ELECTROLYTIC DEPOSITION OF COPPER
FROM MATTE

W. H. WIARD
H. C. SMITH

ARMOUR INSTITUTE OF TECHNOLOGY
1909
Wiard, W. H.
Electrolytic deposition of copper from matte
ELECTROLYTIC DEPOSITION OF COPPER FROM MATTE.

A THESIS
Presented by
W. H. Wiard
H. C. Smith
to the
President and Faculty
of
Armour Institute of Technology
for the Degree of
Bachelor of Science in Chemical Engineering,
Having Completed the Prescribed Course of
Study in
Chemical Engineering
1909.

Approved:
Harry McCormack
Professor of Chemical Engineering

J. M. Raymond
Dean of Eng. Studies

L. O. Monin
Dean of Coll. Studies
Part I.

The object of this part is to determine the most efficient working temperature, and current density, and all other experimental data connected with the process.

Part II.

This chapter deals with a description of the proposed plant, giving an idea of the process, the cost of operation, and the anticipated profits.
Table of Contents.

Part I.

(1) Introduction.
(2) Preparation of the Metal.
(3) Determination of the Most Efficient Temperature and Current Density.
(4) Calculation of Current Efficiency.
(5) Determination of Voltage.
(6) Purity of Copper Deposited.
(7) Analysis and Treatment of Sludge.

Part II.

(1) Capitalization.
(2) Design and Treatment of Electrodes.
(3) Description of Tanks.
(4) Power.
(5) Buildings.
(6) Operating Costs and Anticipated Profits.
(7) Conclusion.
Illustrations.

(1) Illustration of Raw Material 1.

(2) Showing Effects of Temperature on Deposits 3.

(3) Temperature-efficiency Curves 7.

Drawings.

(1) Detail of Anode and Cathode 13.

(2) Tanks 15.

(3) Tank Room 15.

(4) Wiring System 18.
Part I.

The object of this part is to determine the most efficient working temperature, and current density, and all other experimental data connected with the process.
Electrolytic Deposition of Copper from Matte.

The object of this work is to secure an economical method for the separation of copper from a matte which is obtained by the Great Western Smelting Company. This company is located at West Kinzie and Halsted Streets and melts junk containing lead, copper, zinc, tin, etc and either separates these metals or obtains an alloy of them. When the metal has been heated until in a molten condition it is poured into moulds and this matte rises to the top of the mould and when cooled is taken to a small reverberatory furnace. The lead is here sweated out until as much is removed as can be economically done.

The experimental work was carried on with this matte to find the best conditions for the electrolytic refining of the copper present. The different factors which influenced the rate of deposit and cost are strength of electrolyte, temperature of the electrolyte, current density, and voltage; and the work will be divided under these headings.

(1)
INSTITUTE OF TECHNOLOGY
MONTANA.
Preparation of the Metal.

The accompanying photograph shows a cross-sectional view of the matte as it is obtained after the lead has been sweated out. The line AB shows distinctly the division of the rich matte from the matte that contains very little copper and is mostly lead. The matte was prepared for experimental work by melting in a crucible in a muffle furnace and casting into thin moulds averaging about 1/4" to 3/8" in thickness. The photograph which is full size, shows a type of the plates that were used in all the experimental work. Before any electrolytic work was done an analysis of the matte after casting into plates was made and gave the following analysis:

- Cu - 49.39%
- Pb - 19.10%
- Zn - 3.80%
- Sn - 15.20%
- Sb - 1.50%

(2)
Determination of the Most Efficient Temperature and Current Density.

This work was carried on with two pure copper plates as cathodes and a plate of the matte as the anode. The strengths of the electrolyte used were one of 16% CuSO$_4 \cdot 5H_2O$ and 9% H$_2$SO$_4$, this being the strength of the commercial solution used in multiple system refineries and the other solution consisted of 16% CuSO$_4 \cdot 5H_2O$ and 6% H$_2$SO$_4$, this being the strength of the commercial solution used in series refineries. Rectangular glass jars were used, having a capacity of about 350 cc. Very little work was done using the latter solution as it was found that the solution of 9% H$_2$SO$_4$ gave the best results in the amount of copper deposited in a unit of time.

Before starting each run the cathodes were carefully cleansed by dipping in a solution of nitric acid after which they were washed in distilled water, rinsed with alcohol and dried over a Bunsen flame. After this preparation they were carefully weighed and the anode or matte plate was also weighed.
INSTITUTE OF TECHNOLOGY
AMHERST.
The most efficient temperature and current density were determined by a series of runs starting with a temperature of 40°C and increasing in increments of 10°C until a temperature of 80°C was reached.

The current density used varied from one ampere per square decimeter by increments of one half ampere until a current density of four amperes per square decimeter was reached.

The accompanying photograph shows to some extent the effect of temperature on the evenness of deposition of the copper. These plates show the deposit for 50°C, 60°C, 70°C, and 80°C with a current density of 3.5 amperes per square decimeter. Plate 'A' was run at a temperature of 50°C and shows a coherent deposit though it is somewhat rough. Plate 'C' was run at 60°C and shows a fairly good deposit though it is not a smooth deposit. Plate 'B' was run at 70°C and shows a good coherent deposit very fine in grain as is the best of all the runs. Plate 'D' shows the deposit at 80°C which may be seen to be uneven in deposition with the formation of trees.
Calculation of Efficiency of Current.

Theoretically one ampere current deposits .0003294 grams of copper per second. Then the theoretical deposit is equal to .0003294 x 5 x 3600 as the length of the run was five hours. Then the theoretical deposit is equal to 5.929 grams of copper. The actual deposit for this run was 3.4421 grams which gives as efficiency of 58%.

Runs at 40°C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.4421</td>
<td>5.9292</td>
<td>53.0</td>
</tr>
<tr>
<td>1.5</td>
<td>5.5920</td>
<td>8.8938</td>
<td>64.0</td>
</tr>
<tr>
<td>2.0</td>
<td>8.1937</td>
<td>11.8584</td>
<td>69.0</td>
</tr>
<tr>
<td>2.5</td>
<td>10.9463</td>
<td>14.8230</td>
<td>74.0</td>
</tr>
<tr>
<td>3.0</td>
<td>13.3102</td>
<td>17.7876</td>
<td>75.0</td>
</tr>
<tr>
<td>3.5</td>
<td>16.1804</td>
<td>20.7522</td>
<td>78.0</td>
</tr>
<tr>
<td>4.0</td>
<td>18.0327</td>
<td>23.7168</td>
<td>76.0</td>
</tr>
</tbody>
</table>
Runs at 50°C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.3864</td>
<td>5.9292</td>
<td>57.0</td>
</tr>
<tr>
<td>1.5</td>
<td>5.7816</td>
<td>8.3938</td>
<td>65.0</td>
</tr>
<tr>
<td>2.0</td>
<td>8.2459</td>
<td>-11.8584</td>
<td>69.5</td>
</tr>
<tr>
<td>2.5</td>
<td>10.8816</td>
<td>-14.8230</td>
<td>73.4</td>
</tr>
<tr>
<td>3.0</td>
<td>13.6101</td>
<td>-17.7876</td>
<td>76.3</td>
</tr>
<tr>
<td>3.5</td>
<td>16.8006</td>
<td>-20.7522</td>
<td>81.0</td>
</tr>
<tr>
<td>4.0</td>
<td>19.4107</td>
<td>-23.7168</td>
<td>81.6</td>
</tr>
</tbody>
</table>

Runs at 60°C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.6102</td>
<td>5.9292</td>
<td>61.0</td>
</tr>
<tr>
<td>1.5</td>
<td>6.0714</td>
<td>8.3938</td>
<td>67.0</td>
</tr>
<tr>
<td>2.0</td>
<td>8.3564</td>
<td>-11.8584</td>
<td>70.2</td>
</tr>
<tr>
<td>2.5</td>
<td>11.1987</td>
<td>-14.8230</td>
<td>75.6</td>
</tr>
<tr>
<td>3.0</td>
<td>13.9162</td>
<td>-17.7876</td>
<td>78.2</td>
</tr>
<tr>
<td>3.5</td>
<td>17.0137</td>
<td>-20.7522</td>
<td>82.3</td>
</tr>
<tr>
<td>4.0</td>
<td>19.5021</td>
<td>-23.7168</td>
<td>81.9</td>
</tr>
</tbody>
</table>
Runs at 70°C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.7916</td>
<td>5.9292</td>
<td>64.0</td>
</tr>
<tr>
<td>1.5</td>
<td>6.0714</td>
<td>8.8933</td>
<td>68.2</td>
</tr>
<tr>
<td>2.0</td>
<td>8.6541</td>
<td>11.3584</td>
<td>72.1</td>
</tr>
<tr>
<td>2.5</td>
<td>11.3673</td>
<td>14.8230</td>
<td>76.8</td>
</tr>
<tr>
<td>3.0</td>
<td>14.1631</td>
<td>17.7876</td>
<td>79.7</td>
</tr>
<tr>
<td>3.5</td>
<td>18.0616</td>
<td>20.7522</td>
<td>87.2</td>
</tr>
<tr>
<td>4.0</td>
<td>20.3413</td>
<td>23.7168</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Runs at 80°C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>3.7437</td>
<td>5.9292</td>
<td>63.0</td>
</tr>
<tr>
<td>1.5</td>
<td>6.0020</td>
<td>8.8938</td>
<td>67.4</td>
</tr>
<tr>
<td>2.0</td>
<td>8.7101</td>
<td>11.8584</td>
<td>73.2</td>
</tr>
<tr>
<td>2.5</td>
<td>11.3106</td>
<td>14.8230</td>
<td>76.4</td>
</tr>
<tr>
<td>3.0</td>
<td>14.0879</td>
<td>17.7876</td>
<td>79.1</td>
</tr>
<tr>
<td>3.5</td>
<td>18.0372</td>
<td>20.7522</td>
<td>87.0</td>
</tr>
<tr>
<td>4.0</td>
<td>20.5310</td>
<td>23.7168</td>
<td>86.2</td>
</tr>
</tbody>
</table>
To apply the results to the commercial problem of copper refining, curves were drawn showing the relation between the amperes per square decimeter and the current efficiency for each temperature of the electrolyte. From these curves it may be seen that the current efficiency is highest for an amperage of 3.5 amperes per square decimeter and a temperature of 70°C for the electrolyte. The current efficiency is high as obtained experimentally on a small scale and will undoubtedly be less in real practice, reaching in some cases as low as 65% for these values of current and temperature. This loss of energy is due to bad metal contacts and short-circuiting and partly to the use of voltages much in excess to those actually required to overcome the resistance of the solution.

With a current density of 3.5 amperes per square decimeter no extra power will be required to heat the electrolyte, for when operating at this current density the current alone is sufficient to heat the electrolyte to 70°C.
Determination of the Voltage.

With a constant value of current it may be seen from Ohm's law, \(R = \frac{E}{I} \), that the addition of more resistance will necessitate a higher voltage. Now the operating voltage will depend upon the number of tanks in series and the distance between the electrodes. This value of voltage cannot be definitely determined until commercial conditions are met but is taken from determinations made in practice by Prof. W. D. Bancroft of Cornell University under similar conditions. This value is taken as fifteen volts and is a conservative value for the voltage in a multiple system of tanks.

In summing up the results obtained from the different runs, that in order to operate a plant most economically we find that copper should be refined electrolytically under the following conditions of 3.5 amperes per square decimeter and 70°C temperature of electrolyte.
Purity of Copper Deposited.

Samples of copper were taken from deposits of several plates and analyses made for the purity of the copper obtained. An analysis was made of the deposit upon each plate for an amperage of 3.5 per square decimeter and gave the following analyses:

- 40°C ---- % Cu 99.20
- 50°C ---- % Cu 99.33
- 60°C ---- % Cu 99.36
- 70°C ---- % Cu 99.71
- 80°C ---- % Cu 99.53

Five runs were made with a current density of 3.5 amperes per square decimeter and a temperature of 70°C and the deposit removed from the plates and mixed thoroughly and an analysis made for copper. This analysis gave a purity of 99.68 %Cu.
Analysis and Treatment of Sludge.

The sludge produced in the electrolytic refining of copper settled to the bottom of the glass jar. When the run was completed the electrolyte was drawn off and the remaining sludge washed to remove the CuSO₄ present and then dried. The sludge from several runs was taken and ground and mixed thoroughly to be taken for an average analysis. This analysis is as follows:

- Pb - 50.12%
- Sn - 16.00%
- Zn - 21.84%
- Cu - 1.31%
- Sb - 7.26%

The commercial treatment of this sludge is discussed in another chapter of this work.
Part II.

This chapter deals with a description of the proposed plant, giving an idea of the process, the cost of operation, and the anticipated profits.
Capitalization.

To treat 10 tons of matte per week will require a plant with a capital investment of about $50,000.00; this will include the entire first cost, as land, construction of buildings, all necessary equipment and a four weeks supply of working material.

The plant is designed to treat the matte for copper by the electrolytic process and the melting of the refined copper and the lead sludge into bar form suitable for the market.

The following is an estimate of the required capital:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>$7500.00</td>
</tr>
<tr>
<td>Building</td>
<td>15000.00</td>
</tr>
<tr>
<td>Tanks</td>
<td>1000.00</td>
</tr>
<tr>
<td>Furnaces</td>
<td>2000.00</td>
</tr>
<tr>
<td>Motor Generator</td>
<td>1000.00</td>
</tr>
<tr>
<td>1 Overhead Crane</td>
<td>750.00</td>
</tr>
<tr>
<td>Copper Conductors</td>
<td>800.00</td>
</tr>
<tr>
<td>2 Air Compressors</td>
<td>150.00</td>
</tr>
<tr>
<td>One Month Stock</td>
<td>2400.00</td>
</tr>
<tr>
<td>Material in Process</td>
<td>100.00</td>
</tr>
<tr>
<td>Cost of Installation</td>
<td>500.00</td>
</tr>
<tr>
<td>Sinking Fund</td>
<td>5000.00</td>
</tr>
<tr>
<td>Incidentals</td>
<td>13800.00</td>
</tr>
<tr>
<td>Total</td>
<td>$50000.00</td>
</tr>
</tbody>
</table>

(13)
Anodes and Cathodes.

The design of the anodes and cathodes to be used is shown in drawing No.1. This drawing also shows the method of contact of the electrodes to the copper bars carrying the current.

The anodes are made by melting the matte in a reverberatory furnace and pouring into cast iron moulds. The cathodes are made of sheet copper and hang suspended from a twisted copper bar.

The cathodes before they are ready for service must be cleaned by dipping into a dilute solution of sulphuric acid; when the dirt and the grease have been removed they are passed into a washing tank which contains circulating water; they are now allowed to dry and then coated with paraffin by dipping into a tank of paraffin. This affords a means of stripping the deposited copper from the cathode and saves the expense of making up new ones. All of the above tanks should be located in the furnace room and be of sufficient capacity to treat six cathodes at one operation. All tanks should be constructed of wood and the acid tanks lined with lead.
After the acid solution has become too weak for further use the dissolved copper from the cathodes may be recovered by adding scrap iron, metallic copper is thrown out of the solution, the supernatant liquid decanted and the copper added to that received from the depositing tanks.

The cathodes are to be transported from the furnace room to the tank room by means of hand cars running on a 20" gauge track. A 15-ton overhead crane operating the entire length of the tank room will pick them up from the car and locate them in their proper position in the tank.
Description of Tanks.

The construction of the tanks and their specifications are shown in drawing No.2. If a current density of 15 amperes per square foot of anode surface is used, the time required for a complete run will be 168 hours or approximately one week. Then it will require 9 tanks in service in order to treat 10 tons of matte per week. Twenty-four tanks should be installed, the extra ones being allowed for use in case of an over-run or while repair work is being done.

The arrangement of the tanks and their piping is shown on drawing No.3. The electrolyte is circulated at the rate of 64 cubic feet per hour by means of a 4 horse-power Westinghouse Air Compressor pump. The electrolyte enters the bottom of the tank at one end and leaves the top at the opposite end thus insuring a steady and complete circulation. The electrolyte after passing through a series of three single tanks returns by gravity to the pump where it is again sent into circulation.
The life of the electrolyte will vary with conditions, depending upon the chemical composition of the matte and the temperature at which the operations are carried on. Probably the electrolyte will be efficient during one complete run, at the end of which it will be discarded. No provisions are made for purifying or refining the electrolyte as the cost would exceed that of making up a fresh solution for a plant of such small capacity.

The following calculations were made in determining the number of tanks required and the length of time for a complete run.

Dimensions of anodes 5/8" x 24" x 36"
Dimensions of cathodes 1/16" x 20" x 36"
Number of anodes to tank - 40
Number of cathodes to tank 42
Electrodes spaced 1" apart.

Assume 95% of the anode surface to be in the electrolyte. Assume specific gravity of matte to be 8.0

Weight of matte per tank

\[= (5/8 \times 24 \times 36) \times 0.95 \times 40 \times \frac{62.5 \times 8}{1728} \]

\[= 5930 \# . \]

(17)
Capacity of plant = 10 tons = 20,000#.

No Tanks = \(\frac{20000}{5930} \) = 3.46 double tanks.

Anode surface, not including ends,

\[= \left(\frac{24 - 3.6}{144} \right) \times 0.95 \times 40 = 556 \text{ sq.ft.} \]

Using 15 amperes per square foot of anode,

\[556 \times 15 = 8400 \text{ ampere hours.} \]

1 ampere hour deposits 1.1862 gms copper.

\[6840 \times 1.1862 = 8112 \text{ gms copper per hour.} \]

\[\frac{8112}{452} = 17.90\# \text{ copper per hour.} \]

\[\frac{5930}{17.9 \times 2} = 166 \text{ hours per tank for a run.} \]

The above figure is based on the assumption that the matte is 50% copper

\[\frac{166}{24} = 6.91 \text{ days or one week.} \]
Power.

The required power of 2.5 kilowatts is to be furnished by a Western Electric motor-generator set. The current supplied to the motor is to be bought from the Commonwealth-Edison Company. The motor is driven by alternating current and the generator delivers direct current.

A wiring diagram of the tanks is shown in drawing No.4. The electrodes are connected in multiple and the tanks are connected in series, practice having found this arrangement to be efficient as well as economical. The tanks are wired so that any combination of a series of three single tanks may be thrown into service, thus the series 1, 2, 3, may be in use or 1, 2, 3, and 18, 20, 21, or any other similar combination.
Building.

A suitable building for the carrying on of the work of such a plant would require about 8750 square feet of floor space.

The building would be divided at the middle by a brick wall partition, the front part being divided into an office room, laboratory, power room, and tank room. The tank room should have a concrete floor fitted with drains, and should be provided with good light and ventilation. The back part of the building or furnace room will need no floor other than a firm dirt or cinder. The furnace room will contain two reverberatory furnaces, one melting pot, one acid tank, one washing tank, and a paraffin tank.

The two reverberatory furnaces will be constructed of fire brick and designed to satisfy conditions. Each should have a capacity of at least two tons. One furnace is to be used in melting up the matte so that it can be cast into anode plates while the other furnace is to be used in melting up the
stripped copper from the cathodes so that it may be poured into bar form. A two ton melting pot will be sufficient for treating the sludge which is to be poured into bars and sold. The three tanks required in preparing the cathodes should be located near the furnaces to save unnecessary handling of the electrodes. The remaining part of the furnace room is used for storing the raw material and the finished product.
Operating Costs and Anticipated Profits.

The following data on operating costs and anticipated profits is based on one ton of matte, assuming the copper to run 50%, this is probably the maximum percentage, the average being 35%. The annual receipts and expenditures are based upon a working year of fifty weeks.

The market price of electrolytically deposited copper was taken at seventeen cents per pound or $340.00 per ton. The sludge which is of the nature of a hard lead composed of lead sulphate, zinc, tin, and antimony is valued at 4.6 cents per pound or $92.00 per ton. Only 70% of the sludge has been allowed for as being recovered.

The cost of the matte is $.03 per pound or $60.00 per ton.
Calculations for the Costs of Heats:

The Ostwald calorie is used in all of the following calculations. One Ostwald calorie is equal to 100 small calories.

The following calculations are based upon two tons of matte.

Calories required to melt the copper:

2 tons of matte = 4000#
49.39% Cu present in the matte.
4000 x .4939 = 1975# Cu.
1975 x 452.6 = 895,860 gms Cu.

To melt one gram of copper requires 162 calories,
895,860 x 162 = 145,129,320 calories required to melt the copper in two tons of matte.

Calories required to melt the lead:

19% lead present in the matte.
4000 x .19 = 760# Pb.
760 x 452.6 = 345,040 grams of Pb.

To melt one gram of lead requires 15.6 calories,
345,040 x 15.6 = 5,382,724 calories.
Calories required to melt the tin;
15% Sn present in the matte.

\[4000 \times 0.15 = 600 \text{# Sn.} \]

\[600 \times 453.6 = 272,400 \text{ gms Sn.} \]

To melt one gram of tin requires 28.16 calories,

\[272,400 \times 28.16 = 7,670,784 \text{ calories.} \]

Calories required to melt zinc;

3.8% Zn present in matte.

\[4000 \times 0.038 = 152 \text{# Zn.} \]

\[152 \times 453.6 = 69,008 \text{ gms Zn.} \]

To melt one gram of zinc requires 67.3 calories,

\[69,008 \times 67.3 = 4,678,742 \text{ calories.} \]

Total calories required to melt 2 tons matte;

Cu = 145,129,320

Pb = 5,382,324

Sn = 7,670,784

Zn = 4,678,742

Total = 162,861,470
Assuming 5% scraps to be remelted,

\[162,361,470 \times 0.05 = 8,150,000 \text{ calories.} \]

Total calories required

\[= 171,011,000. \]

Assume coal of 11000 B.T.U.

\[11000 \text{ B.T.U.} = 6150 \text{ calories (small).} \]

\[\frac{171,011,000}{6150 \times 100} = 2760\# \text{ coal required.} \]

Since the furnace efficiency is taken as 50%, to melt one ton of matte will require 2760# coal.

The following are the calculations for finding the calories necessary to melt the sludge.

Calories to melt the lead;

50% Pb present in the sludge.

1000# sludge in 1 ton of matte.

500# lead in 1 ton of matte.

\[5000 \times 453.6 = 227,000 \text{ gms Pb.} \]

To melt one gram of lead requires 15.6 calories.

\[227 \times 15.6 = 3,541,200 \text{ calories.} \]

Calories required to melt the tin;

16% Sn present in the sludge.
16% = 160#

160 x 453.6 = 72,640 gms Sn.

To melt one gram of tin requires 28 calories.

72,640 x 28 = 2,033,920 calories.

Calories required to melt the zinc:

25% Zn present in the sludge.

25% = 250#.

250 x 453.6 = 113,500 gms Zn.

To melt one gram of zinc requires 67.8 calories.

113,500 x 67.8 = 7,695,200 calories.

Total heat required to melt the sludge:

Pb = 3,541,000

Sn = 2,033,920

Zn = 7,695,200

Total = 13,270,000 calories.

\[
\frac{13,270,000}{6150 \times 100} = 250# \text{ coal required.}
\]
Calories required to melt the refined Cu.
1000# Cu per ton of matte.

1000 x 453.6 = 453600 gms Cu.

To melt one gram of copper requires 162 calories,

453,600 x 162 = 7354300 calories.

7354300 = 120# coal required.

Assume the efficiency of the furnaces as 25%. Then

the required amount of coal

= 120 x 4 = 480 or 500#

Grand total of coal;
To melt the matte 2760#
To melt the sludge 500#
To melt the copper 500#
Total 3760#

Assume the price of coal as $2.75 per ton. Then

the cost of heats

= $2.75 x 2 = $5.50
Cost of Electrolyte;

The length of a tank is --- 4' 11"
The width of a tank is --- 2' 4"
The depth of electrolyte is --- 3' 3"
The volume of a double tank

\[= 4.92 \times 2.6 \times 3.25 \times 2 = 82.50 \text{ cu.ft.}\]

The volume of the electrodes

\[= \left(\frac{5/8 \times 24 \times 36 \times 40}{1728}\right) + \left(\frac{1/16 \times 24 \times 36 \times 44}{1728}\right)\]

\[= 13.70 \text{ cu.ft.}\]

Total electrolyte required

\[= (82.50 - 13.70) \times 3.46 = 228 \text{ cu.ft.}\]

Composition of electrolyte by volume;

\[\begin{align*}
\text{CuSO}_4 & : -16\% \\
\text{H}_2\text{SO}_4 & : -\ 9\%
\end{align*}\]

Specific gravity -2.27

238 \times .16 \times 62.5 \times 2.27 = 5387\# \text{ CuSO}_4.

\[238 \times .09 \times 62.5 \times 1.84 = 2461\# \text{ H}_2\text{SO}_4.\]

\text{CuSO}_4 \text{ in car load lots at } \$4.75 \text{ per ton}

\[\frac{5387 \times 4.75}{2000} = \$10.40 \text{ per run.}\]

\text{H}_2\text{SO}_4 \text{ in car load lots at } \$1.75 \text{ per ton}

\[\frac{2461 \times 1.75}{2000} = \$2.15 \text{ per run.}\]
Cost of electrolyte per ton of matte:

\[
\begin{align*}
\text{H}_2\text{SO}_4 & \quad - \quad - \quad - \quad $0.21 \\
\text{CuSO}_4 & \quad - \quad - \quad - \quad $1.04 \\
\text{Total} & \quad \$1.25
\end{align*}
\]

Cost of circulating electrolyte:
Rate of flow to be 64 cu. ft. per hour.
\[
\frac{62.5 \times 64}{60} = 66.6 \text{ ft. lbs. per minute.}
\]
Estimated cost at 21/8 c per hour
\[
\frac{166}{10} \times 2.5 = $0.41 \text{ per ton matte.}
\]

Cost of power:
Voltage = \(E = 15\) volts.
Amperage = \(I = 15\) amperes per square foot of anode surface.
Anode surface = \(2 \times 3 \times 2 = 12\) sq. ft.
\[
P = EI
\]
Power = \(P = 15 \times (15 \times 12) = 2.5\) kilowatts.
Cost per kilowatt-hour is $0.07.
Cost per ton of matte
\[
= \frac{2.5 \times 0.07 \times 166}{3} = $10.40
\]
(29)
Cost of labor:
Estimated at $0.75

Salaried help
Estimated at $1.00

Depreciation
\[
\frac{50000}{500} \times 8\% = $8.50 \text{ per ton of matte.}
\]

Insurance
\[
\frac{50000}{500} \times 1\% = $1.00 \text{ per ton of matte.}
\]

Taxes
\[
\frac{50000}{500} \times 1\frac{1}{2}\% = $1.50 \text{ per ton of matte.}
\]

Summary of Costs:

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matte</td>
<td>$60.00</td>
</tr>
<tr>
<td>Coal</td>
<td>5.50</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>1.25</td>
</tr>
<tr>
<td>Circulation of electrolyte</td>
<td>.41</td>
</tr>
<tr>
<td>Power</td>
<td>10.40</td>
</tr>
<tr>
<td>Labor</td>
<td>.75</td>
</tr>
<tr>
<td>Salaried help</td>
<td>1.00</td>
</tr>
<tr>
<td>Depreciation</td>
<td>8.50</td>
</tr>
<tr>
<td>Insurance</td>
<td>1.00</td>
</tr>
<tr>
<td>Taxes</td>
<td>1.50</td>
</tr>
<tr>
<td>Total</td>
<td>$90.21</td>
</tr>
</tbody>
</table>

(30)
Valuation of products:

\[
\begin{align*}
\frac{1}{2} \text{ ton of copper at } & \$340.00 \text{ per ton } \quad \$170.00 \\
700\# \text{ sludge at } & \$92.00 \quad \" \quad \$82.50 \\
\text{Total} & \quad \$202.50
\end{align*}
\]

Profit per ton of matte $112.19

Total annual receipts $101,250.00

Total annual expenditures $45,155.00

Per cent profit on capitalization with matte of 50% Cu is 111%.

Per cent profit on capitalization with matte of 35% Cu is 77%.
It is very evident that a business which will pay 7\% on its capital is one not to be slighted. We believe that all of the estimates have been extremely liberal and that if good judgement and supervision were exercised the first costs might be lowered somewhat when the plant is installed. If the plant were operated in connection with other refining processes such as the Great Western Refining Company are carrying on, would also tend to lower the first costs.

With a variation of profit of 7\% to 11\% and the above considerations taken into account, 100\% profit would no doubt be a conservative figure.