 |G| cot

[
es

(√
F2 + G2 + F

)1/2
]

× coth
[
es

(√
F2 + G2 −F

)1/2
]

+
2
3

(es)2 F − 1
}

. (14.6)

An expansion of the integral for small values of e corresponds to a weak-field
approximation, Fµν ¿ m2, and reduces equation (14.6) to

L(1) =
8
45

α2

m4
F2 +

14
45

α2

m4
G2 . . .

=
2α2

45m4

[(
~E2 − ~B2

)2

+ 7
(

~E · ~B
)2

]
. (14.7)

At last we have identified our unknown constants a and b in (14.1).
Comparing our ansatz (14.1) with the result (14.7), we can write down the

explicit values for the constants a and b, namely

a =
2α2

45m4
, b = 7a . (14.8)
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14.5 Photon-Photon Scattering:
More Details and Outlook

The matching procedure of the previous chapter that set in relation the La-
grangian of pure QED to the phenomenological Lagrangian (14.1) was per-
formed in the frame of external-field QED. J. Schwinger, in his monograph [6],
has given another way to identify the constants a and b. Using the fundamental
QED-Lagrangian, he calculates directly the vacuum persistence amplitude for
the photon-photon scattering, the box graph of Fig. 14.5 with the four in- and
outgoing on-shell photons.

〈0+|0−〉 = exp
{

iW
(1)
04

}
. (14.9)

The index 0 appended to the action stands for no external electrons and 4 stands
for the two incoming and outgoing photons. He then shows that for low-energy
photons the generally non-local photon-photon interaction (form factor for the
box) becomes inevitably local and that the vacuum amplitude in (14.9) can be
expressed as a space-time integral of a local Lagrange function. In particular,
the choice of parallel (||) and perpendicular (⊥) polarization of the initial and
the final photons (the polarization vectors of the photons do not change in the
low-energy collision process) yield the following amplitude:

〈0+|0−〉 = exp
{

i

∫
d4xL(1)

04 (x)
}

with
L(1)

04 (x) = L|| (x) + L⊥ (x) ,

where (!)

L|| (x) =
2α2

45m4

(
~E2 − ~B2

)2

L⊥ (x) =
2α2

45m4
7

(
~E · ~B

)2

, (14.10)

which is precisely our earlier matching-result arrived at by using a one-loop
external-field calculation.

Given the Lagrangians of (14.10) we are now able to compute various elastic
scattering cross sections for the collision process, Fig. 14.7.
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Figure 14.7: Elastic γ − γ scattering in C.M. system

Since generally for polarized photons

(
dσ

dΩ

)γγ

pol
=

1
(8π)2

α4 1
ω2

|M |2

= r2
0

( α

2π

)2 m2

16
1
ω2

|M |2 . (14.11)

we obtain for non-forward scattering (Θ 6= 0) ↑ ↑ → ↑ ↑
1 2 3 4

M|| || || || =
16
α2

4ω4 (2a + b)
(
3 + cos2 Θ

)
, 2a + b =

4
180

α2

4m4

=
(

16
45

) ( ω

m

)4 (
3 + cos2 Θ

)
. (14.12)

Hence, according to (14.11) we find

(
dσ (ω, Θ)

dΩ

)

|| || || ||
= r2

0

( α

2π

)2 16
(45)2

( ω

m

)6 (
3 + cos2 Θ

)2

where r0 =
α

m
= 2.8× 10−13 cm and α ≈ 1

137
, (14.13)
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and for forward scattering (Θ = 0):

(
dσ (0)
dΩ

)

|| || || ||
=

α2

m2

( α

2π

)2
(

4
45

)2 ( ω

m

)6

× 42 =
∣∣f|| (0, ω)

∣∣2

with

f|| (0, ω) =
(

32
45

)
α2

4π

ω3

m4
. (14.14)

The corresponding quantities for the scattering amplitude
↑1
↙2 →

↑3
↙4 are

given by

M⊥ ||⊥ || =
2
45

1
m4

(
31 + 22 cos Θ + 3 cos2 Θ

)

MΘ=0
⊥ ||⊥ || =

112
45

( ω

m

)4

(14.15)
(

dσ (Θ, ω)
dΩ

)

⊥ ||⊥ ||
=

( α

2π

)2

r2
0

1
(90)2

( ω

m

)6 (
31 + 22 cos Θ + 3 cos2 Θ

)2

Θ = 0 :
(

dσ (0)
dΩ

)

⊥ ||⊥ ||
=

( α

2π

)2

r2
0

(
56
90

)2 ( ω

m

)6

= |f⊥ (0, ω)|2

with

f⊥ (0, ω) =
(

56
45

)
α2

4π

ω3

m4
. (14.16)

Given the results (14.14) and (14.16), we find for the index of refraction:

n ||
⊥

= 1 +
2π

ω2
N f ||

⊥
(0, ω) (14.17)

where N = ⊥
4ω E2 is the average number density of centers of scattering, so that

n ||
⊥

= 1 +
1
45

α2

{
8
14

}
E2

m4
, (Kerr effect) (14.18)

and with the substitution E → B and 8 ↔ 14:

n ||
⊥

= 1 +
1
45

α2

{
14
8

}
B2

m4
. (Cotton-Mouton effect) (14.19)
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A plane wave field (laser beam) with fields ~e,~b and wave vector ~k passing through

a constant B-field and laser polarization
⊥-mode: ê = k̂ × B̂,

∣∣∣k̂
∣∣∣ = 1

||-mode: b̂ = k̂ × B̂
yields for the Cotton-Mouton effect a slightly modified formula of (14.19):

n ||
⊥

= 1 +
1
45

α2

{
14
8

}
B2

m4
sin2 Θ , Θ = ∠

(
B̂, k̂

)
. (14.20)

Except for propagation along the external B-field direction (sinΘ = 0), the
vacuum polarized by an applied constant magnetic field acts like a birefringent
medium [7]. In particular, if we consider light of wavelength λ traversing a path
length L normal to the B field, then the ellipticity from vacuum birefringence
is given by

ψQED = π
L

(
n|| − n⊥

)

λ
= 1.6× 10−11 rad. (14.21)

This theoretical numerical value from spinor QED was evaluated with PVLAS
parameters [8].

B ∼ 5T = 5× 104 G
` = 1 m

N = 44000 passes
L = 1 m × 4.4 × 104 = 4.4 × 106 cm
λ = 1064 nm = 1.064 cm
~ω = 1.2 eV

Let me remark that there are other ways to discuss dispersion effects for low-
frequency photons. I have chosen the shortest way so as to limit my contribution
to a reasonable number of pages. If the reader is interested in a more elaborate
representation, which to a large extent makes use of the brilliant papers by Tom
and Wu-yan-Tsai [9], he (she) should consult either their original papers or the
monographs [4].

Clearly the number given in (14.21) is one of the smallest numbers ever to
be measured in a high-precission experiment. The PVLAS group in the Legnaro
laboratory in Italy, formerly under the leadership of the deceased E. Zavattini,
has spent many years detecting and measuring this tiny ellipticity. So far they
have been able to provide only an experimental upper bound for ψ

QED
exp of the

order of 10−8 rad.
Before I conclude my contribution to the Festschrift for my colleague and

friend Tom Erber, I want to mention that at present there are numerous activ-
ities going on worldwide to measure photon-photon scattering directly with the



162 14. The Heisenberg-Euler Lagrangian ...

aid of strong laser fields. To appreciate these formidable tasks, let me remind
you of the minute numbers that are to be measured.

For unpolarized photons with ω ¿ m in the C.M. system, it has been known
for a long time that for unpolarized photons

(
dσ̄ (Θ, ω)

dΩ

)

γγ

= r2
0

139
(180)2

α2

π2

( ω

m

)6 (
3 + cos2 Θ

)2
,

which for Θ = 0 and photons of frequency ω = 51 keV yields

(
dσ̄ (0)
dΩ

)

γγ

= 2.94× 18−38 cm2

In comparison to Compton scattering, we obtain

(
dσ̄ (0)
dΩ

)

Compton
= r2

0 = 7.95× 10−26 cm2 .

The total cross section, σ̄t (ω) =
∫

dΩ dσ̄(Θ,ω)
dΩ , produces for unpolarized light

σ̄γγ
t (ω) =

1
(45)2

973
5π

α4 1
m2

( ω

m

)6

.

Limits from ellipsometric data of the PVLAS group can be directly trans-
lated to γ − γ scattering limits.

The total cross section for nonpolarized light with wave length λ = 514.5
nm is theoretically given by

σ̄
QED
t = 1.44× 10−67 m2

where the measured upper bound given by the PVLAS experiment [8] is about
2 ×107 larger than predicted from QED. This can only mean that the PVLAS
data need to be improved or that another, different experimental design has to
be invented.

Maybe the laser group at the university in Jena [10] will surprise us one
day with a confirmation of the theoretical results for which the entire QED
community has been waiting for so long.
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For Professor Thomas Erber:
in Recognition of His 80TH Birthday

Michael E. Fisher
University of Maryland

Dear Tom:
I was delighted to learn that your colleagues were assembling a Festschift in

your honor for this year, the tenth of a new century, when you will celebrate
your 80TH Birthday.

As you and I have lived our scientific lives, our paths have crossed only
occasionally over the years. But, from decades ago, I still remember vividly our
first meeting when you spoke with your characterstic dynamism at one of Joel
Lebowitz’s “Yeshiva” Meetings, long since transferred to Rutgers but always
encouraging the liveliest and most original scientists. And, almost needless to
say, your topic was Hysterisis that long-time love of your scientific career.1

You brought novelty and insights to an old but oft neglected phenomenon.
And I remember the magnetic models you invoked that resonated with my own
theoretical pictures and modes of thought.

Then you wrote, for my own Festschrift in 1991, a stimulating article with
Dave Gavelek revealing the iterative asymptotics of functions generating “ran-
dom sequences”.2 In truth, “What is a random number?” is a question that
first intrigued me in my high school days when I conducted my own 5-card
ESP extrasensory perception experiments. My personal scientific love, the lsing

1See articles [28], [32-34], [43,44], [73,74], [77] and [84], and also [20] in Tom’s Publication
List et seq.

2See publication [80] and the related articles [40], [58], [61], [63], and [83].
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model, had since shown how “nonrandom”, indeed, were many computerized
random-number generators that people used.

Most recently, only half a decade ago, I was charmed by your Reflections on
Parity,3 by how you brought in the always fascinating problem of “best packings”
for your favorite case of interacting charges on a sphere4 – and finally, how
you showed that all was undermined by Smale’s inspired discovery of sphere
eversion!5 I am still promising myself to make time for an opportunity to hunt
down and see the computer animations of the process constructed by Max and
by Francis6 and their coworkers. For my own part, I still prize the play-dough
model I made in which the surface of a Möbius strip is deformed so that its edge
lies on a circle in a plane. Have you ever seen that?

In the same vein, I hope you will accept as a small token of appreciation, a
copy of a “wheel-full” pattern I constructed to adorn a doorway to a gallery my
wife set up for a show for local artists. (see Figure 2.) The symmetry of the
elements, or their lack thereof, might amuse you.

With my warm best wishes for your next adventures.
Michael

3See [95] on the Publication List.
4Illustrated by articles [82] and [88].
5See Refs. [57,58] in publication [95].
6See Refs. [59-63] in publication [95].
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Figure 15.1: Four wheel figure
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Figure 15.2: “Wheel-full” Pattern
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Majorana Fermions in Fermi
Superfluids: A Pedagogical Note

A. J. Leggett
Department of Physics

University of Illinois at Urbana-Champaign

Abstract

I analyze the concept of a “Majorana fermion” in a Fermi super-
fluid within the framework of an explicitly particle-conserving for-
mulation, with the conclusion that this apparently exotic object is
nothing but a quantum superposition of a real (“Dirac-Bogoliubov”)
fermion and an operator that annihilates the groundstate identically.
I briefly sketch how Majorana fermions can arise in an exactly solu-
ble toy model.

One of Tom Erber’s signature contributions over his career has been his ability
to extract interesting physics from problems that at first glance might seem to
be trivial. It is in this spirit that I offer this note, which asks and attempts to
answer a simple question: what exactly is a “Majorana fermion,” as introduced
in condensed matter physics, in terms of the original electrons?

In the context of quantum field theory, in which the idea was originally
defined

(
see Ref. 1

)
, a “Majorana fermion” is a fermion that is its own an-

tiparticle. Since beyond this there seems to be some ambiguity in the literature
about the precise definition (and we shall not need it in the present condensed-
matter context) I just note that instead of the “canonical” Fermi commutation

169
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relations
{ψ(x), ψ(x′)} = 0,

{
ψ(x), ψ†(x′)

}
= δ(x− x′) (16.1)

the creation and destruction operators of a Majorana fermion satisfy the rela-
tions

{ψM (x), ψM (x′)} ≡ {ψM (x), ψ†M (x′)} = δ(x− x′) (16.2)

as will be the case below.
In condensed matter physics, the context in which “Majorana fermions” have

been most widely discussed is that of an inhomogeneous Fermi system in which
Cooper pairs are formed (hereafter for brevity called simply a “Fermi super-
fluid”). The fermionic excitations of such systems are conventionally described
by the Bogoliubov-deGennes (B dG) equations

(
see Ref. 2

)
; I will discuss these

in detail below, but for the present note that within this approach the operator
that creates a single fermionic excitation has the general form

γ†n =
∫

un(r)ψ†(r) + vn(r)ψ(r)dr (16.3)

and satisfies the relation [
ĤMF , γ†n

]
= Enγ†n (16.4)

where ĤMF is the standard mean-field (BdG) Hamiltonian and ψ(r) is the
standard (Dirac) fermion field operator. (For simplicity of notation any rele-
vant spin degree of freedom is subsumed in r.) Thus, the elementary fermionic
excitations (“Bogoliubov quasiparticles”) are quantum superpositions of an ex-
tra Dirac fermion with amplitude un(r) and a Dirac hole with amplitude vn(r).
Now under certain circumstances it may turn out that there exists a solution of
the BdG equations such that un(r) = vn(r). In this case it follows immediately
from (16.3) and (16.4) that for such a solution (which we label with the value 0
of n)

γ†0 ≡ γ0, E0 = 0 (16.5)

i.e. it has the defining properties of a Majorana fermion (hereafter M.F.)
and is usually called by that name. Generally speaking, such solutions are
most interesting when they are localized in space (i.e., the functions’ amplitude
u0(r) ≡ v0(r) falls off exponentially with distance from a particular point); a
very widely discussed case in point is the M.F. that is generally believed to be as-
sociated with a certain type of vortex in a 2D Fermi superfluid with the so-called
“p + ip” pairing

(
see Refs. 3–5

)
, and which has been proposed(6) as a basis for

topologically protected quantum computing in such systems. Rather generally,
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one expects the occurrence of M.F.’s to be associated with groundstates with a
nontrivial degree of entanglement: see in particular Ref. 7.

To motivate the ensuing discussion, I note the following difference between
the properties of M.F.’s as they occur in condensed-matter physics and in par-
ticle physics: In the latter, there seems no a priori reason against defining a
field ψM (x) that satisfies both of Eqns. (16.2); whether or not it originally
arose from an ordinary (Dirac) field ψ(x) as in Eq.(16.1) is unimportant. In
the condensed-matter case, the operator ψM (r) ≡ γ0u0(r) also satisfies both of
Eqns. (16.2). However, this operator must in the last resort be defined in terms
of real (Dirac) fermions, and the reason it then satisfies both of Eqns. (16.2) is
that in the BdG approach the total number of real (Dirac) fermions is conserved
only mod 2, because of the “spontaneous breaking of U(1) symmetry,”

(
see e.g.

Ref. 8
)
. While the latter is a convenient trick that facilitates calculations, it does

not correspond to the true physical situation, and it is perfectly possible and
indeed, in the present author’s opinion, in the context of conceptual discussions
desirable(9), to avoid it by reformulating everything in a completely particle-
conserving language. When one does so, the coefficient un(r) in Eq.(16.3) is
replaced by un(r)Ĉ†, where Ĉ† is a normalized creation operator for a Cooper
pair (i.e. such that (up to a term of relation order N−1/2) Ĉ†|N〉 = |N + 2〉,
where |N〉 indicates the groundstate of the N(= even)−particle system). How-
ever, when we substitute the modified form of (16.3) with n = 0 in the anticom-
mutators, we find that while the second of Eqn. (16.2) is preserved, the first
becomes

{ψM (r), ψM (r′)} = δ(r− r′)Ĉ (16.6)

and thus when projected on to the physical subspace (N = const.) the anticom-
mutator is zero just as for a Dirac fermion. This then prompts the question:
What do Majorana fermions look like in a particle-conserving approach?

For orientation let’s briefly review, using a particle-conserving representa-
tion, the relation between the groundstate and the elementary fermionic excita-
tions (Bogoliubov quasiparticles) in the simple BCS theory of a translationally
invariant s-wave Fermi superfluid. Using the abbreviation k ≡ (k, ↑),−k ≡
(−k, ↓) we can write the N -particle groundstate many-body wave function up
to normalization in the form (for N = even)

ΨN =

(∑

k

cka†ka†−k

)N/2

|vac〉 (16.7)

where the coefficients ck are related to the more familiar coefficients uk and vk
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by
ck = vk/uk, |uk|2 + |vk|2 = 1 (16.8)

For simple s-wave pairing it is possible and convenient to choose both uk and vk

to be real, positive and to satisfy uk = u−k, vk = v−k. Formally, let us define
the operator

Ĉ†(k) ≡ N(k)

∑

k′

′
ck′a

†
k′a

†
−k′ (16.9)

where the prime on the sum indicates that the state k is to be omitted, and the
normalization N(k) is such as to ensure that to relative order N−1/2 we have
Ĉ†(k)ΨN = ΨN+2. In view of the very weak O(N−1/2) sensitivity of C†(k) to k,

we omit the suffix in what follows and treat Ĉ† as independent of k. Then, if
we focus on the occupation of the pair of states (k, −k), the GSWF may be
written in the (normalized)1 form

ΨN = (uk|00〉k + vk|11〉kĈ) (Ĉ†)N/2 |vac〉 (16.10)

where |00〉k indicates that both k and −k are empty, etc.
Now consider the energy eigenstates of the (N + 1)-particle system. The

simplest such states are of the form

Ψk1
N+1 = |10〉k(Ĉ†)N/2 |vac〉

Ψk2
N+1 = |01〉k(Ĉ†)N/2 |vac〉 (16.11)

These (normalized) states are generated from the groundstate (16.10) by appli-
cation of the Bogoliubov quasiparticle creation operators, which in our particle-
conserving representation take the form

α†k1 ≡ uka†k − vka−kĈ†

α†k2 ≡ uka†−k + vkakĈ† (16.12)

Similarly, the simplest (N − 1)-particle energy eigenstates are obtained simply
by multiplying both of Eqns. (16.12) by an overall factor of Ĉ. Thus, in this
simple BCS case there exists a very simple relationship between the structure
of the (even-N) groundstate and that of the elementary fermionic excitations.

1There is a minor notational problem here, in that (16.10) really only makes sense if we

implicitly take Ĉ ≡ Ĉk; the same applies to (16.11) and (16.12).
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However, we note that it is also possible to define a second linear combination
of a†k and a−k which is orthogonal to the first operator in (16.12):

β†k1 ≡ vka†k + uka−kC† (16.13)
(
and similarly for the second equation in (16.12)

)
. This operator simply anni-

hilates the N -particle groundstate identically (that is, it produces a state vector
of zero length):

β†k1ΨN = β†k2ΨN = 0 (16.14)

In many textbook presentations of BCS theory, the operators β†k1, β†k2 are
said to create negative-energy fermion states which are supposed to be filled in
the groundstate (in analogy to the “filled Dirac sea” of quantum field theory);
however, my personal belief is that it is much less confusing to regard them as
simply “pure annihilators” as indicated by (16.14). In particular, it is then a
trivial observation that any linear combination of pure annihilators is itself a
pure annihilator, irrespective of whether or not it corresponds to a (negative-
energy) eigenstate of the Hamiltonian.

Now let us turn to the general case of a Fermi system described by the
Hamiltonian (where as above we subsume the spin variable in r, and add a term
−µN̂ to allow us to vary the particle number)

Ĥ − µN̂ =
∫

dr

{−~2

2m
ψ†(r)∇2ψ(r) +

(
U(r)− µ

)
ψ†(r)ψ(r)

}
(16.15)

+
1
2

∫∫
dr dr′ V (r, r′)ψ†(r)ψ†(r′)ψ(r′)ψ(r)

with V (r, r′) ≡ V (r′, r). Of course, without arguments specific to the form
of the single-particle potential U(r) and the two-particle interaction V (r, r′) it
is pretty much impossible to tell whether the groundstate of this Hamiltonian
will correspond to a normal Fermi liquid, a crystalline solid, a ferromagnet... or
many other possibilities. We will, however, be interested in the case where the
“topology” of the many-body groundstate wave function for N =even is that of
the “completely Cooper-paired” state

ΨN = NN

{∫∫
dr dr′ K(r, r′)ψ†(r)ψ†(r′)

}N/2

|vac〉 (16.16)
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where NN is an appropriate normalization factor and the function K(r, r′) is
antisymmetric under exchange of its indices. While it is very unlikely that the
groundstate of any real system is exactly (16.16) (any more than the ground-
state of any real translation-invariant metal is given by Eq.(16.5)!), it should be
adequate for the qualitative analysis we give below.

We start our analysis with the observation that according to a standard
theorem on antisymmetric matrices (proved for example in Ref. 10, appendix
A), Eq.(16.16) can always be rewritten in the simpler form

ΨN = N ′
N

(∑
m

cma†ma†m̄

)N/2

|vac〉 (16.17)

where the constants cm are in general complex, and where the operators a†m, a†m̄
create states χm(r), ϕm(r) which together form an orthonormal set, i.e. are such
that

(χm, χm′) = (ϕm, ϕm′) = δmm′ , (χm, ϕm′) = 0 (16.18)

At this point it is amusing to digress for a moment from our main goal and
ask: What happens if we try to determine the quantities cm, χm(r) and ϕm(r)
by optimizing the expectation value of the Hamiltonian (16.16) with respect to
them? Let us introduce the notation

cm ≡ vm/um, |um|2 + |vm|2 = 1, (16.19)

Um(r) ≡ umχm(r), Vm(r) ≡ vmϕm(r). (16.20)

where it is convenient for the moment not to make any particular choice of the
phase of um. Then it turns out that the result of the suggested procedure is
to lead to a pair of equations for Um(r) and Vm(r) which are exactly of the
form of the standard BdG equations—with however, crucially, a set of auxiliary
conditions corresponding to (16.18) (e.g. (Um(r), Um′(r)) = 0 for m 6= m′).
These conditions are much more stringent than those which follow from the BdG
equations themselves and are routinely used in their analysis, namely (with the
quantities ui(r), vi(r) defined in the standard way)

(
ui(r), uj(r)

)
+

(
vi(r), vj(r)

)
= δij (16.21)

Consequently, it is only in the case that the solutions of the BdG equations
happen to satisfy the more stringent conditions corresponding to Eq.(16.18)
(as in the simple BCS case) that there is any simple relationship between the
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structure of the groundstate and that of the fermionic elementary excitations,
which as we shall see is described by the BdG equations. In the general case a
relationship exists, but is much more complicated, see Ref. 11, appendix A.

Returning to our main theme, let us introduce as in the BCS case a normal-
ized Cooper pair creation operator C†m, which to order N−1/2 is independent of
m and thus is written C† below, use the definitions in Eq.(16.19) and consider,
for given m, possible linear combinations of the operators a†m and am̄ (or a†m̄ and
am). Analogously to the BCS case

(
Eqs. (16.13) and (16.14)

)
the operators

β†m1 ≡ vma†m + umam̄C†, β†m2 ≡ vma†m̄ − umamC† (16.22)

are pure annihilators of the groundstate, and as in that case any linear combi-
nation of βm’s is also a pure annihilator. However, in contrast to the BCS case,
the states created by the operators analogous to (12a,b) namely

α†m1 ≡ uma†m − vmam̄C†, α†m2 ≡ uma†m̄ + vmamC† (16.23)

while they are of course eigenstates of particle number with eigenvalues N + 1,
are not in general energy eigenstates. The operators Ω†j that create the actual
energy eigenstates of the N + 1-particle system are linear combinations of the
various α†m1 and α†m2 for different m:

Ω̂†j =
∑
m

(cmjα
†
m1 + dmjα

†
m2) (16.24)

The specific form of the coefficients cmj and dmj may be obtained by solving
the equations

[Ĥ − µN̂, Ω̂†j ] = EjΩ̂
†
j (16.25)

with Ej ≥ 0. When written out explicitly, the equations (16.25) are just the
standard BdG equations written in the basis of the χm(r) and ϕm(r), so we
recover all the standard results for the fermionic excitations of the system; we
will call these excitations “Dirac-Bogoliubov” (DB) fermions.

Suppose now that we find a solution of the BdG equations with (if we ignore
the factors C†)

Ω̂j = Ω̂†j (16.26)

(so that by (16.25) Ej = 0): denote this solution by j = 0. Then on substituting
(16.24) and (16.25) into this relation, we find the relations, for each value of m,

cm0um = d∗m0v
∗
m, cm0vm = −d∗m0u

∗
m (16.27)
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which have no nontrivial solution. Thus we conclude that no solution satisfying
(16.26) can describe a pure N + 1-particle energy eigenstate of the system.

So what has gone wrong? The key observation is that the special case of the
BdG equations (16.25) corresponding to Ej ≡ E = 0, namely

[Ĥ − µN̂, Ω̂†0] = 0 (16.28)

has two possible interpretations: (1) Ω†0 creates an energy eigenstate of the
N + 1-particle system with energy(relative to µ) exactly zero, or (2) Ω†0 simply
annihilates the groundstate! Any solution of (16.28) satisfying (16.26) is easily
seen to be a quantum superposition of those two types of solution (since an
argument based on Eq.(16.22) and similar so that leading to (16.27) shows that
it cannot be a pure annihilator either), with equal weight. The conclusion,
therefore, is that the so-called “Majorana fermion” (M.F.) is simply a quantum
superposition of a genuine (DB) E = 0 fermion and a pure annihilator.

A particularly interesting situation arises where the spinor wave function(
u0(r), v0(r)

)
of the DB fermion is “split” into two parts localized around mu-

tually distant points in space. In this case the corresponding pure annihilator
will be similarly split, and by combining the two solutions of (16.28) with ap-
propriate relative phases we can produce two M.F.’s each of which is entirely
localized in one of the two regions. (In most of the literature on M.F.’s, e.g. Ref.
(6), this maneuver is performed in reverse: one combines the two M.F.’s with
the appropriate relative phase to form a single DB fermion, and the orthogonal
combination that forms a pure annihilator is implicitly neglected.) In the last
part of this paper I will give a very simple illustration of how this can happen.

The “toy” model I shall give as an illustration of how M.F.’s can arise is almost
embarrassingly simple; I strongly suspect that it is a special case of a more
general class of model that may well have been studied in the literature in
more abstract terms2, but I believe its pedagogical value is such that it may
be worthwhile to explore it explicitly here. It may actually be regarded as

2After this manuscript had been submitted I became aware that the special case of this
model corresponding to Xi = const. had been studied in some detail by A. Yu Kitaev, cond-
mat/0010440v2 (published in the Proceedings of the Conference on Mesoscopic and Strongly
Correlated Electron Systems, Chernogolovka, Russia 2000). (I am grateful to Dr. G. Baskaran
for drawing my attention to this.) While the results presented here do not go beyond those of
this reference, I hope that some readers may find the somewhat more informal presentation
helpful.
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the “nearest one can get” to a model of a (p + ip) Fermi superfluid using only
one spatial dimension. Consider a set of spinless fermions on a 1D ring lattice
labeled by n sites 0, 1, 2...j...n − 1, with sites n and 0 identified, coupled to a
“large” superconducting bath with which they can exchange Cooper pairs. In
the tight-binding limit a fairly generic Hamiltonian for such a system is

Ĥ − µN̂ =
n−1∑

j=0

Uja
†
jaj −

n−1∑

j=0

{
(tja

†
j−1aj + ∆ja

†
j−1a

†
jĈ) + H.c.

}
(16.29)

where Uj , tj and ∆j represent respectively the on-site potential, the tight-
binding hopping matrix element and the pairing potential due to the super-
conducting bath and Ĉ creates a (normalized) Cooper pair in the bath. It
would of course be possible to study this model for arbitrary values of Uj , tj
and ∆j , but for our purposes it suffices to make the special choice

Uj = 0, tj = ∆j ≡ Xj = real (16.30)

Thus if we introduce the notation

b†j ≡ a†j − aj , c†j ≡ a†j + aj , K̂j ≡ b†j−1c
†
j (16.31)

and take it as read that the appropriate number of C’s and C†’s are implic-
itly added to the various terms to ensure conservation of total (system plus
bath) particle number, (i.e. in effect we follow the BCS particle-nonconserving
convention), the Hamiltonian (16.29) can be rewritten in the simple form

Ĥ − µN̂ = −
n−1∑

j=0

XjK̂j (16.32)

The operator K̂j basically acts on the link between sites j and j − 1. The
K̂j have the following convenient properties:

[1] They are Hermitian.

[2] They are mutually commuting ([K̂j , K̂j′ ] = 0).

[3] K̂2
j = 1, i.e. their eigenvalues are ±1.

[4] They commute with the fermion number parity.
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[5] The quantity
∏n−1

j=0 K̂j = −∏n−1
j=0 (1 − 2n̂j) is minus the total fermion

number parity.

As a result of property (4), the parity is a good quantum number (though
the fermion number of the “system” itself is of course not). If all the Xj are
positive definite, the odd-parity groundstate actually lies lower than the even-
parity one. To remedy this state of affairs, it is convenient to choose one of the
Xj , say X0, to be negative and to have absolute magnitude less than that of
any of the rest. The explicit form of the even-parity groundstate is then easily
seen to be

|0〉+ = 2−n/2(1− K̂0)
n−1∏

j=1

(1 + K̂j)|vac〉 (16.33)

which evidently satisfies
K̂j |0〉 = (1− 2δj,0)|0〉 (16.34)

The odd-parity groundstate, created by breaking the link 0, has excitation en-
ergy 2|X0|, and the “single-fermion” excited (odd-parity) states are each associ-
ated with breaking the links j(6= 0) and have positive definite energy 2Xj (it is
irrelevant to our argument whether or not there is any degeneracy). Explicitly,
if we define the operators

Ω̂†j ≡ 2−1/2
(
b†j−1 + (−1)δj0c†j

)
(16.35)

with b†j , c
†
j defined by (16.31), then the single-fermion excitations are created by

Ω̂†j , while the operators Ω̂j are pure annihilators.
Imagine now that while keeping the sign of X0 negative we gradually turn

its magnitude down to zero. Nothing changes, so in the limit |X0| → 0 the even-
and odd-parity groundstates become degenerate (i.e. we get a zero-energy DB
fermion); however, they are still simply related by changing the state of the
(0, n− 1) link with the operator Ω†0 ≡ 2−1/2(b†n−1 − c†0). Now comes the crucial
step: Once there is no energy associated with the (0, n − 1) link, we may as
well break it entirely and reorganize the ring of sites into a linear lattice! As a
result, we still have a zero-energy DB fermion, but it is “split,” i.e. generated
by a linear combination of the operators b†n−1 and c†0, which now refer to sites
at opposite ends of the lattice. The “pure annihilator” Ω̂0 is likewise “split”;
however, one can take linear combinations of the zero-energy DB fermion and
the pure annihilator so as to form the operators b†n−1 and c†0, which are localized
at different ends of the linear chain. These are nothing but the two Majorana
fermions of the model.
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I believe that this very simple toy model, with its obvious generalizations,
obtained e.g. by allowing the phase of ∆j to vary along the ring, may hold some
potential for a more intuitive understanding of the behavior of a real-life (p+ip)
Fermi superfluid, and I intend to pursue this direction further; for the present,
I would like to hope that the above discussion may remove at least a part of the
“mystery” that some readers of the existing literature may feel attaches to the
concept of a Majorana fermion.
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“Running” Gravitational Constant?

A.C. Melissinos
Department of Physics and Astronomy

University of Rochester

Abstract

If the gravitational interaction is unified with the electro-weak and
strong interactions at a mass M = 1015 GeV, the evolution of New-
ton’s constant must differ from its classical (general relativistic)
form. We can model such behavior by introducing an ad hoc de-
pendence on `n(s/4m2), where s is the usual cm energy between
two protons. We can then predict the observable effects for rela-
tivistic collisions (

√
s ∼ 1.4× 104 GeV) as well as for the case of low

velocity motion (β2 ∼ 10−5).

It is well known that the dimensionless coupling constants of the three gauge
groups of the standard model SU(3) × U(2) × U(1) vary with the momentum
transfer of the interaction [1]. This effect which is due to the polarization of the
vacuum was first recognized for the electromagnetic field. It is most prominent
in the case of the color field and leads to asymptotic freedom.

Extrapolation to higher energies is governed by the equations of the renor-
malization group, and it is customary to consider the inverse coupling constants1

1Throughout this note we express particle masses by their equivalent energy, ie mz = Mzc2

etc
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1
α1(

√
s)

=
1

αe(mZ)
3
5

cos2 θW − 1
12π

(4nf )`n
(

s

m2
Z

)

1
α2(

√
s)

=
1

αe(mZ)
sin2 θW +

1
12π

(
22− 4nf − 1

2

)
`n

(
s

m2
Z

)

1
α3(

√
s)

=
1

αs(mZ)
+

1
12π

(33− 4nf ) `n

(
s

m2
Z

)

The above expressions have been normalized at a cm energy
√

s = mZ where
the couplings are given by

αe =
e2

(4πε0)~c
=

1
128

α3 = αs =
g2

s

~c
= 0.118

sin2 θW (mZ) = 0.2315

and nf is the number of quark/lepton families.
The inverse couplings are plotted in Fig.1 as a function of

√
s. As observed

by Georgi and Glashow [2] all three couplings seem to reach the same value
at an energy

√
s ' 1014 GeV which is referred to as the “Grand Unification

Scale”. If the couplings evolve according to the minimal supersymmetric model
(MSSM) much better agreement is obtained, and within present uncertainties,
the constants meet exactly at

√
s = 1015 GeV [3].

The gravitational constant depends on the interaction energy as well. Con-
sider two protons moving against each other in the laboratory frame with ve-
locity β and energy γmp. The gravitational coupling in this case takes the
form

αG(
√

s) =
GNm2

p

~c
(2γ2 − 1) (17.1)

The factor of 2γ2 arises because both energy γmp and momentum γβmp couple;
see for instance [4]. The c.m. collision energy squared is s = 4γ2m2

p, so Eq.(1)
can be written as
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αG(
√

s) =
GNm2

p

~c

[
s

2m2
p

− 1
]

(17.2)

valid for s ≥ 4m2
p. Numerically

GNm2
p

~c
=

(
mp

MP

)2

= 0.59× 10−38 (17.3)

where MP is the Planck Mass. When
√

s/2 = MP , then αG becomes unity.
If all four forces can be derived from a single symmetry group then the

gravitational coupling should reach the common value

1/αG = 1/α1 = 1/α2 = 1/α3 ' 42 (17.4)

at the unification scale
√

s = 1015 GeV. [5]. We can achieve this by modifying
the classical evolution of αG(s) by a logarithmic term, of the form

αG(
√

s) =
(

mp

MP

)2
[(

s

2m2
p

)1+b`n(s/4m2)

− 1

]
(17.5)

The coefficient b is found, by the requirement of Eq.(4), to have the value

b = 0.00340 (17.6)

and the result is shown in Fig.2. We can now obtain the gravitational coupling
at any given interaction energy. There are two possibilities for testing this
hypothesis:

In the first case one tries to measure the gravitational effect at LHC energies.
Here there is a significant difference in the couplings

αGC(
√

s = 1.4× 104 GeV) = 6.6× 10−31 classical

αGR(
√

s = 1.4× 104 GeV) = 2.0× 10−30 running

However the gravitational effects are extremely small and are dominated by the
much larger electromagnetic force [6].

The other possibility is to test the deviation from the classical behavior at
low energies but with macroscopic bodies. The classical correction in this case
leads to
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Figure 17.1: Extrapolation of the coupling constants of the standard model.
Solid lines are calculated using the β-functions corresponding to the known
elementary particles. Dashed lines are according to the MSSM. From Ref. [1].
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αGC(β) =
(

mp

MP

)2

(1 + 2β2) (17.7)

while for the model of Eq.(5)

αGR(β) '
(

mp

MP

)2 {[
2(1 + β2)

]1+bβ2

− 1
}

(17.8)
' αGC(β)[1 + x]

with

x = 21+bβ2 − 2 ∼ 2(`n2)bβ2 (17.9)

For a satellite in earth orbit

β2 = 0.7× 10−9

whereas for a close solar orbit

β2 = 0.2× 10−5

In this latter case, the effect of the running coupling constant is

x ' 10−8

which could be measurable as a difference in the predicted orbital dynamics,
beyond the effects of classical general relativity.

In a recent publication [8] an apparent increase in the gravitational attraction
during the Earth fly-by of the NEAR mission was reported. For β = 4 × 10−5

it is found that ∆G/G ∼ 2 × 10−6, which however, is significantly larger than
the prediction of Eq.(8).
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Quantum Fields in a Dielectric:
Langevin and Exact Diagonalization
Approaches
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Theoretical Division

Los Alamos National Laboratory

18.1 Introduction

Professor Erber has made important contributions to several areas of both pure
and applied physics, making it easy to identify topics about which one can write
to celebrate his work; approaching such topics at his level of rigor and insight
is far more difficult! His contributions to fundamental electromagnetic theory
and quantum mechanics in particular include papers on electromagnetic energy
density in dispersive media [1], synchrotron-Cerenkov radiation [2], radiation
reaction [3], and quantum jumps [4], to cite only a few of those with which we
are familiar. The first two papers cited, among others, deal with electromagnetic
processes in dielectric media, and a small part of that subject will be addressed
here. Specifically, this article is concerned with the quantized electromagnetic
field in a dispersive and dissipative dielectric medium, and with the energy
density in such a medium. Erber’s work has also dealt with nonlinear processes
in such media as well as in vacuum, but we will restrict ourselves here to linear
and idealized, homogeneous media.
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This is an important subject about which much has been written, although
in most of the literature it has been assumed that the medium can be as-
sumed to be non-dissipative at field frequencies of interest. The theory ignoring
dissipation is not without value; it can be used to describe, for example, the
spontaneous emission by an atom in a host dielectric that does not absorb ra-
diation at the atom’s transition frequency. But a dispersive medium cannot be
non-absorbing at all frequencies. What happens, for instance, if the medium
in our example strongly absorbs radiation at the transition frequency? And
what about situations in which we cannot exclude any frequencies a priori and
therefore cannot ignore absorption? In the calculation of the van der Waals
force between two neutral dielectric bodies, for example, all field frequencies
can in principle contribute to the force. For two perfectly conducting parallel
plates at zero temperature, similarly, Casimir [5] discovered, as a consequence of
the zero-point electromagnetic energy of every mode, that there is an attractive
force per unit area between the plates. His original method involving changes in
zero-point field energy was later extended to dielectrics by van Kampen et al. [6]
and others [7]. As emphasized by Ginzburg [8], however, these theories invoking
changes in zero-point energy ignore absorption: “ ... oddly enough there is no
mention that they consider directly only transparent media” [9]. An entirely dif-
ferent route, based on the calculation of the force via the stress tensor, was taken
by Lifshitz [10]; he accounts for absorption through the fluctuation-dissipation
relation between the quantum fluctuations of the polarization density and the
imaginary (absorptive) part of the permittivity.

The intent here is to derive, in probably the simplest way possible, expres-
sions for the quantum electromagnetic field in a dispersive and dissipative dielec-
tric medium, treating the medium as a continuum. The derivation might seem
superfluous in the sense that correct expressions for the electric and magnetic
fields in such a medium are already available [11]. However, the diagonalization
procedure by which these expressions are obtained is not easily applied to gen-
eral, inhomogeneous media, whereas the “Langevin approach” presented here
can be applied more or less straightforwardly when extended and formulated
via Green functions [12].

We begin in the following section with the simple model of an oscillator A
coupled to a reservoir R of other oscillators, the R oscillators causing a damping
of A described by a Langevin equation. In Section 18.3 we review the Fano pro-
cedure for the diagonalization of the Hamiltonian of this system, and compare
the diagonalization and Langevin-equation approaches insofar as they describe
the time evolution of A. In the limit of zero temperature, or at any finite tem-
perature, the two descriptions are shown to be equivalent. In Section 18.4 we
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generalize these considerations, following the Langevin approach, to the model
of a homogeneous dielectric medium in which each atom is treated as a har-
monic oscillator coupled to its own reservoir. The Langevin forces acting on the
atoms give rise to a noise polarization determined by the reservoir operators,
and the fluctuating electromagnetic field caused by this noise polarization can
therefore be expressed in terms these operators. In similar fashion to the model
of Sections 18.2 and 18.3, the quantized electric and magnetic fields obtained
in this way have exactly the same form as obtained by Fano diagonalization. It
is shown explicitly in Section 18.5 that the zero-point energy per mode of fre-
quency ω is (1/2)~ω regardless of whether there is absorption at that frequency
[13].

18.2 An Oscillator and a Reservoir

Consider an oscillator A of frequency ω0 coupled to a reservoir R of other oscil-
lators, a well-studied model for dissipation in quantum theory. To make things
as simple as possible we will assume that the A-R coupling involves only energy-
conserving processes, and choose this coupling such that the Hamiltonian is

Ĥ = ~ω0â
†Â +

∫ ∞

0

dω~ωb̂†(ω)b̂(ω) + ~
√

γ/π

∫ ∞

0

dω[â†b̂(ω) + b̂†(ω)a], (18.1)

with [Â, â†] = 1, [b̂(ω), b̂(ω′)] = 0, [b̂(ω), b̂†(ω′)] = δ(ω − ω′). (We use the
circumflex to denote operators.) Because only energy-conserving processes are
included, our model is consistent with the so-called “rotating-wave approxima-
tion” (RWA). The coupling we have chosen results in a frictional damping rate
γ in the time evolution of A, as follows.

The Heisenberg equations of motion for Â and b̂(ω) are

˙̂
A = −iω0a− i

√
γ/π

∫ ∞

0

dωb̂(ω), (18.2)

˙̂
b(ω) = −iωb̂(ω)− i

√
γ/πÂ. (18.3)

Using the formal solution

b̂(ω, t) = b̂0(ω)e−iωt − i
√

γ/π

∫ t

0

dt′Â(t′)eiω(t′−t) (18.4)
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of equation (18.3) in equation (18.2), and defining b̂0(ω) ≡ b̂(ω, 0), we obtain

˙̂
A(t) + iω0Â(t) + (γ/π)

∫ ∞

0

dω

∫ t

0

dt′Â(t′)eiω(t′−t)

= −i
√

γ/π

∫ ∞

0

dωb̂0(ω)e−iωt, (18.5)

the operator on the right-hand side being a quantum Langevin force. We solve
this equation for “steady state” (γt À 1) by first writing

Â(t) =
∫ ∞

0

dΩA(Ω)b̂0(Ω)e−iΩt. (18.6)

Then, using the approximation

∫ t

0

dt′ei(ω−Ω)(t′−t) ∼= πδ(ω − Ω)− iP
1
ω
− Ω (18.7)

for times t such that Ωt À 1 for frequencies Ω that make a significant contribu-
tion to the time evolution of Â(t), we obtain

A(Ω) =

√
γ/π

Ω
− ω0 + ∆(Ω) + iγ. (18.8)

The frequency shift

∆(Ω) =
γ

π
P

∫ ∞

0

dω

ω
− Ω (18.9)

obviously diverges in our model, and so the upper limit of integration must be
appropriately cut off; for our purposes there is no need to explicitly indicate any
cutoff. Then our solution for Â(t) is

Â(t) =
√

γ

π

∫ ∞

0

dΩb̂0(Ω)e−iΩt/Ω− ω0 + ∆(Ω) + iγ. (18.10)

Note that, under the assumption that ω0 À γ, consistent with the RWA, we
have

[Â(t), â†(t)] =
γ

π

∫ ∞

0

dω

(ω − ω0)2 + γ2
∼= 1, (18.11)

as required for the validity of the RWA.
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18.3 Fano Diagonalization
A method of diagonalizing a Hamiltonian for coupled oscillators, used many
years ago by Fano [14], has been employed in seminal work by Huttner and
Barnett [11] to obtain expressions for the quantized fields in a dissipative di-
electric medium. Here we briefly review the method in the case of the model
Hamiltonian (18.1), and compare it to the approach of the preceding section.

We define an operator

B̂(Ω) = α(Ω)Â +
∫ ∞

0

dωβ(Ω, ω)b̂(ω) (18.12)

that we require to satisfy

[B̂(Ω), B̂†(Ω′)] = δ(Ω− Ω′), [B̂(Ω), B̂(Ω′)] = 0, (18.13)

and also require that the Hamiltonian (18.1) takes the diagonal form

Ĥ =
∫ ∞

0

dΩ~ΩB̂†(Ω)B̂(Ω). (18.14)

From [B̂(Ω), Ĥ] = ~ΩB̂(Ω) and the definition (18.12) we deduce equations re-
lating the coefficients α(Ω) and β(Ω, ω):

(ω0 − Ω)α(Ω) = −
√

γ

π

∫ ∞

0

dωβ(Ω, ω), (18.15)

∫ ∞

0

dω

[
(ω − Ω)β(Ω, ω) +

√
γ

π
α(Ω)

]
b̂(ω) = 0. (18.16)

The last equation leads us to write

β(Ω, ω) = α(Ω)f(Ω)δ(ω − Ω)−
√

γ

π

α(Ω)
ω

− Ω, (18.17)

and it follows from (18.15) that

f(Ω) =
√

π

γ
[Ω− ω0 + ∆(Ω)], (18.18)

i.e.,

β(Ω, ω) =
√

π

γ
α(Ω)[Ω− ω0 + ∆(Ω)]δ(ω − Ω)−

√
γ

π

α(Ω)
ω

− Ω, (18.19)
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where ∆(Ω) is defined by (18.9).
To determine α(Ω) we impose the requirement that the commutation rela-

tions (18.13) be satisfied. From the commutation relations stated earlier for the
Â and b̂ operators we obtain

[B̂(Ω), B̂†(Ω′)] = α(Ω)α∗(Ω′)

+
∫ ∞

0

dω

∫ ∞

0

dω′β(Ω, ω)β∗(Ω′, ω′)δ(ω − ω′) (18.20)

or, from (18.19) and some straightforward algebra,

[B̂(Ω), B̂†(Ω′)] =
π

γ
α(Ω)α∗(Ω′)×

{
[Ω− ω0 + ∆(Ω)]2δ(Ω− Ω′)

+
γ

π

∆(Ω′)−∆(Ω)
Ω′ − Ω

+
γ2

π2
P

∫ ∞

0

dω

ω − Ω
P

∫ ∞

0

dω′

ω′ − Ω′
δ(ω − ω′)

}
. (18.21)

Using

P
1

ω − Ω
=

1
ω − Ω + iε

+ iπδ(ω − Ω) (ε → 0+) (18.22)

and partial fractions we obtain

[B̂(Ω), B̂†(Ω′)] =
π

γ
α(Ω)α∗(Ω′)

(
γ2 + [Ω− ω0 + ∆(Ω)]2

)
δ(Ω− Ω′). (18.23)

Therefore we can satisfy (18.13) by taking

α(Ω) =

√
γ/π

Ω− ω0 + ∆(Ω)− iγ
. (18.24)

Then

Â(t) =
∫ ∞

0

dΩα∗(Ω)B̂(Ω, t) =
√

γ

π

∫ ∞

0

dΩ
B̂(Ω, 0)e−iΩt

Ω− ω0 + ∆(Ω) + iγ
, (18.25)

since B̂(Ω, t) = B̂(Ω, 0)e−iΩt.
The expressions (18.10) and (18.25) obtained respectively in the Langevin

and Fano approaches look formally the same in the sense that [B̂(Ω, 0), B̂†(Ω′, 0)] =
[b̂0(Ω), b̂†0(Ω

′)] = δ(Ω − Ω′) and [B̂(Ω, 0), B̂(Ω′, 0)] = [b̂0(Ω), b̂0(Ω′)] = 0. They
differ in that B̂(Ω, 0) in (18.25) is a linear combination of A and R operators,
whereas only R operators determine Â(t) in (18.10). Suppose, however, that at
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t = 0 the A and R oscillators are all in their ground states. This state |Ψ〉 is
the exact ground state of the coupled A-R system in the RWA:

B̂†(Ω, t)B̂(Ω, t)|Ψ〉 = 0. (18.26)

In this case the properties of A derived from (18.10) are trivially equivalent
to those obtained from (18.25). If the system is not initially in an eigenstate
of B̂†B̂, it will nevertheless approach after a time À γ−1 an equilibrium state
for which the long-term solution (18.10) for Â(t) is applicable, i.e., transient
effects associated with Â(0) at some initial time t = 0 ultimately play no
role in the evolution of A. Equilibrium values of correlation functions involving
products of the B̂ operators are determined solely by the reservoir operators;
in thermal equilibrium, for example, 〈B̂†(Ω, t)B̂(Ω′, t)〉 = 〈b̂†(Ω, t)b̂(Ω′, t)〉 =
[exp(~Ω/kBT )−1]−1δ(Ω−Ω′) and it follows from either (18.10) or (18.25) that
〈â†(t)Â(t)〉 = [exp(~ω0/kBT ) − 1]−1 when we invoke the condition ω0 À γ as
in (18.11). In other words, in any state of equilibrium the solutions (18.10)
and (18.25) provide equivalent descriptions of A. This equivalence holds more
generally beyond the RWA (see below).

18.4 Fields in a Dielectric Continuum
Aside from the need to introduce oscillator strengths in order to obtain correct
numerical results, we can model a dielectric medium in which atoms remain with
high probability in their ground states as a collection of harmonic oscillators.
We take each oscillator “atom” to have a mass m and a natural frequency
ω0. We assume each of these material oscillators is coupled to a reservoir of
other harmonic oscillators responsible for the damping of its oscillations and
line broadening. For the Hamiltonian, including the electromagnetic field and
its (electric-dipole) coupling to the material oscillators, we write

Ĥ =
1
8π

∫
dr(Ê2 + Ĥ2) +

∑

j

(
1

2m
[p̂j − e

c
Â(rj)]2

+
1
2
mω2

0x̂
2
j

)
+

∫ ∞

0

dω~ω
∑

j

[
b̂†j(ω) · b̂j(ω) +

1
2

]

− i

∫ ∞

0

dωΛ(ω)
∑

j

x̂j · [b̂j(ω)− b̂†j(ω)]. (18.27)

The first two terms are the Hamiltonian operators for the electromagnetic field,
the material oscillators (atoms), and their coupling via the (Coulomb-gauge)
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vector potential Â(rj), rj being the position of the jth atom. The third and
fourth terms are respectively the Hamiltonian operators for the reservoir oscil-
lators and their interaction with the atoms. The reservoir oscillators satisfy the
commutation relations

[b̂iµ(ω), b̂†jν(ω′)] = δijδµνδ(ω − ω′), [b̂iµ(ω), b̂jν(ω′)] = 0, (18.28)

where we use Greek letters to denote Cartesian components of vectors. We
choose the atom-reservoir coupling constant to be

Λ(ω) =
(

m~γω

π

)1/2

. (18.29)

Then, as shown below, each atom’s oscillations are damped at the rate γ. Note
that no rotating-wave approximation is made in writing (18.27). The operators
Â and Ê satisfy the usual canonical commutation relations for the electromag-
netic field.

From (18.28) and [x̂iµ, p̂jν ] = i~δijδµν we obtain the Heisenberg equations
of motion

¨̂xj + ω2
0x̂j =

e

m
Ê(rj) +

i

m

∫ ∞

0

dωΛ(ω)[b̂j(ω, t)− b̂†j(ω, t)], (18.30)

˙̂bj(ω, t) = −iωb̂j(ω, t) +
1
~
Λ(ω)x̂j . (18.31)

Using the formal solution of (18.31) in (18.30), we write

¨̂xj + ω2
0x̂j =

e

m
Ê(rj) +

1
m

F̂Lj(t)

+
i

m~

∫ ∞

0

dωΛ2(ω)
∫ t

0

dt′x̂j(t′)[2i sin ω(t′ − t)], (18.32)

where the Langevin force operator F̂Lj(t) acting on the jth atom is

F̂Lj(t) = i

∫ ∞

0

dωΛ(ω)[b̂j(ω, 0)e−iωt − b̂†j(ω, 0)eiωt]. (18.33)

The third term on the right-hand side of (18.32) is

− 2
m~

∫ ∞

0

dωΛ2(ω)
∫ t

0

dt′x̂j(t′) sin ω(t′ − t) = −2γ

π

∫ t

0

dt′x̂j(t′)
∫ ∞

0

dωω sin ω(t′ − t) = 2γ

∫ t

0

dt′x̂j(t′)
∂

∂t′
δ(t′ − t) = −γ ˙̂xj(t) . (18.34)
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We ignore a divergent frequency shift which, as in the model considered in
the preceding sections, can be made finite by introducing a form factor or a
high-frequency cutoff; the (finite) shift can be assumed to be contained in the
definition of ω0. Equation (18.32) then has the form of a quantum Langevin
equation:

¨̂xj + γ ˙̂xj + ω2
0x̂j =

e

m
Ê(rj) +

1
m

F̂Lj(t). (18.35)

In the absence of coupling to the electromagnetic field we have, for times
t À γ−1,

p̂j(t) = m ˙̂xj(t) =
∫ ∞

0

dωωΛ2(ω)

[
b̂j(ω)e−iωt

ω2
0 − ω2 − iγω

+
b̂†j(ω)eiωt

ω2
0 − ω2 + iγω

]
. (18.36)

(We now write b̂j(ω) in place of b̂j(ω, 0).) Similarly, using (18.28), we obtain

[x̂iµ(t), p̂jν(t′)] = δijδµν
2i~γ

π

∫ ∞

0

dωω2 cosω(t′ − t)
(ω2

0 − ω2)2 + γ2ω2

= i~δijδµν

[
cos ω1(t′ − t)− γ

2ω1
sin ω1|t′ − t|

]
e−γ|t′−t|/2, (18.37)

where ω1 ≡ [ω2
0−γ2/4]1/2. The canonical commutation relation [x̂iµ(t), p̂jν(t)] =

i~δijδµν is therefore preserved in the coupling of each atom to its reservoir.
Since we are working in the Heisenberg picture, expectation values are over

the initial state of the coupled system of oscillators. If we assume that the
reservoir is in an initial state of thermal equilibrium at temperature T , then

〈b̂†iµ(ω)b̂jν(ω′)〉 = 〈b̂iµ(ω)b̂†jν(ω′)〉 − δijδµνδ(ω − ω′)

=
1

e~ω/kBT − 1
δijδµνδ(ω − ω′). (18.38)

The Heisenberg equations of motion for the electric and magnetic fields that
follow from the Hamiltonian (18.27) and the canonical commutation relations
for the field operators have exactly the same form as their classical (Maxwell)
counterparts:

∇× Ê = −1
c

∂B̂
∂t

,

∇× Ĥ =
4π

c
Ĵ +

1
c

∂Ê
∂t

. (18.39)
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For a charge-free medium, furthermore, ∇ · B̂ = ∇ · D̂ = 0, where

D̂ = Ê + 4πP̂,

Ĵ(r, t) =
∂P̂(r, t)

∂t
,

P̂(r, t) = e
∑

j

x̂j(t)δ3(r− rj), (18.40)

with B̂ = Ĥ in our model.
It is convenient to work in the frequency domain and write

Ê(r, t) =
∫ ∞

0

dω[Ê(r, ω)e−iωt + Ê†(r, ω)eiωt],

Ĥ(r, t) =
∫ ∞

0

dω[Ĥ(r, ω)e−iωt + Ĥ†(r, ω)eiωt],

P̂(r, t) =
∫ ∞

0

dω[P̂(r, ω)e−iωt + P̂†(r, ω)eiωt]. (18.41)

The Fourier transform of the polarization density may be written as

P̂(r, ω) = e
∑

j

x̂j(ω)δ3(r− rj), (18.42)

x̂j(t) =
∫ ∞

0

dω[x̂j(ω)e−iωt + x̂†j(ω)eiωt], (18.43)

and it follows from (18.35) that

P̂(r, ω) =
e2/m

ω2
0 − ω2 − iγω

∑

j

Ê(rj , ω)δ3(r− rj)

+
ie/m

ω2
0 − ω2 − iγω

Λ(ω)
∑

j

b̂j(ω)δ3(r− rj)

→ Ne2/m

ω2
0 − ω2 − iγω

Ê(r, ω) +
iNe/m

ω2
0 − ω2 − iγω

Λc(ω)b̂(r, ω)(18.44)

in the approximation in which we assume the atoms are continuously distributed
with a density N and we define Λc(ω) =

√
ρm~γω/π, with ρm = m/N .

From Maxwell’s equations and (18.44) we obtain

∇2Ê(r, ω) +
ω2

c2
ε(ω)Ê(r, ω) = −ω2

c2
K̂(r, ω), (18.45)
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where the complex permittivity is defined as

ε(ω) = 1− 4πNe2/m

ω2 − ω2
0 + iγω

≡ 1− ω2
p

ω2 − ω2
0 + iγω

= εR(ω) + iεI(ω). (18.46)

We have also defined the “noise polarization” at frequency ω:

K̂(r, ω) =
4πiNe/m

ω2
0 − ω2 − iγω

Λ(ω)b̂(r, ω). (18.47)

This noise polarization obviously stems from the Langevin force F̂Lj(t) in the
quantum Langevin equation (18.35). Its principal properties for our purposes
are the thermal equilibrium expectation values

〈K̂µ(r, ω)〉 = 〈K̂†
µ(r, ω)〉 = 0,

〈K̂µ(r, ω)K̂ν(r′, ω′)〉 = 〈K̂†
µ(r, ω)K̂†

ν(r′, ω′)〉 = 0, (18.48)

and

〈K̂†
µ(r, ω)K̂ν(r′, ω′)〉 = 4~εI(ω)δµνδ(ω − ω′)δ3(r− r′)

1
e~ω/kBT − 1

, (18.49)

〈K̂µ(r, ω)K̂†
ν(r′, ω′)〉 = 4~εI(ω)δµνδ(ω − ω′)δ3(r− r′)

[
1

e~ω/kBT − 1
+ 1

]
,

(18.50)
all of which follow from (18.38) and 〈b̂iµ(ω)b̂jν(ω′)〉 = 0. Equations (18.49) and
(18.50) are the well-known fluctuation-dissipation relations between the corre-
lation functions of a noise polarization and the imaginary part of the dielectric
function [10, 15].

Next we define operators ĝλ(k, ω) by writing

K̂(r, ω) =
∫

d3k
∑

λ=1,2

ĝλ(k, ω)ekλeik·r. (18.51)

Since ∇ · K̂(r, ω) = 0 we can choose the vectors ekλ such that k · ekλ = 0,
ekλ · ekλ′ = 0, λ = 1, 2; we also take the ekλ to be real. Then

ĝλ(k, ω) =
(

1
2π

)3 ∫
d3r K̂(r, ω) · ekλe−ik·r

≡
(

1
2π

)3 ∫
d3rK̂λ(r, ω)e−ik·r, (18.52)
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and Eqs. (18.47) and (18.28) imply the commutation relation

[ĝλ(k, ω), ĝ†λ′(k
′, ω′)] =

~
2π3

εI(ω)δλλ′δ(ω − ω′)δ3(k− k′). (18.53)

We also define operators

ĉλ(k, ω) ≡ [~εI(ω)/2π3]−1/2ĝλ(k, ω) (18.54)

satisfying
[ĉλ(k, ω), ĉ†λ′(k

′, ω′)] = δλλ′δ(ω − ω′)δ3(k− k′). (18.55)

Finally an expression for the quantized electric field follows from (18.41),
(18.45), (18.51), and (18.54):

Ê(r, t) =
∫

d3k
∑

λ

∫ ∞

0

dω
√
~εI(ω)/2π3

ω2/c2

k2 − ε(ω)ω2/c2
ĉλ(k, ω)ekλ

e−i(ωt−k·r) + h.c. (18.56)

From ∇× Ê = −(1/c)∂B̂/∂t we also obtain

Ĥ(r, t) = i

∫
d3k

∑

λ

∫ ∞

0

dω
√
~εI(ω)/2π3

ω/c

k2 − ε(ω)ω2/c2
ĉλ(k, ω) (k× ekλ)

e−i(ωt−k·r) + h.c. (18.57)

These expressions have the same form as the corresponding ones obtained by
Huttner and Barnett [11] by Fano diagonalization of the entire system of cou-
pled harmonic oscillators (EM field, dielectric oscillators, and bath oscillators).
Their equations for the quantized electric and magnetic fields, however, involve
annihilation and creation operators Ĉλ(k, ω) and Ĉ†λ(k, ω) for the exactly diago-
nalized Hamiltonian, instead of the reservoir annihilation and creation operators
ĉλ(k, ω) and ĉ†λ(k, ω) appearing in our expressions (18.56) and (18.57). Their
diagonalized Hamiltonian, including the zero-point energy, is

H =
∫

d3k
∑

λ

∫ ∞

0

dω~ω
[
Ĉ†λ(k, ω)Ĉλ(k, ω) + 1/2

]
. (18.58)

The situation here parallels that for the simple model employed in Sections 18.2
and 18.3, except that no rotating-wave approximation has been made, and that
one deals with three coupled subsystems instead of two coupled subsystems: we
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again arrive at results by a straightforward “Langevin” approach that are equiv-
alent to those obtained by diagonalizing the complete Hamiltonian. Equations
(18.56) and (18.57) are analogous to equation (18.10) obtained in the Langevin
approach to the single oscillator coupled to a reservoir, whereas the Huttner-
Barnett equations for the fields are analogous to equation (18.25) obtained by
exact diagonalization. As in the model of Sections 18.2 and 18.3, results such
as (18.56) and (18.57) obtained by the Langevin approach will reproduce those
obtained by exact diagonalization for dielectric media in thermal equilibrium.
To illustrate this we show in the next section that the total zero-point energy
appearing in (18.58) follows exactly from our approach; the calculation also
sheds light on some of the physics involved, and in particular on the role of the
Langevin forces in maintaining equilibrium.

18.5 Energy Density

We consider now the total energy density of the system of dielectric atoms, their
reservoirs, and the electromagnetic field, focusing for simplicity on the limit
of zero temperature. We start from Poynting’s theorem in the conventional
notation, using the symmetrized Poynting operator Ŝ = (c/8π)[Ê× Ĥ− Ĥ× Ê]
and taking expectation values over the initial state of the system consisting of
the field, the dielectric atoms, and the reservoir:

∮
〈Ŝ〉·nda = − 1

8π

∫
〈Ê· ∂D̂

∂t
+

∂D̂
∂t
·Ê〉dV − 1

8π

∫
〈Ĥ· ∂Ĥ

∂t
+

∂Ĥ
∂t
·Ĥ〉dV. (18.59)

The left-hand side gives the energy flux through a closed surface S and, given
that we are assuming thermal equilibrium, must vanish. We identify the rate of
change of the expectation value of the total energy density W as

∂W

∂t
=

1
8π
〈Ê · ∂D̂

∂t
+

∂D̂
∂t

· Ê〉+
1
8π

∂

∂t
〈Ĥ2〉, (18.60)

and the assumption of thermal equilibrium implies that this must also vanish. In
the case of interest D̂ = Ê+4πP̂ε + K̂, where P̂ε is the part of the polarization
giving rise to the dielectric permittivity ε(ω) and K̂ is the noise polarization
defined by (18.47). Thus D̂ = D̂ε + K̂ and

∂W

∂t
=

∂W1

∂t
+

∂W2

∂t
, (18.61)
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where
∂W1

∂t
=

1
8π
〈Ê · ∂D̂ε

∂t
+

∂D̂ε

∂t
· Ê〉+

1
8π

∂

∂t
〈Ĥ2〉 (18.62)

and
∂W2

∂t
=

1
8π
〈Ê · ∂K̂

∂t
+

∂K̂
∂t

· Ê〉. (18.63)

Before proceeding with the calculation of W we note the following identity
expressing conservation of energy:

∂W

∂t
= 〈 ∂

∂t

∑

j

[
1
2
m ˙̂x

2

j +
1
2
mω2

0x̂
2
j

]
δ3(r− rj) +

1
4π

∂

∂t

[
Ê2 + Ĥ2

]

+
∑

j

[2γ(
1
2
m ˙̂x

2

j )− ˙̂xj · FLj ]δ3(r− rj)〉. (18.64)

The first term is the rate of change of the energy density (kinetic plus potential)
of the oscillators of the dielectric, while the second term is the rate of change
of the energy density of the electromagnetic field. If there were no dissipation
(γ = 0 and therefore FLj = 0), the third term on the right would vanish, and
W would be just the matter-plus-field energy density. The third term gives the
rate of change of the energy density in the reservoirs; 2γ

∑
j(

1
2m ˙̂x

2

j )δ
3(r− rj) is

the rate of increase of energy density in the reservoir, equal to the rate at which
the energy density of the dielectric oscillators decreases due to their coupling to
their reservoirs, while

∑
j

˙̂xj ·FLjδ
3(r− rj) is the rate of work per unit volume

done by the Langevin forces of the reservoirs on the dielectric oscillators.
Using (18.41) and

∂D̂ε

∂t
= −i

∫ ∞

0

dωω[ε(ω)Ê(r, ω)e−iωt − ε∗(ω)Ê†(r, ω)e+iωt], (18.65)

and integrating over t, we obtain

W1(r, t) =
1
8π

∑

λ

∫ ∞

0

dω′
∫ ∞

0

dω
ω′ε∗(ω′)− ωε(ω)

ω′ − ω
〈Êλ(r, ω) · Ê†λ(r, ω′)〉

e−i(ω−ω′)t +
1
8π
〈Ĥ2(r, t)〉, (18.66)

since the zero-temperature expectation value 〈Ê†λ(r, ω) · Êλ′(r, ω′)〉 = 0 and
〈Êλ(r, ω) · Ê†λ′(r, ω′)〉 = 0 unless λ = λ′ and ω = ω′. It is convenient to rewrite
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(18.66) as a sum of two identical terms and to interchange ω and ω′ in one of
these terms; this allows us to write

W1(r, t) =
1
8π

∑

λ

∫ ∞

0

dω′
∫ ∞

0

dω
ω′εR(ω′)− ωεR(ω)

ω′ − ω
〈Êλ(r, ω) · Ê†λ(r, ω′)〉

e−i(ω−ω′)t − i

8π

∑

λ

∫ ∞

0

dω′
∫ ∞

0

dω (ω′εI(ω′) + ωεI(ω))

〈Êλ(r, ω) · Ê†λ(r, ω′)〉e−i(ω−ω′)t − 〈Êλ(r, ω′) · Ê†λ(r, ω)〉ei(ω−ω′)t

2(ω′ − ω)

+
1
8π
〈Ĥ2(r, t)〉.

(18.67)

It follows from (18.55) and (18.56) that the vacuum (zero temperature) expec-
tation value is

〈Êλ(r, ω) · Ê†λ(r, ω′)〉 = 〈Êλ(r, ω′) · Ê†λ(r, ω)〉

=
~

2π3
εI(ω)

ω4

c4

∫
d3k

1
|k2 − ε(ω)ω2/c2|2 δ(ω − ω′). (18.68)

The first term in (18.67) is now evaluated using

lim
ω′→ω

ωεR(ω)− ω′εR(ω′)
ω − ω′

=
d

dω
[ωεR(ω)]. (18.69)

We evaluate the second term by noting that the zeroth-order contributions in
(ω − ω′) in the numerator cancel each other, while the first-order terms result
in a contribution linear in the elapsed time t:

lim
ω′→ω

e−i(ω−ω′)t − ei(ω−ω′)t

2(ω′ − ω)
= it. (18.70)

Therefore

W1(r, t) =
1
8π

~
2π3c4

∑

λ

∫ ∞

0

dω

(
d

dω
[ωεR] + 2tωεI

)
ω4εI

∫
d3k

1
|k2 − εω2/c2|2 +

1
8π
〈Ĥ2(r, t)〉 =

~
8π2c3

∑

λ

∫ ∞

0

dωω3nR
d

dω
[ωεR]

+
1
8π
〈Ĥ2(r, t)〉 + t

~
4π2c3

∑

λ

∫ ∞

0

dωω4nRεI , (18.71)
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where we have used the relations εR = n2
R − n2

I and εI = 2nRnI between the
real and imaginary parts of the permittivity ε(ω) and the refractive index n(ω).

For the evaluation of W2 it is convenient to define K̂(k, ω) by writing

K̂(r, t) =
∫ ∞

0

dω

∫
d3k

∑

λ

[K̂λ(k, ω)e−iωteik·r + K̂†
λ(k, ω)eiωte−ik·r], (18.72)

and using (18.51), (18.54), and (18.56) to relate K̂λ(k, ω) and Êλ(k, ω):

K̂λ(k, ω) =
c2

ω2
[k2 − ε(ω)ω2/c2]Êλ(k, ω). (18.73)

After inserting (18.72) and (18.73) in (18.63) and performing some algebra we
get

W2(r, t) = − ~
16π4c2

∑

λ

∫ ∞

0

dω′
∫ ∞

0

dω
ω2ω′

ω − ω′
√

εI(ω)εI(ω′)δ(ω − ω′)

∫
d3k

[
e−i(ω−ω′)t

k2 − ε(ω)ω2/c2
+

ei(ω−ω′)t

k2 − ε∗(ω)ω2/c2

]
, (18.74)

and, proceeding as in the evaluation of W1,

W2(r, t) = − ~
8π4c2

∑

λ

Re
∫ ∞

0

dω′
∫ ∞

0

dω
ω2ω′

ω − ω′
√

εI(ω)εI(ω′)δ(ω − ω′)

×
∫

d3k
1

k2 − ε(ω′)ω′2/c2
− t

~
4π2c3

∑

λ

∫ ∞

0

dωω4nR εI . (18.75)

We see that the time-dependent term in W2(t) exactly cancels the time-dependent
term in W1(t).

The total energy density is obtained by adding (18.71) and (18.75) [13]:

W =
~

8π2c3

∑

λ

∫ ∞

0

dωω3

{
Re

[
nR

d

dω
(ωε) + ε3/2

]

+
1
ω

εIIm
d

dω
(ω2ε1/2)

}
. (18.76)
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Finally, using ε(ω) = n2(ω) and the following relations

nR
d

dω
(ωεR) = (n2

R − n2
I)nR + ωnR

(
2nR

dnR

dω
− 2nI

dnI

dω

)
,

Re ε3/2 = n3
R − 3nRn2

I ,

εI

ω
Im

d

dω
(ω2

√
ε) = 4nRn2

I + 2nRnIω
dnI

dω
, (18.77)

and summing over polarizations, we obtain the vacuum expectation value of the
total energy density:

W =
~

2π2c3

∫ ∞

0

dωω3n2
R(ω)

(
nR + ω

dnR

dω

)

=
~

2π2c3

∫ ∞

0

dωω3n2
R(ω)

d

dω
[ωnR(ω)]. (18.78)

This has the exactly the form expected had we ignored absorption entirely and
simply posited that each mode of frequency ω and wavenumber k = nR(ω)ω/c
has a zero-point energy (1/2)~ω, so that the energy density summed over all
modes is

W = 2
(

1
2π

)3 ∫
d3k

1
2
~ω. (18.79)

The physical interpretation of this result is that the loss of energy due to ab-
sorption is balanced by the work done by the Langevin forces that maintain the
canonical commutation relations of the dielectric oscillators.

18.6 Summary
Based on the simple model of a harmonic oscillator coupled to a reservoir, we
showed how the Heisenberg equations of motion leading to a Langevin equation
for the oscillator can give results equivalent to those obtained from the exact
(Fano) diagonalization of the complete oscillator-reservoir system. We then
used the model of a dielectric medium as a collection of harmonic oscillators,
each oscillator coupled to a reservoir responsible for dissipation and a Langevin
force as well as to the electromagnetic field, to derive the fluctuation-dissipation
relation between the noise polarization arising from the Langevin forces and the
imaginary part of the permittivity of the dielectric medium.

The simple oscillator-reservoir model we considered would suggest that the
solutions for the electric and magnetic fields in a dielectric medium, with the
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noise polarization as a source, might have the same form as obtained when the
complete system of dielectric oscillators, reservoirs, and the electromagnetic field
is diagonalized. We showed that this is in fact the case. Then we considered
the total energy density of the complete system and showed explicitly that it is
given by Eq. (18.78), which is exactly the form of the energy density obtained
when absorption is ignored. In particular, we showed that a positive energy
rate Ẇ1 > 0 arising from the interaction of the electromagnetic field with the
dielectric oscillators is exactly canceled by a corresponding negative energy rate
coming from the interaction of the system with the reservoir, Ẇ2 = −Ẇ1 < 0.
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between an infinite plane and an arbitrary curved surface. In weak
coupling, such an interaction energy coincides with the exact form of
the proximity force approximation obtained by summing the inter-
action between opposite surface elements at arbitrary temperature.
This result generalizes a theorem proved recently by Decca et al.
We also obtain exact closed-form results for the Casimir energy at
arbitrary temperature for weakly-coupled semitransparent spheres.

19.1 Introduction

Since the earliest calculations of fluctuation forces between bodies [1], that is,
Casimir or quantum vacuum forces, multiple scattering methods have been em-
ployed. Rather belatedly, it has been realized that such methods could be used
to obtain accurate numerical results in many cases [2 - 5]. These results allow
us to transcend the limitations of the proximity force theorem (PFT) [6, 7],
and so make better comparison with experiment, which typically involve curved
surfaces. (For a review of the experimental situation, see Ref. [8].)

The multiple scattering formalism, which is in principle exact, dates back
at least into the 1950s [9 - 10]. Particularly noteworthy is the seminal work
of Balian and Duplantier [11]. (For more complete references see Ref. [12].)
This technique, which has been brought to a high state of perfection by Emig
et al. [5], has concentrated on numerical results for the Casimir forces between
conducting and dielectric bodies such as spheres and cylinders. For recent im-
pressive numerical results for metals and dielectrics see Refs. [13 - 14]. Our
group has noticed that the multiple-scattering method can yield exact, closed-
form results for bodies that are weakly coupled to the quantum field [12, 15].
(That is, we are carrying out first-order perturbation theory in the background
potential. For early examples of this in the Casimir context, see Ref. [16].)
This allows an exact assessment of the range of applicability of the PFT. The
calculations there, however, as those in recent extensions of our methodology
[17] have been restricted to scalar fields with δ-function potentials, so-called
semitransparent bodies. (These are closely related to plasma shell models [3,
18 - 21].) The technique was recently extended to dielectric bodies [22, 23],
characterized by a permittivity ε. Strong coupling would mean a perfect metal,
ε →∞, while weak coupling means that ε is close to unity.

In this paper we will extend the weak-coupling formalism to the situation
of nonzero temperature. This extension is extremely straightforward. We then
apply the general formula to the case of an arbitrarily curved semitransparent
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surface above an infinite semitransparent plane. Remarkably, the result coin-
cides with the use of the so-called proximity force approximation (PFA), which
in its general form is exact in this case for all separations between the surfaces
and for all temperatures. We also obtain exact closed-form results for the forces
between separated spherical shells for all temperatures. In the Appendix we dis-
cuss exact formulas for arbitrary positive and negative powers of the distances
between points on two spheres, needed for such calculations.

19.2 Multiple Scattering Derivation of Vacuum
Energy between Weakly Coupled Potentials

The quantum vacuum energy for the interaction mediated by a massless scalar
field between two nonoverlapping potentials V1(x) and V2(x) is

E = − i

2
Tr ln(1− V1G1V2G2), (19.1)

in terms of the single potential Green’s functions

Gi = (1 + G0Vi)−1G0. (19.2)

The free Green’s function, satisfying

−∂2G0(x− x′) = δ(x− x′), (19.3)

has the explicit form

G0(x− x′) =
∫

dω

2π
G0(r− r′, ω)e−iω(t−t′), (19.4)

where the time-Fourier transform is

G0(r− r′, iζ) =
e−|ζ||r−r′|

4π|r− r′| , (19.5)

where we have performed the Euclidean rotation ω → iζ.
For weak potentials, the energy (19.1) simplifies dramatically:

E ≈ i

2
Tr V1G0V2G0 = − 1

64π3

∫
(dr)(dr′)

V1(r)V2(r′)
|r− r′|3 . (19.6)
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At finite temperature the integral over imaginary frequency becomes the
Matsubara sum:

∫ ∞

−∞

dζ

2π

e−2|ζ||r−r′|

|r− r′|2 → T

∞∑
m=−∞

e−4πT |m||r−r′|

|r− r′|2 =
T

|r− r′|2 coth 2πT |r− r′|,

(19.7)
so the interaction energy becomes

ET = − T

32π2

∫
(dr)(dr′)V1(r)V2(r′)

coth 2πT |r− r′|
|r− r′|2 , (19.8)

which evidently reduces to Eq. (19.6) for T = 0.

19.3 Parallel plates
For parallel, semitransparent plates, separated by a distance a, where the po-
tentials are

V1(r) = λ1δ(z), V2(r) = λ2δ(z − a), (19.9)

the integrals in Eq. (19.6) are readily carried out, with the resulting energy per
unit area A, E = E/A:

E = − λ1λ2

32π2a
. (19.10)

This well-known result holds even if one of the plates has a finite area A. At
finite temperature the result is

ET = −λ1λ2T

16π

∫ ∞

2πTa

dx

x
cothx. (19.11)

The energy is ambiguous because it depends on the arbitrarily chosen upper
limit. However, it corresponds to a well-defined pressure between the plates,

PT = − ∂

∂a
ET = −λ1λ2T

16πa
coth 2πTa. (19.12)

19.4 Interaction between an Infinite Plane
and an Arbitrarily Curved Surface: PFA

Now consider the interaction between a semitransparent plane, described by the
potential

V1(r) = λ1δ(z), (19.13)
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and an arbitrary curved surface S, which does not intersect the plane z = 0,
which corresponds to the potential

V2(r) = λ2δ(z − s(x, y)), (19.14)

where z = s(x, y) is the equation of the surface. Then, from Eq. (19.8) it
is immediate that the energy is (the upper limit of the x integration is again
physically irrelevant)

ET = −λ1λ2T

16π

∫
dS

∫

2πTz(S)

dx
cothx

x
, (19.15)

where the area integral is over the curved surface. This is precisely what one
means by the proximity force approximation, where one sums energies between
adjacent elements treated as parallel plates:

EPFA =
∫

dSE‖(z(S)), (19.16)

in view of Eq. (19.11). This is in fact just the theorem proved by Decca et
al. [24], who were considering gravitational and Yukawa type forces, but we see
it applies to any central force.

For example, the above, exact formula for weakly-coupled semitransparent
surfaces says that the force on such a sphere, of radius a, the center of which is
a distance Z above a semitransparent plane is

FT = −∂ET

∂Z
= −λ1λ2aT

8

∫ 2πT (Z+a)

2πT (Z−a)

du

u
cothu. (19.17)

The zero-temperature limit of this is

F = −λ1λ2

8π

a2

Z2 − a2
, (19.18)

which may be alternatively derived from the zero-temperature energy

E = −λ1λ2a
2

16π

∫ 1

−1

d cos θ

Z + a cos θ
= −λ1λ2a

16π
ln

Z + a

Z − a
, (19.19)

again, the exact PFA result.



212 19. Exact Casimir Energies ...

19.5 Interaction between Two Semitransparent
Spheres at Nonzero Temperature

Consider now two spheres, of radius a and b, respectively, with a distance be-
tween their centers R > a + b. In terms of local coordinates with origins at the
centers of the two spheres, the semitransparent potentials are

V1 = λ1δ(r − a), V2 = λ2δ(r′ − b), (19.20)

and let us further suppose that R lies along the z axis of both coordinate
systems. Then the squared distance between points on the spheres is

|r− r′|2 = R2 + a2 + b2 − 2ab cos γ − 2R(a cos θ − b cos θ′), (19.21)

in terms of polar angles in the two spheres, where the cosine of the angle between
the two radial vectors locating the points is

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (19.22)

We insert this into the expression for the energy (19.8), obtaining

E = −λ1λ2T

32π2
a2b2

∫
dΩ dΩ′

coth 2πT |r− r′|
|r− r′|2 . (19.23)

It seems difficult to proceed in general, but we can work out a low temper-
ature expansion using

coth y =
∞∑

n=0

22nB2n

(2n)!
y2n−1 =

1
y

+
1
3
y − 1

45
y3 + . . . , (|y| < π) (19.24)

which will give rise to an expansion of the form

ET = E0 + T 2E2 + T 4E4 + . . . . (19.25)

The zero temperature result was worked out, by inspection, in Ref. [12]:

E0 = −λ1λ2ab

16πR
ln

1− (a− b)2/R2

1 + (a + b)2/R2
. (19.26)

The T 2 term is trivial because it is evaluated by Newton’s theorem that a
Coulomb potential exterior to a spherically symmetric charge distribution is as
though the charge were concentrated at the center:

E2 = −λ1λ2π

3
a2b2

R
. (19.27)



19.5 Interaction between Two Semitransparent Spheres ... 213

The T 2n term, n > 1 however, is slightly nontrivial:

E2n = −λ1λ2

64π3
a2b2 (4π)2nB2n

(2n)!

∫
dΩ dΩ′|r− r′|2n−3. (19.28)

We may evaluate the integrals by expanding in powers of â = a/R and b̂ = b/R:
∫

dΩ dΩ′|r− r′| = (4π)2R
[
1 +

1
3
(â2 + b̂2)

]

∫
dΩ dΩ′|r− r′|3 = (4π)2R3

[
1 + 2(â2 + b̂2) +

1
5
â4 +

2
3
â2b̂2 +

1
5
b̂4

]

∫
dΩ dΩ′|r− r′|5 = (4π)2R5

[
1 + 5(â2 + b̂2) + 3â4 + 10â2b̂2 + 3b̂4

+
1
7
â6 + â2b̂2(â2 + b̂2) +

1
7
b̂6

]
, (19.29)

and so on. The reason these are polynomials is evident when one considers the
multipole expansion of the Coulomb potential—See, for example, Chap. 22 of
Ref. [25]. For general formulas for such moments, see the Appendix.

By computing further terms in the sequence of polynomials, we are able to
recognize the pattern:

1
(4π)2R2n+1

∫
dΩ dΩ′|r− r′|2n+1 =

n+1∑
p=0

p∑
q=0

A(n, p, q)â2(p−q)b̂2q, (19.30)

where

A(n, p, q) =
(2n + 2)!

(2n− 2p + 2)!(2p− 2q + 1)!(2q + 1)!
. (19.31)

When this is inserted into the low temperature expansion, we can remarkably
sum the series:

ET = −λ1λ2

16π

ab

R

{
ln

1− (a− b)2/R2

1− (a + b)2/R2
+ f(2πT (R + a + b))

+ f(2πT (R− a− b))− f(2πT (R− a + b))− f(2πT (R + a− b))
}

, (19.32)

where f is

f(y) =
∞∑

n=1

22nB2n

2n(2n− 1)(2n)!
y2n, (19.33)
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which is obtained from the second antiderivative of the hyperbolic cotangent:

y
d2

dy2
f(y) = coth y − 1

y
, f(0) = f ′(0) = 0. (19.34)

Although the power series expansion (19.33) is valid only for sufficiently low
temperatures 2T (R+a+ b) < 1, the solution of the differential equation is valid
for all values of T .

For sufficiently high temperatures we can replace the hyperbolic cotangent
in the differential equation by 1, and then

f(y) ∼ y ln y + ln y + Ay + B, y À 1, (19.35)

where A and B are integration constants that do not contribute to Eq. (19.32).
When this asymptotic solution is inserted into Eq. (19.32) the zero temperature
logarithm cancels out, and we are left with

ET ∼ −λ1λ2ab

8
T

[
ln

R2 − (a + b)2

R2 − (a− b)2

+
a

R
ln

(R + b)2 − a2

(R− b)2 − a2
+

b

R
ln

(R + a)2 − b2

(R− a)2 − b2

]
, T →∞. (19.36)

This result may be derived directly from the high-temperature form

ET ∼ −λ1λ2Ta2b2

32π2

∫
dΩ dΩ′

1
|r− r′|2 , T →∞. (19.37)

This again may be worked out by expanding in powers of the radii of the spheres.
Computing the first several terms reveals the pattern:

∫
dΩ dΩ′

1
|r− r′|2 =

(4π)2

R2

∞∑
n=0

1
(n + 1)(2n + 1)

n∑
m=0

1
2

(
2n + 2
2m + 1

)
â2(n−m)b̂2m.

(19.38)
This sum is almost identical to that found for spheres at zero temperature, as
seen in Eq. (6.15) of Ref. [12], which led to Eq. (19.26), except for the appearance
of 1/(2n + 1) here. Therefore, the former series must be obtained from the
present series by differentiation. Denoting the double sum in Eq. (19.38) by S,
it must be true that

R2 ∂

∂R

S

R
=

R2

4ab
ln

(
1− (a + b)2/R2

1− (a− b)2/R2

)
, (19.39)
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where S is R2/4ab times the square-bracketed quantity in Eq. (19.36). This
equality is, in fact, easily verified. See the Appendix for the generalization of
this result.

We compare the general form [obtained by numerically integrating Eq. (19.34)]
and the high-temperature limiting form (19.36) in Fig. 19.1.

0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

RT

e

Figure 19.1: Comparison between the general and high temperature forms of
the energy, as a function of RT . Energies are shown for a = b = R/4. The
high temperature result is linear in T . Also shown is the power series expansion
[Eq. (19.33) truncated at 200 terms], which diverges in this case at RT = 1/3.
Plotted is e = −16πRE/(λ1λ2a

2).

19.6 Conclusions

We have shown that exact results may be found in weak coupling for the quan-
tum vacuum forces between nontrivial bodies not only at zero temperature, but
at finite temperature. We have shown that the exact form of the proximity
force approximation holds exactly for all temperatures for the force between an
infinite plane surface and an arbitrarily curved one. We have also computed the
force between two semitransparent spheres at arbitrary temperatures, and ob-
tain remarkably simple, closed-form expressions. The PFA equivalence evidently
will hold for tenuous dielectric bodies in electromagnetism, and closed-form fi-
nite temperature results may be easily obtained between dielectric bodies as
well.
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19.7 Appendix: Mean Powers of Distances between
Points on Spheres

In Sec. 6.5 we used exact evaluations of mean distances, defined by
∫

dΩ dΩ′|r− r′|p = (4π)2RpPp(â, b̂), (19.40)

where R is the distance between the centers of the two nonoverlapping spheres,
of radii a and b, respectively. Here â = a/R and b̂ = b/R, and Pp(â, b̂) can in
general be represented by the infinite series

Pp(â, b̂) =
∞∑

n=0

2
(2n + 2)!

Γ(2n− p− 1)
Γ(−p− 1)

Qn(â, b̂). (19.41)

Here the homogeneous polynomials Qn are

Q0 = 1,

Q1 = 2(â2 + b̂2),

Q2 = 3â4 + 10â2b̂2 + 3b̂4,

Q3 = 4â6 + 28â4b2 + 28â2b̂4 + 4b̂6, (19.42)

or in general,

Qn =
1
2

n∑
m=0

(
2n + 2
2m + 1

)
â2(n−m)b̂2m. (19.43)

We can easily see the following recursion relation holds:

Pp−1(â, b̂) =
R−p

1 + p

∂

∂R
R1+pPp(â, b̂), (19.44)
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since Qn is homogeneous in R of degree −2n.
For p a non-negative integer, Pp is a polynomial of degree 2dp/2e, and we

can immediately find

Pp(â, b̂) =
1

4âb̂

1
(p + 2)(p + 3)

[
(1 + â + b̂)p+3 + (1− â− b̂)p+3

−(1− â + b̂)p+3 − (1 + â− b̂)p+3
]
, p = 0, 1, 2, . . . . (19.45)

For p a negative integer, we have

P−1 = 1,

P−2 =
1

4âb̂

[
ln

1− (â + b̂)2

1− (â− b̂)2
+ â ln

(1 + b̂)2 − â2

(1− b̂)2 − â2
+ b̂ ln

(1 + â)2 − b̂2

(1− â)2 − b̂2

]
,

P−3 = − 1

4âb̂
ln

1− (â + b̂)2

1− (â− b̂)2
,

P−4 =
1

[1− (â + b̂)2][1− (â− b̂)2]
, (19.46)

and further expressions can be obtained by use of Eq. (19.44).
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Contribution to Tom Erber Festschrift

Randall D. Peters
Professor and Chair Emeritus, Physics Department

Mercer University1

I first met Tom approximately twenty years ago. Following the creation of a
capacitive sensor in 1987, I began using my invention to study mechanical oscil-
lators. Subsequently, one of my abstracts titled “Non-classical Pendulum” was
published in Proceedings of the Texas Section of the American Physical Society.
Following its distribution by APS, Tom sent me a letter, requesting details of
what I had measured. His letter came as a surprise to me, especially since this
one who was interested in my experiment was a distinguished theorist. More-
over, in the tradition of some historically significant physicists–it appeared that
Tom had already chosen to ‘get down and dirty’ through personal involvement
with some experiments that seemed to concern only engineers.

I provided Tom with a description of my pendulum and elaborated on the
free-decay patterns that it had exhibited. At low energy levels, these were
no longer exponential, but rather they exhibited discrete energy states that
appeared to be separated from one another by multiples of about 11 pJ . Tom
responded to my letter with a comment that I won’t forget: “Randall, let me
amuse you with some speculation”. He proceeded then to tell me the following:
Every good student of physics knows that a ‘field’ multiplied by an ‘area’ yields
a flux. He then noted how (within a factor of π) the characteristic magnetic field
strength of quantum electrodynamics — a scale of type Feynman would have

1Macon, Georgia 31207
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recognized — when multiplied by the square of the Compton wavelength, yields
the flux quantum of superconducting fame. Then he noted how a good student
also knows that the same field, when squared and multiplied by a volume yields
an energy. Upon squaring the same field and multiplying by the cube of the
Compton wavelength, Tom obtained the expression (mc2/α), where m is the
mass of the electron, c is the speed of light, and α is the fine structure constant.
In other words, he had obtained what a Nobel Laureate more recently indicated
to me at the celebration honoring the 90th birthday of Charles Townes–was
the Compton energy of 11 pJ . Because these operations had been done with
pre-system-international units with which I was not very familiar, I was unable
to duplicate Tom’s exercise in complete detail. Several years later I looked at
the matter in a somewhat different manner (no doubt consistent with Tom’s
analysis). By the means described in the paper titled “Compton energy scale
of friction quantization” I arrived at the same result.

I am especially impressed by the depth of Tom’s understanding in so many
seemingly disparate fields of physics and mathematics. Never in my previous
experience had I encountered anybody with a PhD in a field as esoteric as
Compton scattering; who would display even a short-lived fancy with the inter-
nal friction of metals. Yet it was that very connection that is responsible for the
‘hysteron’ that we have envisioned as a yet-to-be-proven mesoscale quantum of
internal friction.

Multi-disciplinary expertise has allowed Tom to exhibit rare examples of
creativity. An especially notable case is the topic of his lecture to the physics
department at Mercer University in the Fall of 2004. His recognition of the
importance of the mesoscale to magnetic phenomena had motivated him to
propose and then participate with an engineering colleague in a seminal study
of piezomagnetism. After the fact, it is obvious to many in applied physics
and engineering, that magnetic field data should provide considerable insight
concerning the incipient failure of a ferrous sample subjected to large cyclic
stress. Although others may have thought about the matter, they evidently
lacked the background and depth of experience with which to recognize two
critical factors required for success–these being the use of

• Helmholtz-like coils to cancel the Earth’s otherwise overwhelming field

• a sensitive flux-gate magnetometer to measure the field changes.

In the summer of 2005 I apprised Tom of a paper that I had written, which
may be the best-to-date experimental evidence for the hysteron. The paper is
titled “Mesoscale quantization and self organized stability”. In his comments
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concerning this article, Tom once again demonstrated the value of broad-yet-
deep understanding of physics. He mentioned how “the measurement of specific
heats is analogous to measuring the time decay of Q (the quality factor that I
had measured)–but Q decay gives STRUCTURAL INFORMATION, whereas
heat dissipation has no memory!”

There have been several occasions for Tom to both improve my understand-
ing of physics, and also to recommend simple means to increase the probability
that my publications would gain wider acceptance. An example of the latter
involves nonlinear damping. By little and little, it is increasingly recognized
as not just important, but pervasive; yet many scientists and engineers resist
the idea of this type of nonlinearity. They prefer to cling to the oft-meaningless
viscous model of the harmonic oscillator, that is treated in popular textbooks as
‘gospel’. It was Tom’s recommendation of the title “Beyond the linear damping
model for mechanical harmonic oscillators”, that I chose to use for my paper on
this subject. After its publication I began to more fully realize the wisdom of
one’s careful choice of words, especially when it comes to controversial subjects.

I am also very grateful for a number of stories that Tom has shared with me
through the years. He has been privy to the details of adversity faced by several
well-known physicists. To hear how even they faced unexpected resistance, to
the new ideas they were presenting, was a source of considerable encouragement
to me. I may have ceased work on some of my most successful projects, had Tom
not provided me with such encouragement. On one occasion he exhorted me to
‘keep on keeping on’ by way of the following comment: “Randall, watch out for
the steam-rollers when your ideas become mainstream”. The most controversial
ones have not yet become mainstream. If and when they do, I am confident that
Tom’s prediction will prove true; that a host of individuals will try to claim
credit for ideas for which they did not ‘pay the price’.

In the matter just described I clearly saw at work another of Tom’s unusual
attributes. Sometimes I have marveled at the low level of common-sense ex-
hibited by some in our profession. Though they demonstrate, in the specialty
of their profession, intelligence that is clear to all; they seem ‘clueless’ when it
comes to issues of the social world that surrounds them. From my discussions
with him on topics other than physics, I have concluded that Tom Erber stands
in stark contrast to these people.

Less tangible benefits of my friendship with Tom are certainly to be inferred
from these comments. Their detailed description, however, is more difficult for
me to articulate than the technical benefits. Thus I will speak only to the
ones derived from the following two occasions. I fondly remember a meal at
a restaurant on the banks of the Hudson River, shared with Tom and Audrey
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about the time of Easter 1996. This was during my two-year stint as a Visiting
Professor at the U. S. Military Academy at West Point, and I had managed to
get Tom to come and give a lecture. As with their years later trip to Macon in
2004, I was delighted that Audrey was able to accompany him.
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Are the Navier Stokes Equations of
Hydrodynamics an Example of a Gödel
Theorem in Physics?

Seth Putterman
University of California, Los Angeles

One of the great theorems of mathematics of the 20th century is Gödel’s
theorem which states that within the framework of number theory there are
an infinite number of propositions whose truth or falsity cannot be decided
by application of the well known axioms. Even mathematicians are not in
agreement as to the scope and ’meaning’ of this theorem. By way of an example
consider the continuation of the Riemann Zeta function to the complex plane
z = x + iy:

ζ(x) =
∞∑

n=1

1
nx

→ ζ(z)

So far all the zeros of this function, and over 1013 have been found, lie on the
line x = 1/2. To date there is no proof that this should be so. Could this be
an example of a Gödel’s theorem in number theory: a true statement that is it-
self an additional independent axiom? In a recent issue Notices of the American
Mathematical Society [7] experts disagreed as to whether a well defined theorem
about a function such as ζ(z) should fall under the scope of Gödel’s theorem.
Although there is no proof that Riemann’s assertion is decidable [which is less
stringent than proving its truth or falsity] some mathematicians expressed the
opinion that it would someday be decided according to the basic axioms. Other
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mathematicians say that even the issue of the decidability of Riemann’s conjec-
ture is up in the air. If the mathematicians can’t agree on the decidability of
such an interesting issue then it would appear to be ripe for physicists to ask
similar questions about the natural world. Are there experimentally testable
theories which cannot be reduced to Quantum Mechanics [or Newton’s laws]?
This issue surely underlies the paper “A Theory of Everything” by Laughlin
and Pines [1].

The equations of hydrodynamics constitute 5 coupled nonlinear differential
equations for five field variables:

∂ρ

∂t
+∇ · (ρv) = 0

ρ T
Ds

Dt
− κ∇2T = Σ > 0

ρ
Dv

Dt
= −∇p + η∇2T

p = p(ρ, s)

κ (∇T )2 + η

[
∂vi

∂rj

]2

= Σ

where ρ(r, t), v(r, t), s(r, t) are the mass density, velocity and entropy per gram
as a function of position and time. Other quantities such as temperature T , and
pressure p are related to these variable via equations of state. The viscosity and
thermal conductivity are η, κ and the entropy production is Σ; for compactness
the bulk viscosity has been omitted. These equations follow uniquely from the
assumptions that 5 variables are a complete set and that the energy depends
on the local values of these variables [the continuum mechanics of paint would
require nonlocal equations of state]. The derivation of these equations proceeds
from conservation laws, Galilean covariance, the second law of thermodynamics
and an approximation that the deviation from equilibrium is characterized [in
the dynamical equations] by first order gradients such as ∇T . Although these
equations are written in stone and although they are very heavily tested by
experiments, they have never been derived from first principles in a controlled
approximation. Even for a weakly interacting dilute gas, where the wavelength
of an initial condition is large compared to the mean free path of the molecules,
these equations have not been derived as say the leading order of a controlled
expansion.

First, let us review the reason that the Boltzmann equation cannot be used
as a basis for deriving the Navier-Stokes equations. By introducing σ = cross-
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section for initial velocities to turn over into final velocities as a result of the
binary collision: v + v1 → v′ + v′1 one writes down the Boltzmann equation:

∂f

∂t
= −

∫
σ |v − v1| f(v) f(v1) dv1 + restituting collisions

where f(r, v, t) is the density of particles in position and velocity space. This is a
closed equation which over time evolves to the Maxwell-Boltzmann distribution:

f(r, v, t) → exp
[
−M v2

2k T

]
as T →∞

and furthermore the last stages of this approach to equilibrium agree with the
Navier- Stokes hydrodynamics when the proper moments of this equation are
taken. The problem with this approach lies in what Ehrenfest labeled as the
Stosszahl Ansatz: namely that the mathematically correct equation should be
of the form

∂f

∂t
≈

∫
σ F2 d · · ·

where F2(r, v, v1, t) is the joint or 2 particle distribution function. In order to
arrive at a closed equation Boltzmann assumed that the probability of the joint
distribution is the product of the single particle probabilities or:

F2(v, v1) = f(v) f(v1)

The equation for F2 involves F3:

∂F2

∂t
≈ F3

and so on, so that unless an assumption is made a closed equation is not achieved
See for example Uhlenbeck and Ford, Lectures in Statistical Mechanics [2].

The closure assumption is equivalent to assuming the validity of the Navier-
Stokes equations of hydrodynamics. To appreciate the physical origin of the
interconnectivity between the levels of description consider a sphere [of radius
R] oscillating in a fluid with a velocity given by u(t). According to Landau and
Lifshitz: Fluid Mechanics [3], the force as a function of time is:

Force(t) = −6π η R u + AR2√η ρ

∫ t

−∞

du

dτ

dτ√
t− τ

The long time memory indicated by the fluid equations as expressed by the last
term on the right hand side of this equation leads to a velocity autocorrelation
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that also has a long time memory and has appeared in molecular dynamic
simulations of Alder and Wainwright [4]:

< u(t)u(0) >≈ A exp[−t/τ ] + B
1

t3/2

This means that when we let R shrink to atomic dimensions the motion
of a molecule maintains a long term memory of its past motion The response
of a molecule depends on the usual collision time τ as well as the hydrody-
namic times. Or, that in order to describe the motion of an individual molecule
one needs the equations of hydrodynamics which one was supposedly about to
derive. Kadanoff [5] said it this way: “these long time tails remained a perplex-
ing mystery for a long time but now they are pretty well understood to be a
consequence of the hydrodynamic motion of the fluid as it flows past its own
molecules.” That is: one cannot say that the micro world is characterized only
by short time scales or fast processes. So one cannot derive the macro world by
averaging over the fast processes which take place at the micro-scale..

The prize offered by the Clay institute [6] for the proof of the existence of
a solution to the Navier Stokes equations under certain conditions implies that
a derivation of these equation from Newton’s laws does not exist. If such a
derivation existed one could use it to map hydrodynamics onto a linear set of
equations whose solution is then guaranteed. The interconnectedness of the mi-
cro and macro scales even as the number of particles goes to infinity suggests
that the conditions for Gödel’s insights could be at work in hydrodynamics. I
propose that it is interesting to determine the variety of situations and causes
which lead to underivable yet experimentally testable theories of physics. Per-
haps new axioms of Physics are all around us.
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Completion of Classical Dynamics
of Charges

Fritz Rohrlich
Department of Physics

Syracuse University

This paper is written in honor of Thomas Erber, an old friend and colleague.
His many valuable contributions to physics and specifically electrodynamics are
much appreciated.

Abstract

The classical dynamics of charges is reviewed. The old equations by Abra-
ham and Lorentz (1904) have long been known to be defective. The correct
equations of motion are known as the Landau-Lifshitz equations. In first or-
der perturbation expansion, quantum electrodynamics of point charges leads in
its classical limit to these equations thus confirming them. Their applicability
is however restricted to classical charges that can be approximated by point
charges. Otherwise, the dynamics of charges cannot be described by differential
equations, and integro-differential equations become necessary. The theory is
now problem-free.

22.1 History
The complete classical description of the interaction between electric charges
and electromagnetic fields requires the simultaneous solution of two systems
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of equations. The first system is the set of Maxwell equations for the fields
that are incident on the charges as well as those that act between the moving
charges. The second system consists of the equations of motion of the charges
that are driven by these fields and consequently emit additional fields of their
own. This difficult problem is necessarily broken up into two separate tasks:
the solution of the field equations when the motions of the charges are given,
and the solution of the charged particle equations when the impinging fields
are given. While the field equations have been well understood since Maxwell,
the particle equations have been under dispute ever since the fundamental work
by Abraham and Lorentz (1904) and the later manifestly covariant work by
Dirac (1939) [1]. The 1904 work preceded the discovery of special relativity but
resulted in equations that are relativistically correct.

The Abraham-Lorentz-Dirac equation (ALD) of 1904 and 1939 is known to
have serious defects. The most obvious defect is that these differential equations
are of third order in time derivatives and therefore require more conditions than
the initial position and velocity of the particle that are necessary and sufficient
for Newton’s equation of motion .

Much of the work on charged particle dynamics until the end of the 20th

century was devoted to attempts to remedy the defects of the ALD equation.
The equation of motion first published in a book by Landau and Lifshitz in
1951 [2], was mostly ignored. The otherwise very comprehensive review by
Erber noted only its existence [3]. The Landau-Lifshitz equations (LL equations)
attracted attention only after Spohn used them in 2000 as an example in his
mathematical study of the ALD equations [4]. He pointed out that the solution
space of the ALD equation is restricted to a submanifold by the condition that
the acceleration vanishes asymptotically. That restriction is satisfied for external
forces of finite duration by all the solutions of the LL equation. Later, I provided
the physical conditions that lead from the ALD equations to the LL equations
[5]. They correspond to Spohns restriction of the ALD solution manifold.

In the book by Landau and Lifshitz [2], the LL equation was presented as if
it were an immediate and trivial consequence of the ALD equation. This is not
the case. The lack of reasoning in their text was not corrected in any of their
later editions. Below, I shall show how a careful derivation of the LL equation
from the ALD equation leads to the specification of a domain of validity for the
LL equation [5].

In local quantum electrodynamics (QED), a charged particle is represented
by a point charge and the physical electron is empirically indeed of that na-
ture. (Suitable renormalization techniques exist to deal with the Coulomb di-
vergence.) But in classical electrodynamics (CED) an electric charge is phe-
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nomenologically always part of a finite size body: there are no point charges
in the classical world. The physically correct description of a classical charge
is therefore a spatially extended charge distribution. This entails a sacrifice:
the particle dynamics in general cannot be represented by a differential equa-
tion. Rather, an integro-differential equation of motion must be used for an
extended charge. Such an equation has been derived, for example, by Medina
[6]. Nevertheless, it is often mathematically convenient to treat a charged parti-
cle in classical physics as if it were a point charge. I shall present the conditions
under which such an approximate treatment is justified.

22.2 Differential Equation of Motion
The ALD equation is

mv̇µ = Fµ + mτ0 Pµν v̈ν (22.1)
where Pµν = ηµν + vµ vν/c2

is the projection operator into the hyperplane perpendicular to the four-velocity
vµ. The force, Fµ is the Lorentz force and/or any other force acting on the
particle. The parameter τ0 is defined by

cτ0 =
2 q2

3 mc2
(22.2)

The particle is characterized by its mass m and its charge q. The second term
on the right in (22.1) consists of two parts, the Schott term, τ0v̈

µ, and the loss
due to radiation, the fourvector, −vµR, where R is the invariant radiation rate
(the Larmor formula) R = mτ0 aµ aµ = −mτ0 vµ v̈µ. From here on, I shall use
units such that c = 1.

The ALD equations (22.1) are obviously physically incorrect: they contain a
third time derivative of position that entails the need for a third initial condition,
and they lead (among others) to physically meaningless solutions that violate
causality (pre-acceleration and post-deceleration).

If one assumes the τ0 term is so small that higher powers of τ0 are negligible,
one can formally replace v̈µ on the right of (22.1) by Ḟµ/m. One then obtains
the equation

mv̇µ = Fµ + τ0 Pµν Ḟν (22.3)

If the force depends on xµ(τ) rather than directly on τ , Fµ = Fµ(x(τ)) then

Ḟµ = vα ∂α Fµ
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Equation (22.3) is the LL equation. If the force is the Lorentz force its depen-
dence on the velocity requires [in the step from (22.1) to (22.3) ] a replacement
of the acceleration and of its derivative on the right hand side by F/m and
Ḟµ/m, respectively. The LL equation can then be written in the form

mv̇µ = Fµ + τ0

[
vα ∂α (q Fαβ) vβ +

1
m

(q Fµα Fα − vµ Fα Fα)
]

(22.4)

where the Lorentz force is Fµ = q Fµν vν and the last term in the brackets is
the rate of radiation loss. The first two terms in the square bracket combined
correspond to the “Schott” term of the ALD equation (22.1). There are no
accelerations on the right hand side. Actually, only this special case (when F is
the Lorentz force) appears in the book by LL.

The validity of the LL equation (22.3) (or (22.4) in the Lorentz force case)
must now be examined carefully. Its derivation from the ALD equation (22.1)
is based on the assumption that the τ0 term in (22.1) is so small that higher
powers of τ0 are negligible. That assumption was essential in the step from the
ALD equation to the LL equation. Since the actual classical physical charge
is necessarily extended, the assumption of a point particle is valid only under
certain conditions: it must be assumed that the charge is of sufficiently small
spatial dimension so that the external force, ~F , varies negligibly over its volume.
The particle can then be treated as a “pseudo-point” charge. Since the size of
the particle is given, this requirement imposes a condition on the external force
in (22.3) that reads in its instantaneous rest frame,

∣∣∣∣∣τ0
d~F

dt

∣∣∣∣∣ ¿ |~F | (22.5)

This is the condition for the charged particle to be treated as a pseudo-point
charge. Only if (22.5) holds can one treat the last term of the LL Eq.(22.3)
or (22.4) as a small correction. It follows that condition (22.5) on the external
force is a necessary condition for the validity of the LL equation. In particu-
lar, Eq.(22.5) implies that the frequency of an external electromagnetic force
proportional to exp(iωt) be limited by

ω ¿ 3 mπ

q2

In the literature, the condition (22.5) is often ignored. As a consequence, phys-
ically meaningless results are obtained. The above conditions, for instance, do
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not permit a time dependence of the external forces that increases too fast.
That implies that they cannot be step functions of time. The latter assumption
is made incorrectly in some textbooks (see for instance [7]). I have given an
example that shows explicitly how closely an external force can be permitted to
simulate a step function [5].

22.3 Consequences for Classical Electrodynamics

For the purpose of the following general considerations, I shall first deal with
the dynamics of pseudo-point charges and electromagnetic fields. The theory is
based on the electromagnetic field equations (both free fields and fields emitted
by pseudo-point charges), and the equations of motion of pseudo-point charges,
i.e. Maxwell’s equations and the LL equations of motion. Non-electromagnetic
external forces may also be included. But this set of equations must now be
supplemented by the validity conditions (22.5) for the LL equations.

It is unfortunate that most treatments of electromagnetic systems do not
use the LL equations but only their Newtonian approximation that omits the
τ0 term. The presence of the τ0 term makes an enormous difference in the
dynamics of particles because it invalidates well-known claims commonly made
in Newtonian classical mechanics. These differences will here be illustrated for
the dynamics of a single charge but hold, of course, for almost all electrodynamic
systems.

(a) Charged particle systems are open in the sense that whenever a force acts
on a charge, electromagnetic radiation is emitted that escapes to infinity. Thus,
a loss of energy and momentum due to radiation is a necessary consequence
of any interaction involving charged particles. This implies, of course, that
Newton’s second law of motion is no longer valid. The additional terms in (22.5)
express the generation and emission of radiation as a necessary by-product of the
acceleration of a charge. The mathematical complications due to going beyond
Newton’s second law are considerable.

(b) In any approximation in which the dynamical description includes ra-
diation emission, the symmetry of time inversion invariance is lost. Therefore,
the complete set of equations, Maxwell’s equations together with the equation
of motion are not time inversion invariant because the latter is not. Only when
radiation emission is ignored does the system revert to time reversal invariance.

Various generalizations are of interest. First, there are the equations for sys-
tems of n charges each with its own proper time τk (k = 1, · · · , n) including the
interactions between the charges as well as the emission of radiation from each
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of them. Such problems are likely to be solved best by computer. Then, there
are equations for charges with spin and magnetic moment. These properties are
less difficult to deal with. My review article [8] and my book [9] introduce these
equations.

Consider next the more difficult problem of equations of motion for extended
charges that cannot be described by pseudo-point charges. Their finite exten-
sion prohibits a differential equation of motion. An integro-differential equation
becomes necessary because one must integrate over the finite size charge dis-
tribution. That problem was treated by Medina [6] and I shall not pursue it
here. But it is an important consistency check that the equation for an extended
charge reduces (in the pseudo-point limit) to the LL equation.

22.4 The Relation to Quantum Electrodynamics

Classical electrodynamics (CED) is of course a theory that is meant to be valid
as the classical limit of quantum electrodynamics (QED). Mathematically, this
means that the above equations for CED should be the classical limit of a set of
fundamental equations of QED. Long ago, this problem was attacked by Moniz
and Sharp [10] for the nonrelativistic case. Later, Krivitskii and Tsytovich [11]
solved it by starting with the nonrelativistic quantum mechanical Hamiltonian
for a charge in an electromagnetic field and in the classical limit deduced the
Lorentz force equation with an additional τ0 term. In this approximation, one
obtains to lowest order the nonrelativistic form of the LL equation (22.3), m~̈x+
~F = τ0

~̇F , where F becomes the Lorentz force,

m~̈x + ~F = τ0

(
e ~E +

e2

m
~E × ~B

)
(22.6)

The LL equation is thus confirmed as the classical limit of QED at least in the
nonrelativistic limit.

The basic problem of the equations of motion of a classical charge can now be
considered solved. It took about a century since the original work by Abraham
and Lorentz.
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The Mystery of Parity:
In Honor of Tom Erber’s 80th birthday

Jonathan L. Rosner1
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“And should I not take pity on Nineveh, that great city, with
more than a hundred and twenty thousand inhabitants who do not
know their right hand from their left, and many beasts besides?”3

23.1 Introduction

Our world does not exhibit left-right symmetry at the level of familiar objects:
biological [1] and polar [2] molecules, organic chemicals [3], human anatomy,
and much more. However, before 1956 it was widely [4] (though not universally
[5]) assumed that the fundamental laws of physics exhibited that symmetry
(parity invariance). When it was called into question for the weak interactions
[6], experiments [7, 8, 9] quickly showed that in fact the weak interactions had
a definite handedness, involving left-handed particles and right-handed antipar-
ticles.

1rosner@hep.uchicago.edu
25640 S. Ellis Avenue, Chicago, IL 60637
3Jonah 4:11
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Could parity violation at the microscopic level be responsible for what we
see in the macroscopic world? Despite calculations claiming this to be so (see,
e.g., [10]), Tom Erber has pointed out that this asymmetry need not stem from
the microscopic level, but can arise spontaneously in very simple systems. For
N point charges arranged on the surface of a unit sphere, the lowest-energy
state is mirror-symmetric for 2 ≤ N ≤ 10, but asymmetric for N = 11 [2, 11]
and specific higher values of N . In like manner (see also [12]), although the
Coriolis force tends to send water down a drain counterclockwise in the Northern
Hemisphere and clockwise in the Southern, initial conditions play a far more
important role.

In this article we shall be concerned with microscopic parity invariance and
a mystery which it presents. This consists of a marriage of internal and space-
time symmetries, forbidden when the space-time symmetry consists of the whole
Poincaré group [13] but permitted in this case because of the discrete nature
of the parity transformation. We will argue that this marriage could point to
regularities underlying the nature of quarks and leptons, and to extensions of
particle interactions beyond those known today.

In Section 2 we briefly review the observed pattern of quarks and leptons,
noting the great difference between the masses of the light neutrinos and the
remaining fermions. In Section 3 we express this difference in group-theoretic
terms, relying on an oft-employed five-dimensional geometric construction based
on the group SO(10). The role of parity reversal in this language is extremely
simple, consisting of reflection of one of the five coordinates. Possible conse-
quences of this observation are given in Section 4, while Section 5 concludes.

23.2 Quark and Lepton Patterns

The observed quarks and leptons fall into three families. One distinguishes left-
handed from right-handed states. Each left-handed family consists of a quark
electroweak doublet [transforming as a triplet of color SU(3)], a lepton doublet
[transforming as a singlet of color SU(3)], and the corresponding antiparticles
which are all electroweak singlets. In each right-handed family the roles of the
particles and antiparticles are reversed. For Dirac particles (the quarks and
charged leptons) the left-handed and right-handed states and the correspond-
ing antiparticles are combined into one four-component object with a specific
“Dirac” mass. The possibility that a neutrino can be its own antiparticle allows
for left-handed neutrinos and right-handed antineutrinos (the “active” partic-
ipants in weak interactions) to have one “Majorana” mass while the “sterile”
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left-handed antineutrinos and right-handed neutrinos have another. In Fig. 1
we show present information on quark and lepton masses, quoting Dirac masses
for the charged fermions and direct upper limits on masses of “active” neutrinos
which may or may not be of Majorana type.

Figure 23.1: Masses of observed quarks and leptons on a logarithmic scale. The
upper limits on neutrino masses are based on direct searches [14]; see text for
much more stringent limits.

Neutrinos are known to mix with one another, so that the states of definite
mass (denoted ν1, ν2, and ν3) are linear combinations of the “flavor” eigenstates
νe, νµ, and ντ . Neutrino oscillation experiments find ∆m2

21 ≡ m2
2 − m2

1 =
(7.59+0.19

−0.21) × 10−5 eV2, ∆m2
32 ≡ m2

3 −m2
2 = (2.43 ± 0.13) × 10−3 eV2 [14]. If

m2
1 ¿ m2

(2,3), then m1 ¿ m2 ' 9 meV, m3 ' 50 meV. However, all the neutrino
masses could be larger and quasi-degenerate. In any case a cosmological bound
implies that the sum of the (active) neutrino masses must not exceed 0.28 eV
[15], far below the direct limits depicted in Fig. 1.

Fig. 1 represents one of the great puzzles of today’s particle physics. Do
the masses of the quarks and leptons (and their mixing under the weak inter-
actions) represent some deep underlying structure (as in the Periodic Table of
the Elements), or the solution of some anarchic dynamics (as in the Titius-Bode
law describing planetary orbits)? For the present we bypass this question and
discuss the structure of a single family, which we shall denote

F =




u
d
νe

e−


 . (23.1)
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23.3 Geometry of Grand Unified Groups

The strong interactions are described by an SU(3)C (C for color) Yang-Mills
gauge theory, while the gauge symmetry of the electroweak interactions is SU(2)L⊗
U(1)YW , where the subscript L indicates that the interaction applies to left-
handed fermions (and right-handed antifermions), while the subscript YW de-
notes weak hypercharge. Georgi and Glashow [16] found an ingenious way to
unify SU(3)⊗SU(2)⊗U(1) into an SU(5) group; the 15 observed left-handed
quarks and leptons (excluding left-handed antineutrinos) of each family are
apportioned into 5-dimensional and 10∗-dimensional representations of SU(5).
However, the pattern becomes much simpler when SU(5) is included into the
group SO(10) [17, 18]. The 5- and 10∗- dimensional representations of SU(5)
combine with an SU(5) singlet, the right-handed neutrino, into a single 16∗-
dimensional spinor representation of SO(10), a group of rank 5 whose repre-
sentation members may be identified by their coordinates in a 5-dimensional
vector space. The spinor consists of next-to-nearest neighbors on the vertices
of a 5-dimensional hypercube in this space. Its members may be identified by
vectors of the form

(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2

)
, (23.2)

with an odd number of + signs for 16∗ and an even number for its conjugate
16 representation [19]. Other representations of SO(10) have simple depictions
in this language: For example, members of the vector 10-plet of SO(10) are
denoted by

(±1, 0, 0, 0, 0) + permutations . (23.3)

The group SO(10) has rank 5, so there are five mutually commuting observables
which may be represented in it. As the color SU(3) subgroup of SO(10) has rank
two, one may take color isospin I3C and hypercharge YC as two of the observ-
ables. For SU(2)L one takes its third component I3L, while weak hypercharge
will be denoted by YW . The electromagnetic charge is Q = I3L +YW /2. A fifth
observable Qχ, lying in SO(10) but outside SU(5), will be defined shortly.

One may now measure the value of any observable for an SO(10) represen-
tation member by taking its projection along a specific five-dimensional vector,
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e.g.:

V (I3C) =
(

+
1
2
,−1

2
, 0, 0, 0

)
; V (YC) =

(
+

1
3
,
1
3
,−2

3
, 0, 0

)
,

V (I3L) =
(

0, 0, 0, +
1
2
,−1

2

)
; V (YW ) =

(
−2

3
,−2

3
,−2

3
, 1, 1

)
;

V (Q) =
(
−1

3
,−1

3
,−1

3
, 1, 0

)
.

An additional observable is represented by V (Qχ) = (1, 1, 1, 1, 1)/
√

10, where
we have chosen to normalize Qχ in the same way as I3C or I3L. In the 16-plet
of SO(10), 5-plet SU(5) members have Qχ = −3/

√
40, 10∗-plet members have

Qχ = 1/
√

40, and the SU(5) singlet has Qχ = 5/
√

40.
The specific members of the left-handed family (23.1) may be denoted by

the following spinors. A subscript 1, 2, 3 denotes the color label; we display only
one color of each quark. We shall adopt the shorthand ± for coordinates ±1/2
[20]. We shall also put a vertical bar between the first three indices, denoting
color SU(3), and the last two, denoting weak SU(2). We then have

uL1 = (+−−|+−) ; dL1 = (+−−| −+) ;
νL = (+ + +|+−) ; e−L = (+ + +| −+) . (23.4)

Each of these is a weak doublet with I3L = ±1/2, as the last two indices are
unequal. The corresponding antiparticles, obtained by reversing the signs of the
first four indices, are

ūL1 = (−+ +| − −) ; d̄L1 = (−+ +|+ +) ;
ν̄L = (−−−| − −) ; e+

L = (−−−|+ +) . (23.5)

The ν̄L has no charges within the Standard SU(3)C⊗SU(2)L⊗U(1)YW
Model;

it is sterile.
An interesting three-dimensional projection of the five-dimensional space

may be obtained by defining the horizontal plane to be the two-dimensional
vector space describing color SU(3) and the vertical axis to be electric charge.
The members of an SO(10) 16-plet may then be represented as two cubes stacked
corner-to-corner, as shown in Fig. 2.

So far we have not discussed the right-handed states. These, it turns out,
are related to the corresponding left-handed states by a simple reversal of the



244 23. The Mystery of Parity ...

Figure 23.2: Projection of SO(10) 16-plet describing a quark-lepton family into
the space of color (horizontal plane) ⊗ electric charge (vertical axis)

fifth index. Thus, for right-handed particles we have

uR1 = (+−−|+ +) ; dR1 = (+−−| − −) ;
νR = (+ + +|+ +) ; e−R = (+ + +| − −) , (23.6)

while for right-handed antiparticles we have

ūR1 = (−+ +| −+) ; d̄R1 = (−+ +|+−) ;
ν̄R = (−−−| −+) ; e+

R = (−−−|+−) . (23.7)

It is now the right-handed particles which are electroweak singlets, while the
right-handed antiparticles are electroweak doublets. In particular, the right-
handed neutrino νR is sterile with respect to Standard Model charges.

All this is familiar to practitioners of grand unified theories. Indeed, the
unbroken SO(10) symmetry is left-right symmetric [18, 21]; it is a non-zero
expectation value of the charge Qχ which destroys this symmetry. This could
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arise at any mass scale from a Higgs mechanism. If the scale is several TeV
or less, one might be able to observe the corresponding neutral gauge boson (a
“Zχ” [22, 23]) at the CERN Large Hadron Collider (LHC). A very large mass
scale, however, could be associated with a large Majorana mass of right-handed
neutrinos.

One can also envision the breaking of SO(10) as proceeding first through its
subgroup SO(6) ⊗ SO(4) (easily illustrated on the fingers of two hands). The
SO(6) is isomorphic to an SU(4) group which may be thought of as extended
color, regarding leptons as the fourth color [18]. Its subgroup containing color is
SU(3)C⊗ U(1)B−L, where B and L are baryon and lepton number. The SO(4)
is isomorphic to SU(2)L⊗ SU(2)R. The subsequent breaking of SU(2)R would
be responsible for parity-noninvariance of the electroweak theory. A handy
expression for electric charge, instead of the uninspiring relation involving weak
hypercharge, is Q = I3L + I3R +(B−L)/2. The vectors projecting out I3R and
B − L are

V (I3R) =
(

0, 0, 0,+
1
2
,
1
2

)
; V (B − L) =

(
−2

3
,−2

3
,−2

3
, 0, 0

)
. (23.8)

What is puzzling about the parity operation is that, although it is a trans-
formation of the Poincaré group, it corresponds to a simple operation in the
SO(10) five-dimensional vector space. Because it is a discrete transformation,
it evades the Coleman-Mandula theorem [13] which forbids the combination of
internal and Poincaré symmetries except as a direct product. Its violation is
also deeply implicated in how the Standard Model arises from some higher sym-
metry. In the next section we argue that such a symmetry is likely to exist on
the basis of our very incomplete knowledge about the nature of matter in the
Universe.

23.4 Expanded Symmetries
Ordinary matter makes up a small fraction of the known energy density of the
Universe; dark matter comprises about five times as much [24]. We have little
clue as to its nature.

Imagine a TeV-scale effective symmetry SU(3) ⊗ SU(2) ⊗ U(1) ⊗ G, where
the beyond-Standard-Model (BSM) group G could be any number of extensions
currently on the market. One can classify the new types of matter very generally
as shown in Table 23.1 [25]:

Grand unified theories well beyond SO(10) have been proposed. The E′
8 of

E8⊗ E′8 in the heterotic string [26] could play a role of “shadow matter” which
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Table 23.1: Possible types of matter classified according to SM and BSM (G)
transformation.

Type of matter Std. Model G Example(s)
Ordinary Non-singlet Singlet Quarks, leptons
Mixed Non-singlet Non-singlet Superpartners
Shadow Singlet Non-singlet E′

8 of E8⊗ E′8

communicates only weakly with our world. The fifth coordinate in the SO(10)
description, whose reversal we have shown induces parity reflections, could play
a wider role in an extended vector space of more than five dimensions.

The spinors of SO(2N) groups may be represented as alternate vertices of
hypercubes in N dimensions. These spinors and their conjugates each have
2N−1 members. If N > 5, one can ask what fraction of those have the form
(+++++|aN−5 . . . aN ) or (−−−−−|aN−5 . . . aN ), where the first five indices
refer to the SO(10) subgroup of SO(2N), and hence would be “sterile” under
charges of the Standard Model. The answer is the same as for N = 5, namely
1/16. One is seeking, rather, a scheme where most of the matter is sterile under
Standard Model charges. The existence of a large amount of dark matter in
our Universe could be a key to guessing the structure of a large Grand Unified
Group, and perhaps incidentally helping to solve the mystery of parity violation.

23.5 Conclusion

The advent of the CERN Large Hadron Collider will offer one possible window
into extended grand unified theories, through the discovery of new forms of
matter or new gauge bosons. One of the simplest such examples would be the
gauge boson Zχ coupled to the charge Qχ mentioned above [22, 23]. It may
turn out in retrospect that the role of parity and its violation in our current
understanding of unified theories was just a foretaste of a much richer structure.
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24.1 Introduction
Is it proper for a Festschrift to include an Eigenschrift? There certainly are lofty
precedents for including a set of “. . . remarks concerning the essays brought to-
gether in this cooperative volume . . .” by the ‘Festkind’ (see, for example [1]).
This format is essentially the literary equivalent of a receiving line in which po-
lite thanks and acknowledgements are murmured — occasionally offset by the
sharper tone of polemics or even veiled recriminations. Here the intent is far
more mild, modest, and restricted in scope. Among several research areas, elec-
trodynamics has been a theme of my interests for more than fifty years, and one
can ask — leaving aside the bolus of publication lists — what new things have
really been discovered? In particular, from the outset [2] it seemed plausible
that an improved understanding of the physics of radiation reaction could be
obtained by pushing to the extremes of energy and radiation rates where the
palliatives of perturbation expansions or self-consistency restrictions no longer
apply. Following the old adage “To see something new one has to build some-
thing new”, a survey of possibilities showed that synchrotron radiation, i.e.,

251
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magnetic bremsstrahlung emitted by high energy (≥ GeV) electrons traversing
megagauss fields would broach the limits of conventional experimental parame-
ters [3]. Indeed, megagauss fields (in vacuum) have energy densities comparable
to high explosives { E (kJ/cm3) ∼ 4 H2 (MG) }, and can exert pressures on
ambient conductors sufficient to blow them apart {P (kbar) ∼ 40H2 (mG) }.
[4, 5]. The means for generating such fields originated in the secret environment
of weapons laboratories in the 1940s [6], and despite declassification in 1960
[7], still have a recondite character. Experimental work in this new area was
initiated at IIT in 1964, and by 1966 a functioning flux compression facility
had been established [8]. The technical design for a magnetic bremsstrahlung
experiment was completed by 1967 [9], and detailed research proposals were
submitted to various government agencies and the Stanford Linear Accelerator
Center (SLAC) in 1968. The project was approved in 1969, and the experimen-
tal work carried out successfully at SLAC during the period July - November
of 1970 [10].

The complete analyses of the experimental results took nearly two years since
information concerning the electron beam deflections and the corresponding
bremsstrahlung (synchrotron) spectral intensity had to be laboriously extracted
from microscope scans of nuclear emulsions [11, 12]. In contrast to the experi-
mental novelties, the theoretical expectations concerning the results tended to
follow conventional paths. It was anticipated that both the electron trajecto-
ries as well as the radiation spectra could be accurately described by classical
electrodynamics, with small corrections — marginally detectable under SLAC
conditions – derived from radiation reaction theory. It was also generally pre-
sumed that quantum modifications of synchrotron radiation would be negligible
under forseeable terrestrial conditions [13]. However, the experimental results
prompted a drastic shift in perspective. The electron trajectories, which were
plainly visible in the nuclear emulsions, had broadened from a tightly focused
beam — 1.3 mm in diameter contained within a cone of full angle 3 × 10−4

radians — into a large spray that extended over nearly the entire length of the
emulsions (> 60 mm). An effect of this kind had actually been predicted by
Sokolov and Ternov in connection with the quantum excitation of betatron os-
cillations [14, 15]; it is expected to occur when the emitted (synchrotron) photon
momentum exceeds the momentum spread of the ‘most classical’ electron orbits
in the magnetic field [16, 17]. Quantitatively, the threshold criterion for these
dispersions is

~/λ ∼ ∆p ∼= mc
√

H/Hcr (1.1a)
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or, equivalently, [
E/(mc2)

]4 · [H/Hcr] ≥ 1 (1.1b)

and, in practical units

E4 (GeV) ·H(MG) ≥ 3× 10−6 (1.1c)

where E denotes the total electron energy, mc2 the rest energy, and

Hcr =
m2 c3

e ~
∼= 4.414× 1013 G (1.1d)

is the characteristic quantum mechanical measure of magnetic field strength.
The parameters of the SLAC experiments { E ∼ 19 GeV, H ∼ 1.5 MG } imply
that the threshold for quantum induced electron dispersion is surpassed by many
orders of magnitude.

According to classical electrodynamics the total magnetic bremsstrahlung
energy radiated by an electron traversing a path length ∆ normal to a magnetic
field H is given by [18]

Icl =
2α

3
mc2

λc
∆Υ2 (1.2a)

where
Υ =

E

mc2

H

Hcr

∼= 4.43× 10−5 · E (GeV) ·H (MG) (1.2b)

and α−1 = “137′′, λc = ~/(mc). Since this is a classical result it is easy to
check that all factors of ~ cancel. In practical units.

Icl (MeV) = 1.263× 10−2 ·∆ (mm) · [H (MG) · E (GeV)]2 (1.2c)

Clearly, for the SLAC parameters (with ∆ ∼ 5 mm) the radiated energy per
electron is large, i.e., Icl ∼ 50 MeV, whereas the dimensionless Υ parameter
remains small, Υ ∼ 0.0012. Physically, Υ is a measure of the ratio of the
momenta of the radiated photons to the electron momentum; as long as it
remains small quantum effects in the synchrotron spectrum are expected to
be negligible. Indeed, the quantum modifications of the synchrotron energy
radiation can be expressed as a power series in Υ, viz. [19, 20, 14].

IQM = Icl
(
1− 5.953Υ + 48Υ2

)
(1.3)

Comparing the two quantum effect criteria (1.1c) and (1.3), it is clear that there
is no contradiction because two different aspects of magnetic bremsstrahlung
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are involved; electron recoil and spectral characteristics. However, the stricture
that the corrections in (1.3) would “. . . never be approached in practice . . .” has
been overtaken by technical developments. According to (1.2b), for energies of
1 TeV and fields of 2 MG, Υ is of the order of 0.09, and therefore (1.3) indicates
a significant decrease in radiation rates, IQM ∼ 0.85 Icl. In fact, even under
these ‘modest’ conditions, the step-by-step inclusion of higher order quantum
corrections fails because the expansion (1.3) becomes numerically useless just
at the point where the quantum effects in the synchrotron spectrum become
noticeable. For instance, as shown by exact calculation, the expected decrease
in radiation is actually IQM ∼ 0.68 Icl [21, 22].

A basic premise of the classical theory of radiation reaction is that the charge
dynamics can be described by a modification of Newton’s second law

d~p

dt
= ~F ext + ~F RR (1.4)

where ~F RR incorporates the effects of radiation reaction [2]. In the case of
magnetic bremsstrahlung ~F ext corresponds to the Lorentz force, and simple
momentum transfer considerations show that [3, 23]

|~F RR|
|~F L|

∼= 2α

3
H

Hcr

(
E

m c2

)2

∼= 4.16× 10−4 · E2 (GeV) ·H (MG) (1.5)

For E ∼ 19 GeV and H ∼ 1.5 MG, this ratio is 0.23, and leads to the expec-
tation that radiation reaction may be at the threshold of detectability in the
SLAC experiments. But comparison with (1.1c) shows that any effects of this
kind would be completely dominated by quantum fluctuations. The observed
spatial dispersion of the scattered electrons is incompatible with the idealiza-
tions underlying (1.4). In contrast to the classical picture of deterministic charge
trajectories associated with a continuous emission of radiation, the experimental
situation corresponds to a stochastic smearing of the electron dynamics induced
by ‘betatron oscillations’ and discrete (hard) photon emission. So, in analogy
with the quantum corrections in (1.3), just at the point where classical radiation
reaction could become significant, it actually becomes irrelevant.

Fritz Rohrlich has also been interested in radiation reaction for many years
[24]. His efforts have mainly been concerned with cleansing the theory of its
many blemishes — pre-acceleration, runaway solutions, and similar pathologies.
As he explains in another article in this volume (Chapter 22) these efforts have
finally succeeded, and led to a self-consistent theory that yields unambiguous
and physically sensible solutions. In this respect both of us have taken different
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routes to arrive at a point where — to paraphrase Schrödinger — “the curiosity
can rest”, and the classical theory of radiation reaction may be regarded as
complete.

24.2 Classical Electrodynamics and
Radiation Reaction

The structure of classical electrodynamics may be summarized in terms of a
simple block diagram:

-

Newton’s second law

Lorentz force

Steering and
accelerating
fields E0,H0

-

Maxwell’s equations

Charge
dynamics

66

Radiation
reaction ¾

Radiation

ER, HR

Figure 1: Classical Electrodynamics

The radiation reaction ‘feedback loop’ is an adjunct to the Maxwell-Lorentz
theory intended to account for energy-momentum conservation. But even with
this addition deep problems remain “Closed systems in which both the sources
and the fields are driven through each other’s motion and not by external mech-
anisms are most difficult to deal with in an exact manner” [25]. In particular,
there are no known non-trivial exact solutions of the combined system in Fig.
1. Consider, for example, the electrodynamic two-body problem when retarded
interactions are included. In this case the fields acting on each charge can
be derived from the Liénard-Wiechert potentials. But these, in turn, depend
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Figure 2: Kinematics of magnetic bremsstrahlung

on delay times which are expressed only implicitly in terms of the unknown
charge trajectories. Mathematically the situation is described by a system of
functional-differential or functional-integral equations whose solutions remain
largely unknown [26, 27, 28].

The radiation reaction feedback loop in Fig 1 formally corresponds to Eq.
(1.4) where the general exression for ~F RR valid under relativistic conditions is

~F RR =
2
3

e2

c3
γ2

{
~̈v +

(γ

c

)2 (
~v · ~̈v

)
~v + 3

(γ

c

)2 (
~v · ~̇v

)
~̇v

+3
(γ

c

)4 (
~v · ~̇v

)2

~v

}
(2.1)

As usual, γ = 1/
√

1− v2/c2, and therefore for v ¿ c, ~F RR reduces to the
familiar form ~F RR = (2/3) (e2/c3) ~̈v, where the over-dots denote ordinary time
derivatives. In the particular case of magnetic bremsstrahlung the principal
charge deflection by the magnetic field is determined by the Lorentz force, ~F L =
e (~v × ~H ). As indicated on Fig 2 electrons traversing a path length ∆ in a
magnetic field ~H will be deflected from the forward direction through an angle
θ given by

θ =
eH ∆

E

[
1 + 1

2

(
m c2

E

)2
]

(2.2)
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The beam deflection s visible on an emulsion at a distance D from the field coil
then is

s = D
mc2

E

H

Hcr

∆
λc

[
1 + 1

2

(
mc2

E

)2
]

(2.3a)

or, in practical units

s (mm) ∼= 29.98 ·D (m) ·H (MG) ·∆ mm) /E (GeV) (2.3b)

Inserting representative parameters for the SLAC experiments yields the esti-
mate

s (mm) ∼= 29.98 · 3.21 (m) · 1.5 (MG) · 5 (mm) /19 (GeV) ∼= 37.8 (mm) (2.4)

Under these conditions the radiation reaction force (2.1) is responsible for an
additional small deflection δs that increases the magnitude of the displacement
shown in Fig 2. Specifically,

δs =
α

3
D

(
H

Hcr

)3 (
∆
λc

)2

(2.5a)

or, in practical units,

δs (mm) ∼= 1.90× 10−4 ·D (m) ·H3 (MG) ·∆2 (mm) (2.5b)

For the SLAC parameters in (2.4) the corresponding radiation reaction shift is

δs (mm) ∼= 0.051 (mm) (2.6)

Two methods were used at SLAC to check on the electron beam deflections
by the pulsed megagauss fields: (i) X-ray films, sandwiched between intensi-
fying screens, were placed 3.9 m downstream from the megagauss target; and
(ii) 600 micron thick Ilford G-5 glass backed nuclear emulsions, oriented verti-
cally with respect to the incident SLAC e−-beam, were positioned in light-tight
holders (with Be windows) at a distance of 3.21 m from the coils. A 30 kG
DC deflecting magnet, whose field was directed at right angles with respect to
the e− beam path and megagauss field, was located 1 m downstream from the
megagauss target in order to sweep away low-energy background electrons. The
low-resolution X-ray images yielded deflections of the order of 47− 50 mm [29].
If the parameters in (2.4) are rescaled for the increased distance, D ' 3.9 m,
the result is shifted to 46 mm, in good agreement with the measurements.
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Since the Ilford emulsions permit the identification of all individual elec-
tron tracks, it was possible to determine the absolute electron flux for several
megagauss ‘shots’, and also to measure the detailed distribution of the electron
deflections. Table 1 displays the numerical results for the number of electron
tracks located in an area 8mm × 18mm centered on the region of maximum
electron flux incident in the emulsion [11].

Table 1

s (mm) 26 28 30 32 34 36 38 40 42 44
# electrons 494 542 581 673 879 1051 991 897 647 424

s (mm) · · · 56 58
# electrons · · · 442 301

Clearly, the distribution peaks between 36 and 38 mm, which is in excel-
lent agreement with the theoretical value in (2.4). The statistics are however
too sparse to detect the small radiative reaction shift in (2.6). In any event,
this discrimination is superfluous because the dominant scattering effect of the
megagauss field is to disperse the tightly collimated incident e−-beam (1.3 mm
in diameter) into a broad band that extends over a large portion of the emulsion.
The entries for the two ‘outliers” at 56 and 58 mm in Table 1 show that there is
a significant high energy electron flux even for these large deflections. As men-
tioned previously, this conspicuous stochastic behavior is due to quantum recoil
fluctuations, cf. (1.1c). Background effects, such as Coulomb bremsstrahlung,
can be accounted for by auxiliary measurements and computer simulations [11,
30].

24.3 Quantum Electrodynamics
Suppose that an electron (e−) in an initial state ψi, with energy Ei and mo-
mentum ~p i, emits a photon (γ) with energy ~ω and momentum ~k , while tran-
sitioning to a final state ψf , with energy Ef and momentum ~p f . The situation
is shown schematically in Fig 3:

In contrast to the classical picture in Fig. 1, energy and momentum conser-
vation are built in from the outset. However, since the conservation laws

~ω = Ei − Ef

~k = ~p i − ~p f (3.1)
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merely constrain the values of ω, Ef , etc., the final states are not uniquely
determined. There is even more latitude in bound state situations such as syn-
chrotron radiation where arbitrarily large momentum transfers can be absorbed
by the magnetic fields: in principle this momentum is ultimately taken up by
the (macroscopic) devices that sustain the fields. The stochastic elements enter
in the overlap integral < ψf | exp(−i~k · ~r )|ψi > which, as indicated in the
Figure, effectively determines the shape of the radiation spectrum.

states
ordered by quantum numbers

(not shown)

initial states
ψi

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

©©
©©

©©
©©

©©γ

e−

final states
ψf

intensity spectrum
I

~ω

········· · · · · · · ·························

I ∼
∣∣∣
∫

ψ∗f e−i~k ·~r ψi

∣∣∣
2

Figure 3: Schematic for Photon Emission

Adherents of the correspondence principle have long sought for some for-
mal procedure that would yield a radiation reaction equation of the form (1.4)
and (2.1) in a classical limit of quantum mechanics. Attempts by Fermi [31],
Schwinger [32] and others, e.g. [33] were not successful. As pointed out by
Rohrlich “It is deplorable that a derivation as a classical limit from relativistic
quantum mechanics still does not seem to exist” [34]. In quantum mechanics the
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notion of ‘radiation reaction’ has broadened out to mean ‘radiative corrections’,
and this generalization includes effects going far beyond energy-momentum bal-
ance. For instance, the ‘anomalous’ magnet moment of the electron — in higher
order corrections — includes contributions due to muons, tauons, and couplings
to strongly interacting objects, none envisaged in the construction of ~F RR. In-
duced emission, which is the canonical quantum mechanical process of ‘radiation
reaction’, also has no classical counterpart [35].

Suppose again that an electron with energy E traverses a distance ∆ in a
perpendicular magnetic field H; then the number of photons dN radiated in the
energy interval between ~ω and ~ω+d(~ω) is given by the spectral distribution

dN

d(~ω)
=
√

3
2π

α

~ω

∆
λc

H

Hcr
κ

[
2

3Υ
~ω

E

]
(3.2a)

where κ is the bremsstrahlung function

κ(z) = z

∫ ∞

z

dx K5/3(z) '
{

2.149 z1/3 z ¿ 1
1.253 z1/2e−z z À 1

(3.2b)

and Υ is defined in (1.2b). In practical units

dN

d(~ω)
=

0.12
~ω

·H (MG) ·∆ (mm) · κ
[

15 · ~ω (MeV)
H (MG) · E2 (GeV)

]
(3.2c)

The average photon energy is

< ~ω >=
4

5
√

3
E Υ (3.3a)

or, in practical units

< ~ω (MeV) >= 2.05× 10−2 ·H (MG) · E2 (GeV) (3.3b)

At SLAC, with H ∼ 1.5 MG and E ∼ 19 GeV, this average was circa 11 MeV.
The corresponding expectation value for the total number of emitted photons
N may be obtained by integrating over the spectrum,

N =
5

2
√

3
α

∆
λc

H

Hcr
(3.4a)

or, in practical units

N ∼= 0.6178 ·∆ (mm) ·H (MG) (3.4b)



24.3 Quantum Electrodynamics 261

Figure 4(a)

Figure 4(b)

For the SLAC experiments N ∼ 5, which again emphasizes the importance of
quantum fluctuation effects. Combining (3.3b) and (3.4b) implies a total radia-
tive energy loss per electron of 51 MeV in agreement with the earlier estimate
(1.2c) et seq.

Figures 4(a) and 4(b) are photographs of two of the Ilford emulsions used to
record the electron tracks and bremsstrahlung photons at SLAC. The dark spots
on the left are due to the electron tracks made by single accelerator pulses of
circa 106 e− passing straight through the apparatus after optical and electronic
alignment. This involved some ‘sharpshooting’ tricks since the 1.3 mm diameter
e−-beam had to pass cleanly through the 2 mm diameter holes drilled through
the megagauss coils [10]. The dark streaks on the right side of the emulsions
mark the pattern of electrons scattered by the pulsed megagauss fields. In first
approximation, these deflections are given by (2.3b) and (2.4).

The simplified schematic of Figure 5 (not drawn to scale) connects the ge-
ometry of Figure 2 with the layout of the experiment and the features visible
on the emulsions.
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Figure 5

The faint streaks extending between the electron spots on Figs 4(a) and
4(b) are mixed images of high energy (∼ 19 GeV) electron tracks and medium
energy (≤ 300 MeV) electron-positron pairs. Given the attenuation coefficients
for γ → e+ + e− pair conversion in Ilford G5 emulsion (e.g. 0.011 (mm)−1

at 20 MeV), one can estimate that about 0.5 % of the synchrotron photons
incident on the emulsions result in e+ − e− pairs over a path length of 0.355
mm. By ‘tuning’ the incident e−-beam intensity to ∼ 106 e− per pulse, and
adjusting the placement of emulsions (Fig 5), an optimum density of one pair
event per 50 µ × 50 µ microscopic field of view can be achieved. Standard,
albeit tedious, multiple scattering measurements of the e+ − e− trajectories
then permit a reconstruction of the energy spectrum of the incident γ-ray. The
results of one analysis comprising about 1400 pair events are shown in Figure
6 [11]. These ‘signal’ pairs had a sharply peaked distribution within a band
about 2 mm wide; the pairs associated with the beam halo were more diffusely
spread over a strip of width 10 mm. The ratio of halo/bremsstrahlung pairs in
the emulsion volumes selected for signal scanning ranged from 0.091 to 0.21. As
is apparent from the graph, the observed spectrum is in good agreement with
the theoretical expectations.
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Figure 6
Magnetic bremsstrahlung (synchrotron radiation) spectrum
derived from multiple scattering measurements of electron-

positron pairs in Ilford G5 emulsions. Electron energy 19 GeV
magnetic field strength 1.5 MG

1. Theoretical spectrum
2. Beam halo spectrum
3. Weighted composite of 1. and 2.
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24.4 Aftermaths of SLAC

Analyses of the megagauss experiments at SLAC led to two new developments:
(1) the discovery of synchrotron–Čerenkov radiation, and (b) a recalculation of
quantum synchrotron radiation valid under extreme conditions.

24.4.1 Synchrotron Čerenkov Radiation:

The megagauss coils at SLAC had thin mylar inserts that prevented a shorting-
out of the input leads. Could it be possible that this nominally trivial ob-
struction might affect the character of the radiation? This possibility is not
totally implausible because of the sensitive dependence of synchrotron radia-
tion on momentum transfer to the magnetic field. An elementary but basic
consequence of the energy-momentum relations (3.1) is that free electrons can
neither emit nor absorb photons. Čerenkov radiation is only possible because
the photon momentum is shifted from its vacuum value ~ω/c to n(ω) ~ω/c,
where the index of refraction n(ω) represents the momentum exchange with an
ambient medium. Similarly, synchrotron radiation can only occur because the
electron wave functions in a magnetic field are sufficiently ‘stiff’ so that mo-
mentum can be absorbed. A recalculation of synchrotron radiation, allowing
for an index of refraction in the emitted photons, showed that the sensitive
dependences on momentum transfers did indeed have unintuitive consequences
[36, 16, 37]. For instance, practically all radiation from a 100 GeV electron
passing through a 10 kG field is quenched below 10 keV by the mere presence
of air at STP. The connection with SLAC emerges by considering 20 GeV elec-
trons passing through lucite or mylar in the presence of a 1.5 MG field; in this
case radiation below 100 keV is completely suppressed [38]. A point of funda-
mental interest is that because magnetic fields in vacuum are birefringent [39],
‘pure’ synchrotron radiation is only a first approximation to ‘vacuum polariza-
tion synchrotron-Čerenkov radiation’: this variant can produce exotic effects
in some astrophysical situations. The existence of Airy function striations —
another nonintuitive feature of synchrotron-Čerenkov radiation — was verified
experimentally by McDonald [40].

24.4.2 Quantum Theory of Magnetic Bremsstrahlung:

The SLAC experiments with 19 GeV electrons demonstrated the feasibility of
combining high energy accelerators with pulsed megagauss generators. Beyond
this technical threshold, accelerator energies have increased towards 7 TeV, and
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megagauss devices are capable of producing pulsed fields in the range 5−10 MG.
Using nominal values of 5 TeV and 5 MG, one can estimate that the Sokolov-
Ternov quantum fluctuation parameter (1.1c) is 3×1015, the quantum parameter
Υ (1.2b) is 1, and the radiation reaction ratio (1.5) is 5×104. A fully relativistic
quantum theory of synchrotron radiation applicable to these extreme conditions
cannot rely on heuristic simplifications. However, a direct evaluation of the
matrix elements is also impractical because they involve associated Laguerre
functions (equivalent to confluent hypergeometric or Whittaker functions [22])
whose arguments (κ), index (α̂), and order (n̂) are all very large numbers. A
typical Laguerre function L(α̂)

n̂ (κ) is specified by

κ ∼ 8.45× 107 · (~ω)2 (MeV)/H (MG) → 4.2× 1012

α̂ ∼ 1.69× 1011 · (~ω) (MeV) · E(GeV) /H (MG) → 8.5× 1016 (4.1)

n̂ ∼ 8.45× 1013 · E2 (GeV) /H (MG) → 4.2× 1020

where E ∼ 5 TeV, H ∼ 5 MG, and the photon energy is ~ω ∼ 500 MeV. A
straightforward bremsstrahlung calculation planned to deal with this problem by
using an asymptotic expansion due to Erdélyi to simplify the Laguerre functions
[41]. Ironically, the attempt to improve the quantum theory of synchrotron
radiation led to results that were palpably incorrect [42]. Extensive checks
showed that Erdélyi’s work contained errors, and that it was necessary to start
anew.

A reliable asymptotic approximation for L(α̂)
n̂ (κ) must satisfy two conditions:

(i) it must be sufficiently simple to be amenable to explicit calculations; and
(ii) the difference between L(α̂)

n̂ (κ) and the asymptotic approximations must
be constrained by rigorous error bounds that can also be computed explicitly.
Fortunately, techniques developed by Cherry [43] and especially Olver [44] could
be adapted to the construction of suitable uniform asymptotic approximations
for the Laguerre functions. Figure 7 illustrates the divergence between the old
Erdélyi-Swanson approximation and the new uniform asymptotic expansion for
an extremely simple case where the three arguments of the Whittaker function
are very small in comparison with the values of (4.1) [22]. The situation is of
course far worse for the large parameters in (4.1).

After replacing the faulty Erdélyi approximations with the new asymptotic
expansions, the program of recalculations originally envisaged in [42] could be
carried to completion. Figure 8 gives an indication of the nature of the results
by comparing a set of predictions for the total rate of magnetic bremsstrahung
for unrestricted values of the quantum parameter Υ. The series expansions in
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Figure 7: Comparison of the Exact values of M11, 15/2(z)
with the New and Erdélyi-Swanson Asymptotic Expansions
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Figure 8

Υ refer to the expressions previously given in (1.3); the ‘exact’ curve is derived
from the new results, and is mathematically accurate in the sense that the nu-
merical error bounds are known and small. It is interesting that under extreme
conditions the total radiation rate tends to decrease relative to the classical
results.

Figure 9 shows that the decrease can be partially understood as a conse-
quence of the modified shape of the quantum bremsstrahlung spectrum IQ. In
the classical case, the intensity spectrum Ic corresponds to the Fourier resolu-
tion of a continuous energy flow and is not constrained by energy conservation,
i.e., the requirement that the photon energy (~ω) cannot exceed the radiating
electron’s energy. In quantum theory the radiative power is assocated with a
stochastic photon flux, and the energy limit ~ω ≤ E is automatically satis-
fied [45]. Finally, Figure 10 shows that under still more extreme conditions,
the bremsstrahlung spectrum develops a peak at the tip ~ω ' E. Unfamiliar
features of this kind may occur in ‘magnetars’ where it is surmised that the
ambient fields are of the order of 1015 G, even exceeding the critical field (1.1d)
[46].



268 24. Eigenschrift...

Figure 9

24.5 Endpapers

Christopher Merrill concludes his ‘memories’ (Chapter 4) by asking “In your
opinion, what are the most important open questions in theoretical physics?”
No doubt, the nature of complex systems will be one of the dominant themes of
scientific research in the twenty-first century. But we have to be modest in our
ambitions; Leo Kadanoff seems to have learned this lesson: “At one time, many
people believed that the study of complexity could give rise to a new science.
In this science, as in others, there would have been general laws, with specific
situations being understandable as the inevitable working out of these laws of
nature. Up to now, we have not found any such laws. . . . So, even though there
is apparently no science of complexity, there is much science to be learned from
complex systems” [47]. Just how modest we have to be can be illustrated by a
number of examples.

24.5.1 Associating scalars with arbitrary sets

Let A be a bounded subset of n-dimensional space and m an associated scalar,
e.g. a ‘measure’. Now impose the following three requirements: (1) If A is cut up
into a finite number of disjoint sets that are reassembled to form a set B, then A
and B have the same measure; (2) the measure of the union of disjoint sets is the
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Figure 10
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sum of the measures; and (3) the measure of the n-dimensional unit cube equals
1 [normalization]. As a physicist would say with somewhat less exactitude,
m is a collective or extensive quantity such as volume, mass, or total energy.
Now the surprising result is that these apparently self-evident criteria conceal a
threshold of structural complexity. If the dimension of the sets satisfies n ≤ 2, a
well-defined m exists; otherwise not! The famous Banach-Tarski ‘paradox’ which
shows that, in principle, a billiard ball could be decomposed and reassembled
into a sphere the size of the sun, is an example of the structural complexity that
can prevail in 3 dimensions [48]. The Atkinson-Johnson billiard ball conundrums
(Chapter 8) may be distant relatives of these problems.

24.5.2 Consistency, Completeness, Decidability; or not

Axiom systems have a logical purity that attracts theoretical physicists who may
be uncomfortable with the ambiguities of the laboratory. Clearly, axiom systems
should be free of internal inconsistencies. Furthermore, they should be complete
— that is, adequate to determine the truth or falsity of every statement within
the compass of the theory. Finally, is the system decidable in the sense that
there is some systematic procedure for determining the truth or falsity of every
such statement? It was originally proved by M. Presburger that the additive
theory of natural numbers (a rudimentary system in which the basic relation is
addition) is consistent, complete, and decidable. However, the theory of natural
numbers including both operations of addition and multiplication is undecidable
[48]. The general form of this result is Gödel’s famous incompleteness theorem
which effectively states that no sufficiently strong system is complete; it was
subsequently proved that no such system is decidable. It certainly seems that
these results still “. . . remain remote from most areas of mathematics and ir-
relevant to the efforts of most workaday mathematicians. But that’s just not
so! Undecidable problems surround us everywhere . . .” [49]. If Gödel’s tene-
brous musings have not yet reached physics, perhaps Seth Putterman’s article
(Chapter 21) is the sound of a key turning in the lock.

24.5.3 Hilbert’s Thirteenth Problem

Those who believe that the book of nature is written in mathematical language
ought to be aware of Hilbert’s conjecture “. . . there are continuous functions of
three variables not representable by continuous functions of two variables” [50].
Physicists will immediately think of the connection with so-called ‘three-body
forces’ which have been mentioned in the literature on molecular interactions
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and nuclear physics. If there is something inherently more complicated in three
variable systems then we would have another example of a threshold of struc-
tural complexity. Mathematically, it turned out that Hilbert’s expectations
were not confirmed. If by ‘representation’ one also allowed the substitution of
functions into other functions, i.e. functional composition, then it was shown
by Kolmogorov that n-variable continuous functions could be represented (en-
coded) by combinations of functions of one variable. The physical implications
of these results are not clear. As pointed by Present [51] we do not have any
experimental criteria for distinguishing between ‘genuine’ three-body forces and
non-linear superpositions of two-body forces.

24.5.4 Arrow’s Impossibility Theorem

Suppose three voters, call them I, II, and III, are each given two alternatives,
say A and B; how can one in a fair way aggregate their individual preferences
into a collective decision? There would be little argument with the suggestion
that majority rule would settle the matter with no acrimony. But what is the
situation if the three voters were given the option of choosing among three
alternatives, A, B, and C? This turns out to be another threshold of structural
complexity because with three alternatives the intransitive set of preferences
A < B < C < A can occur (A < B means B is preferred over A, etc.). Now
majority rule is no longer the obvious ‘fair’ voting recipe, and other schemes need
to be devised. This subject is of great social importance and has a long history.
Finally, around 1950, the economist Kenneth Arrow gave a sharp axiomatic
formulation of the meaning of ‘fair’ (no dictators, independence of irrelevant
alternatives, etc.) and proved a surprising (depressing?) impossibility theorem
— no voting rule satisfying the fairness axioms existed [52]. The implication for
economics is that no universally valid scheme for assigning monetary value to
economic transactions exists. The implications for physical processes are still
open.
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Mixing Transformations

(with P. Everett and P.W. Johnson)

[59] Applied Physics Letters 35, 752-754 (1979)

Optical Synchrotron-Čerenkov Radiation
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Čebyšev Mixing and Harmonic Oscillator Models

(with P. Everett and P.W. Johnson)

[63] Journal of Computational Physics 49, No. 3, 394-419 (1983)

The Simulation of Random Processes on Digital Computers: Unavoidable
Order

(with T.M. Rynne, W.F. Darsow, M.J. Frank)

[64] Proc. 12th International Conference on High-Energy Accelerators, Fermi-
lab, pp. 372-374 (1983)

Megagauss Bremsstrahlung and Radiation Reaction

(with G.B. Baumgartner, Jr., D. White, and H.G. Latal)

[65] Proc. 12th International Conference on High-Energy Accelerators, Fermi-
lab, pp. 375-375 (1983)
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