DESIGN OF A STEEL RAILROAD BRIDGE

BY

J. CAHAN

Armour Institute of Technology

1908
DESIGN OF A

STEEL RAILROAD BRIDGE

A THESIS PRESENTED

BY

....J. Calan....

TO THE

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN

CIVIL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE

IN CIVIL ENGINEERING

ILLINOIS INSTITUTE OF TECHNOLOGY
PAUL V. GALVIN LIBRARY
35 WEST 33RD STREET
CHICAGO, IL 60616

JUNE 1, 1908.

Approvd:

Howard M. Phillips

Dean of the Cultural Studies

Dean of Eng. Studies.
DESIGN OF A STEEL RAILROAD BRIDGE

This structure consists of a single track railroad bridge, and is designed to span a river, having a width of 600 feet.

The design of this bridge, and the estimate of its cost may be divided into five parts:

1. Selection of design.
2. Determination of stresses.
3. Calculations of sections and weights.
4. Design of piers and abutments.
5. Cost.

1. SELECTION OF DESIGN

In designing this bridge, one of the first considerations was regarding the number of spans. This question was decided by the principle that the total cost of the substructure and superstructure shall be a minimum. In any event there will be two land abutments; and the relative cost of piers and their connecting spans determines the number of piers and spans which can be most economically built between two abutments.

The cost of bridges is closely proportional to their weights. If l be the length of one span, the formula \(W = al + bl \) gives a good approximation to the weight, a and b being constants for the same type of truss. In this, \(al \) represents the weight of the track and floor system, while \(bl \) represents the weight of the main trusses and lateral bracing.

If the cost of piers is about equal, and they be spaced at equal distance apart, the following investigation will give
the economical number of spans. Let \(L \) be the total distance between end abutments, \(x \) the number of spans, and hence \(x-1 \) the number of piers, \(m \) the cost of the two abutments, \(n \) the cost of each pier, \(p \) the cost per pound of the bridge superstructure. The weight of \(x \) spans, each of length \(L/x \), is \(x(\alpha L/x + \beta L/x) \), and the total cost of the work is \(C = m + n(x-1) + p(\alpha L + \beta L/x) \) where \(C \) represents the total cost of the structure.

This will be a minimum when the first derivative of \(C \) with respect to \(x \) becomes zero, and this gives \(x = \frac{pbL}{x} \) which shows that the cost of one of the intermediate piers should equal the cost of the main and lateral trusses of one of the spans.

Or \(x = \frac{pbL}{n} \) gives the economical number of spans.

In order to solve for \(x \), it was necessary to make an approximate estimate of the cost of one pier and conditions governing it were as follows.

The height of the high and low water of the river was taken as 100 and 85 feet above a known bench of elevation. The base of rail was supposed to be located at a distance of 8 feet above the high water. The bed of the river consists of fine sand varying from 5-6 feet in thickness and underlaid by fine gravel which in its term is supported by layers of solid rock, occurring at an elevation of 70 feet above the referred bench.

In order to avoid driving of piles and, in the meantime, gives to the piers a solid foundation, the soil beneath the water will be excavated and the piers built on solid rock. The height of the pier was assumed to be 32 feet. The dimensions
of the pier consists of 9'x25' at the bottom and 6'x22' at the top; and the test of stability against sliding and overturning is determined in the following manner.

Stability against sliding.

Let the coping of the pier be assumed to be 7'x23' and its thickness one foot. The volume and weight of the pier will be found as follows:

Area of coping = 7'x20'+0.78x7x3' = 156.38 square feet.
Volume of " = 156.38x1' = 156.38 cubic feet.
Area of the top cross-section = 6'x19'+0.78x6x3' = 127 square feet.
Area of the bottom cross-section = 9'x22'+0.78x9x3' = 219.6 "
Volume between the bottom and coping of the pier
\[
\frac{(127+219.6)3\text{l'}}{2} = 5545 \text{ cubic feet.}
\]
Total volume of the pier is therefore 5545+156.38 = 5701.38 cubic feet.

The material to be used for construction of piers will consist of concrete, and assuming the weight of a cubic foot of concrete to be 150 pounds, the weight of the pier is therefore 150x5701.38 = 855200' = 427.1 tons.

The length of one of the simple spans of the bridge was assumed to be 150 feet.

The pressure of the wind against the truss and train together was taken at 30 lbs. per square foot of truss and train.

The pressure of the wind against the truss alone was taken at 50 lbs. per square foot against twice the vertical projection of one truss, which for well proportioned trusses will average
about 10 square feet per linear foot of span. The exposed surface of a train was taken as 10 square feet per linear foot. The velocity of the stream was taken as 10 feet per second.

In consideration of the above mentioned items the wind pressure was computed in the following manner.

The wind surface = 10x150 = 1500 square feet, and the wind pressure against the truss is 30x1500 = 45000 = 22.5 tons.

The exposed surface of the pier from the low water to the top of pier is found to be \((\frac{24+22}{2})26 = 598\) square feet.

The wind pressure against the pier is therefore \(20 \times 598 - 11960 = 5.9\) tons.

The crushing strength of ice was assumed to be 15 tons per square foot, and the thickness of ice one foot. The pier is about 7 feet wide at the high water, the exposed area therefore equals, \(7 \times 1 = 7\) square feet, and the pressure produced on that area was considered to be \(15 \times 7 = 105\) tons.

The formula used in determining the pressure due to the action of current was \(P = \frac{swkv}{2g}\) (See Baker's Masonry Construction p. 367) where \(s =\) exposed surface, \(K =\) a coefficient taken as 1.1, \(w =\) weight of a cubic foot of water and \(v =\) the velocity of the stream.

In this design "s" was taken as \(15 \times 25 = 375\) square feet; "w" was assumed to be 62.5 lbs, and "v" as 10 ft/sec.

By substitution of these values the formula becomes

\[P = \frac{375 \times 62.5 \times 1.1 \times 100}{2 \times 64} = 20100 = 10.5\] tons.
The summation of the above mentioned items is found as follows:

Pressure of wind on the truss..................22.5 tons
" " " " train..................22.5 "
" " " " pier..................5.9 "
" " ice " "105.0 "
" " current..................10.5 "
Total force tending to slide..................166.4 "

The tendency of this force must be resisted by the weight of the trusses, that of empty cars, and also by the weight of masonry.

The weight per linear foot of bridge was calculated from the formula \(W = 650 + 7l \), where \(l \) is the length of the span.

The total weight of 150 foot span is therefore \(650 \times 150 + 7 \times 150 \times 150 = 255000 = 127.5 \) tons.

The weight of empty cars was assumed to be one half of a ton per linear foot of span, and the total weight of cars is \(0.5 \times 150 = 75 \) tons.

The total weight to resist sliding is therefore found to be \(127.5 + 75 + 427.1 = 629.6 \) tons.

Sliding cannot take place, if the coefficient of friction is equal or greater than \(\frac{166.4}{629.6} = 0.264 \) which is within safe limits in this design.

Test for stability against overturning.

The forces that tend to produce sliding also tend to cause overturning, the paints of application of these forces were determined in the following manner.
The center of pressure of the wind on the truss was assumed to be applied at the middle of its height; that of the wind on the train was taken as 8 feet above the top of the rail; and that of the wind on the pier at middle of the exposed part. The arm for the pressure of the ice was measured from the high water. The center of pressure of the current was assumed to be at one third of the depth. All the downward forces were considered to have been acted vertically through the center of the pier.

In consideration of the above mentioned data the overturning and resisting moments were computed as follows.

The pressure of the wind on the truss is 22.5 tons, and its lever arm—height of pier plus half the depth of the truss, which in this design was taken as 30 feet.

Therefore the moment of this force is $22.5 \times (32 + 15) = 1057.5$ foot-tons.

The pressure of the wind on the train is also 22.5 tons and its lever arm—distance from the footing to the top of the pier plus the distance from the top of pier to the top of the rail plus the distance from the top of the latter to the center of train, and this equals $32 + 8 + 8 = 48$ feet.

The moment of this pressure is therefore $22.5 \times 48 = 1080$ foot-tons.

The pressure of the wind against the pier was found to be 5.9 tons; the arm of this force was assumed to be applied at the center of the exposed surface and equals 23 feet.

Therefore the moment is $5.9 \times 23 = 135.7$ foot-tons.

The pressure of the ice was found to be 105 tons, and its
arm was taken as 15 feet, which in this case is the distance from the high water.

The moment of this pressure $105 \times 15 = 1575$ foot-tons.

The pressure of the water is 105 tons, and the depth of the water was assumed as 21 foot, therefore the arm of this force is $21/3 = 7$ feet.

The moment of this pressure is $10.5 \times 7 = 73.5$ foot-tons.

The summation of all these moments is therefore

Moment of the wind on the truss 1057.5 foot-tons

" " " " train 1030.0 " "

" " " " pier 135.7 " "

" " " pressure of the ice 1575.0 " "

" " " " current 73.5 " "

Total overturning moment 3921.7 "

This overturning moment must be resisted by the moment produced by the weight of the pier, trusses and that of empty cars. By taking moments at the toe whose distance is 12.5 feet from the center of the pier, the resisting moment is therefore equal $629.6 \times 12.5 = 7870$ foot-tons.

A factor of safety is therefore found to be which equals $7870:3921.7 = 2.06$, that shows that the piers is safe enough for overturning.

After having found the right dimensions of the pier, it is also necessary to make an estimate of the cost of a cofferdam.

The length of the cofferdam was assumed to be 45 feet, the width of it was taken as 30 feet, while its height must be
sufficient to prevent the high water from flowing into the dam. In this case it is safe enough to assume the height of the cofferdam to be 32 feet.

A cross-section of the later is shown on the next page, Fig. 1.

The description of the construction of the cofferdam may be outlined in the following manner.

The area to be inclosed is first surrounded by two rows of ordinary piles. On the outside of the main piles, a little below the top, are bolted two longitudinal pieces, and on the inside are fastened two similar pieces, which serve as guides for the sheet piles, while being driven.

A rod connects the tops of the opposite main piles to prevent spreading when the puddle is put in. Timber is put on primarily to carry the foétway and so fastened as to prevent the puddle space from spreading.

In this design the main piles were assumed to be spaced 5 feet apart, which will require about 36 piles longitudinally and 24 ones transversely to the cofferdam. The cost of one pile including driving was considered to be $3.20

The sheeting to be used was assumed to be 4"x8", and their cost for 1000 units of B.M. was taken as $25.00

The volume of sheeting required is \(\frac{1}{3} \times 2(90\times32) + 2(54\times32) = 3072 \) cubic feet.

The volume of soil to be excavated was found to be \(\frac{45\times20\times15}{27} = 726 \) cubic yards.

The cost of excavation of a cubic yard of soil was taken as $1.25.
Section of Cofferdam.

Fig. 1.
The cost of laying sheeting was assumed as $5.00 per cubic yard, while the cost of one cubic yard of concrete was taken in this design as $5.50 and its laying was considered to cost about $1.30 per cubic yard of material.

The summation of the cost of the above mentioned different items will give the total cost of a pier, which is found from the following table.

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>For concrete</td>
<td>209.8 cub.yd.</td>
<td>5.50</td>
<td>$1155.00</td>
</tr>
<tr>
<td>" laying concrete</td>
<td>209.8 " "</td>
<td>1.30</td>
<td>273.00</td>
</tr>
<tr>
<td>" piles</td>
<td>60 pieces</td>
<td>3.20</td>
<td>192.00</td>
</tr>
<tr>
<td>" sheeting</td>
<td>36.9 cub.yd.</td>
<td>25.00</td>
<td>922.50</td>
</tr>
<tr>
<td>" laying "</td>
<td>36.9 " "</td>
<td>5.00</td>
<td>194.50</td>
</tr>
<tr>
<td>" excavation</td>
<td>726 cub. yds.</td>
<td>1.25</td>
<td>907.50</td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
<td></td>
<td>$3644.50</td>
</tr>
</tbody>
</table>

The number of spans can be found next from the formula

\[x = \frac{pB}{L/n} \]

The value of \(p \) in this design was taken as 4 cents per pound of metal. The total width of the river is 600 feet; and the value of \(1 \) for pin-connected bridges is usually taken as .7. Therefore the number of spans required equals

\[x = 0.04 \times 7 \times 600 \times 600 / 3644.5 = 4 \text{ or } 5. \]

From the last expression it is seen that either four or five spans ought to give the most economical arrangement of spans. The cost of the structure under these conditions will be regarde and a comparison made in order to select the best design.
Let the cost of five spans and their piers be considered first. Since the total length of the bridge is 600 feet, a length of 120 feet will be assumed for each span. The weight of one span was found from the formula \(W = 650 + \frac{1}{7} l^2 \) where \(l \) is the length of the span, in this case it is taken as 120 feet.

The total weight of five spans is \(\frac{5}{6} \times 650 \times 120 + \frac{7}{120} \times 120^2 = 894000 \) lbs.

If the cost of one pound of metal be taken as 4 cents, the cost of five spans will be \(0.04 \times 894000 = \$35760 \).

When five spans will be selected, there will be only four abutments, and their cost is \(4 \times 3644.5 = \$14578 \).

If the selection of the design be considered to be four spans, the length of each span is therefore 150 ft., and the total weight of these four spans will be \(4 \times (650 \times 150 + \frac{7}{150} \times 150^2) = 1020000 \) lbs and their cost is therefore \(0.04 \times 1020000 = \$40800 \).

The cost of three piers will be \(3 \times 3644.5 = \$10933.5 \).

The total cost of the structure under the second case is \(40800 + 10933.5 = \$51733.5 \).

Since the difference between the two cases is not considerable, a selection of four spans will be of better practice and therefore it will be adopted.

The selection of the most economical arrangement of panels and depth of the truss will be considered next.

Let the weight per foot per truss of the stringers, cross girders and depth of the track be represented by \(w_2 \), and the weight per foot per truss of the uniformly distributed load, equivalent to the live load assumed, \(w_1 \). Let the weight per foot of one main truss be \(w_3 \), and let \(w_0 \) be the weight per
per foot of lattice, bars, pins, eye bar heads, cover plates, rivets etc. Then the total load per foot per truss, is \(w_i + w_j + w_k + w_l \). Let the length of the panel be \(p \) then \((w_i + w_j + w_k + w_l)p \) will be the total panel load for one truss. Let \(N \) be the number of panels, \(d \) the depth in feet, and \(l \) the span in feet.

The formula for the weight per foot of one main truss is given on p. 487, DuBois Mechanics of Engineering V. 2, which is as follows:

\[
W_i = \frac{W_i + W_j + W_k + W_l}{3.6pd} \tag{1}
\]

where \(\alpha \) are constants depending on the form of truss, and \(p \) is the numeration of Gordon's formula.

The values of \(w_i \), \(w_j \), and \(w_l \) are rational ones and are also given in terms of known quantities on p. 484-492 of the book of the above mentioned author. They are as follows.

\[
w_j = \frac{3Nl+568}{170}
\]

\[
w_i = \frac{Nd+0.875N(12-N)+6}{3}
\]

while the values of \(w_j \) for different number of panels are given on p. 490 of the same book.

If the formula (1) is reliable, and gives even with tolerable accuracy the weight of truss then, since it is rational in form, the depth, which gives the least weight can also be determined.

Differentiating and putting the first differential equal to zero, the formula is therefore.

\[
\frac{df}{2} = \frac{l}{N} \sqrt{\frac{1}{x} \left(1 + \frac{1}{s(N-1)} \right)} \tag{2}
\]

\[
\sqrt{\beta \left[\frac{1}{s(N-1)} \right]} + \frac{1.2226N}{(W_j + W_k + W_l + W_m) + A}
\]
Calling the right part of this equation \(C \), the formula becomes \(d = C_1 \).

The values for the above mentioned constants were taken from Du Bois Mechanics of Engineering and arranged in tabular form as follows:

<table>
<thead>
<tr>
<th>(N)</th>
<th>(W_0)</th>
<th>(W_2)</th>
<th>(W_3)</th>
<th>(W_4)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>93</td>
<td>395</td>
<td>32.1</td>
<td>198</td>
<td>0.2258</td>
</tr>
<tr>
<td>6</td>
<td>98.04</td>
<td>376</td>
<td>38</td>
<td>201</td>
<td>0.2018</td>
</tr>
<tr>
<td>7</td>
<td>101.4</td>
<td>361</td>
<td>37</td>
<td>221</td>
<td>0.1346</td>
</tr>
</tbody>
</table>

For constructive reasons it is best to limit the length of panel to about 30 feet and the depth of truss to 50 feet. Within these limits it is possible to find the best number of panels and depth by trail. The sum of \(W_0 + W_2 + W_3 + W_4 \) can be taken as 2000 pounds without noticeable error, and the total weight per foot of all the metal is \(2(W_2 + W_3 + W_4 + W_5 + 200) \).

The value of \(N \) which gives a minimum is the best.

If the number of panels be 5, the panel length will therefore be \(150/5 = 30 \) feet, and the depth is \(C_1 = 0.2018 \times 150 = 30.2 \) feet.

The total weight per foot of metal is \(w = 2(W_2 + W_3 + W_4 + W_5 + 200) = 2(395 + 32.1 + 198 + 93 + 200) = 1036.2 \) pounds.

Considering the number of panels of the truss to be 6, the panel length will be 25 feet, and the depth is therefore \(C_1 = 0.2018 \times 150 = 30.2 \) feet.

The total weight per foot of metal is \(w = 2(W_2 + W_3 + W_4 + W_5 + 200) = 2(376 + 38 + 201 + 98.04 + 200) = 1026.08 \) pounds.
Finally, by assuming the number of panels to be 7, the panel length is 21.43 feet, the depth is \(C_1 = 0.1346 \times 150 = 27.72 \) feet, and the total weight per foot of metal is

\[
2(w_2 + w_3 + w_4 + w_5 - 200) = 2(361 + 37 + 221 + 101.4 - 200) = 1040.8 \text{ pounds.}
\]

From the above computation it is found that 6 panels give the least weight, and therefore they will be adopted as the best design. The depth of the truss is therefore 30.2 feet, but a depth of 30 feet will be used.

2. DETERMINATION OF STRESSES.

The next procedure in this design was to analyze the stresses in the truss of Fig. 2, taking first the stresses due to dead load. In figuring the stresses for the truss it was assumed that the dead load was concentrated at the lower panel points, and the stresses calculated for one half of the truss only, as the stresses in the other half under the dead load will be the same. The length of span, center to center of pins was considered to be 150 feet, the depth of the truss between centers of trusses, was assumed to be 17 feet.

The length of a panel was taken as 25 feet, as it was found above that six panels will give the best economical arrangement of panel lengths. The angle which the diagonals of the truss make with the vertical was therefore found to be \(39 \degree 40' \).

The weight per linear foot of trusses and lateral systems was found from the formula

\[
w = 650 + 71 = 650 + 7 \times 150 = 1700 \text{ lbs.}
\]

that of the track was 400 lbs., and that of the stringers and floor
beams was taken as 600 lbs., making a total of 2700 pounds. The dead panel load per truss is 2700 \times \frac{25}{2} = 33750 lbs.

A sketch is therefore given and stress later done as follows.

![Diagram](image)

Dead Load Stresses.

The shear in panel $U, L_2^2 = \frac{1}{2}x33750 = 16875$ lbs.

The stress in U, L_2^2 is therefore 16875 sec 30° $40' = 21940$ lbs.

The shear in panel $U, L_2^2 = \frac{3}{2}x33750 = 50625$ lbs.

The stress in U, L_2^2 is therefore 50625 sec 30° $40' = 70310$ lbs.

The shear in panel $U, L_2^2 = \frac{5}{2}x33750 = 84375$ lbs.

The stress in U, L_2^2 is therefore 84375 sec 30° $40' = 106690$ lbs.

The stress in suspender U, L_2^2 equals the weight of one panel load or 33750 lbs.

Next passing a section through U, L_3^2 and L_3^2 and taking the center of moment at U, we have $M = 0 = \frac{5x33750}{2x25} - L_2, L_3 30$.

Therefore the stress in L_2^3 is $\frac{5x33750}{2x25} = 70800$ lbs.

and this is also equal to the stress in L_2^3

Passing also a section through U, U, U, L_2^3, L_2^3, and taking the center of moment at U, we have
Therefore the stress in \(U_2 U_3 \) = 126560 lbs.

Collecting Results.

Stress in \(U_2 L_4 \) = +21940 lbs.
" " \(U_2 L_3 \) = -16875 lbs.
" " \(U_1 L_3 \) = +72310 lbs.
" " \(U_1 L_2 \) = -33750 lbs.
" " \(U_1 L_1 \) = -109690 lbs.
" " \(U_1 U_2 \) = -112500 lbs.
" " \(U_2 U_1 \) = -126560 lbs.
" " \(L_1 L_2 \) = +70300 lbs.
" " \(L_1 L_3 \) = +112500 lbs.

Live Load Stresses.

In designing this bridge the live load was considered as consisted of 2 -177.5 ton engines, followed by 5000 lbs. per foot of track. The maximum shears and bending moments were computed in all the panels, and the stresses in every member were therefore determined.

Determination of maximum shear in 1 panel. The maximum shear in any panel occurs when the average load in the panel is equal to the average load span the entire span.

The wheel loads were therefore placed at the panel point and tested for the criterion in the following manner.
<table>
<thead>
<tr>
<th>No. of Wheel</th>
<th>Aver. load in panel</th>
<th>Aver. load on span</th>
<th>Aver. load in panel</th>
<th>Aver. load on span</th>
</tr>
</thead>
<tbody>
<tr>
<td>With wheel on the left</td>
<td></td>
<td></td>
<td>With wheel on right</td>
<td></td>
</tr>
<tr>
<td>Try wheel 2</td>
<td>12.5/25</td>
<td>41.5/150</td>
<td>37.5/25</td>
<td>41.5/150</td>
</tr>
<tr>
<td>" 3</td>
<td>37.5/25</td>
<td>427.5/150</td>
<td>62.5/25</td>
<td>427.5/150</td>
</tr>
<tr>
<td>" 4</td>
<td>62.5/25</td>
<td>440/150</td>
<td>87.5/25</td>
<td>440/150</td>
</tr>
<tr>
<td>" 5</td>
<td>87.5/25</td>
<td>452.5/150</td>
<td>112.5/25</td>
<td>452.5/150</td>
</tr>
<tr>
<td>" 6</td>
<td>100/25</td>
<td>462/150</td>
<td>116.25/25</td>
<td>462.5/150</td>
</tr>
<tr>
<td>" 7</td>
<td>91.25/25</td>
<td>450/150</td>
<td>107.5/25</td>
<td>450/150</td>
</tr>
<tr>
<td>" 8</td>
<td>82.5/25</td>
<td>440/150</td>
<td>98.75/25</td>
<td>440/150</td>
</tr>
<tr>
<td>" 9</td>
<td>73.75/25</td>
<td>429.5/150</td>
<td>90/25</td>
<td>429.5/150</td>
</tr>
<tr>
<td>" 10</td>
<td>65/25</td>
<td>422.5/150</td>
<td>77/25</td>
<td>422.5/150</td>
</tr>
<tr>
<td>" 11</td>
<td>45/25</td>
<td>410/150</td>
<td>70/25</td>
<td>410/150</td>
</tr>
<tr>
<td>" 12</td>
<td>53.75/25</td>
<td>406.25/150</td>
<td>78.75/25</td>
<td>406.25/150</td>
</tr>
<tr>
<td>" 13</td>
<td>62.5/25</td>
<td>402.5/150</td>
<td>87.5/25</td>
<td>402.5/150</td>
</tr>
<tr>
<td>" 14</td>
<td>87.5/25</td>
<td>415/150</td>
<td>112.5/25</td>
<td>415/150</td>
</tr>
</tbody>
</table>

From the above table it is seen, that wheel 4, 10, 11, 12, 13 satisfy the criterion.

The maximum shears for all those positions of load is computed and the largest maximum is therefore adopted.

With wheel 4 at the panel point the reaction due to this load is \(R = \frac{20455+355x34+85x17}{150} = 226.46 \) kips and the shear at that section is found to be \(V = 226.46 - 24 = 202.46 \) kips or 202460 lbs.

With wheel 10 at the panel point the reaction is \(R = \frac{9742.5+242.5x72+108x36}{150} = 224.55 \) kips and the shear is therefore \(V = 224.55 - 33.8 = 190.75 \) kips or 190750 lbs.

With wheel 11 at the panel point, the reaction is found to be \(R = \frac{7321.25+210x80+200x40}{150} = 214.14 \) kips and the shear is therefore \(V = 214.14 - 28.05 = 186.09 \) kips or 186090 lbs.

With wheel 12 at the panel point, the reaction is \(R = \frac{6248.75+193.75x85+212.5x42.5}{150} = 211.66 \) kips and the shear is therefore found to be \(V = 211.66 - 25.15 = 186.51 \) kips or 186510 lbs.

Finally with wheel 13 at the panel point the reaction is
R = 5257.5 + 177.5 \times 90 + 225 \times 45 = 209.05 kips and the shear due to these loads \(v = 209.05 - 24\% = 185.05 kips \) or 185050 lbs.

From the above figures it is seen that wheel 4 produces the maximum shear in the first panel, and its amount is found to be equal to 202460 lbs.

Determination of maximum shear in 2nd panel.

In order to find the maximum shear in this panel it is necessary to place the wheel at the panel point and test them for the criterion in the following manner.

<table>
<thead>
<tr>
<th>No. of wheel</th>
<th>With wheel on left Aver. load in panel</th>
<th>Aver. load on span</th>
<th>With wheel on right Aver. load in panel</th>
<th>Aver. load on span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try wheel 2</td>
<td>12.5/25</td>
<td>355/150</td>
<td>37.5/25</td>
<td>350/150</td>
</tr>
<tr>
<td>" 3</td>
<td>37.5/25</td>
<td>365/150</td>
<td>62.5/25</td>
<td>365/150</td>
</tr>
<tr>
<td>" 4</td>
<td>62.5/25</td>
<td>377.5/150</td>
<td>87.5/25</td>
<td>377.5/150</td>
</tr>
<tr>
<td>" 5</td>
<td>87.5/25</td>
<td>390/150</td>
<td>112.5/25</td>
<td>390/150</td>
</tr>
<tr>
<td>" 6</td>
<td>100/25</td>
<td>412.5/150</td>
<td>116.25/25</td>
<td>412.5/150</td>
</tr>
<tr>
<td>" 7</td>
<td>91.25/25</td>
<td>425/150</td>
<td>107.5/25</td>
<td>412.5/150</td>
</tr>
<tr>
<td>" 8</td>
<td>82.5/25</td>
<td>440/150</td>
<td>98.75/50</td>
<td>440/150</td>
</tr>
<tr>
<td>" 9</td>
<td>73.75/25</td>
<td>452.5/150</td>
<td>50/50</td>
<td>452.5/150</td>
</tr>
<tr>
<td>" 10</td>
<td>65/25</td>
<td>460/150</td>
<td>77.5/25</td>
<td>460/150</td>
</tr>
<tr>
<td>" 11</td>
<td>45/25</td>
<td>430/150</td>
<td>70/25</td>
<td>420/150</td>
</tr>
<tr>
<td>" 12</td>
<td>53/25</td>
<td>417.5/150</td>
<td>78/25</td>
<td>417.5/150</td>
</tr>
<tr>
<td>" 13</td>
<td>62.5/25</td>
<td>405/150</td>
<td>87.5/25</td>
<td>405/150</td>
</tr>
</tbody>
</table>

From the above table it was found that wheel 4, 9, 10, 12 satisfy the criterion. By comparing their shears the largest one will be selected.

With wheel 4 at the panel point the reaction is found to be \(R = \frac{20455 + 355 \times 9 + 22.5 \times 4.5}{150} = 158.35 kips \) and the shear is \(158.35 \% = 158.35 kips \) or 153350 lbs.

With wheel 9 at the panel point the reaction is \(R = \frac{20455 + 355 \times 39 + 97.5 \times 13.5}{150} = 241.34 kips \) and the shear due to these loads is \(241.34 \% = 241.34 kips \) or 241340 lbs.
\[V = 241.34 - 37.5 - 45.8 = 108.04 \, \text{kips} \]

With wheel 10 at the panel point the reaction is found to be
\[R = \frac{19092.5 + 342.5 \times 47 + 117.5 \times 23.5}{150} = 253 \, \text{kips} \]
and the shear is therefore
\[V = 253 - 100 - 41.6 = 111.4 \, \text{kips} \] or 111400 lbs.

Finally with wheel 12 at the panel point the reaction is found to be
\[R = \frac{11892.5 + 267.5 \times 60 - 150 \times 30}{150} = 216.28 \, \text{kips} \]
and the reaction is therefore
\[V = 216.28 - 73.75 - 25.15 = 119.38 \, \text{kips} \]

From the above it is seen that wheel 4 produces the maximum shear in the second panel and its amount is equivalent to 134350 lbs.

Determination of maximum shear in 3rd panel.

The method of procedure of finding the maximum shear in this panel is obtained in the same way, as in the previous cases, by placing the wheel load at the panel points in the following manner.

<table>
<thead>
<tr>
<th>No. of wheel</th>
<th>With wheel on left of panel point</th>
<th>With wheel on right of panel point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aver. load in panel</td>
<td>Aver. load on span</td>
</tr>
<tr>
<td>Try wheel 2</td>
<td>12.5/25 290/150</td>
<td>37.5/25 290/150</td>
</tr>
<tr>
<td>" 3</td>
<td>37.5/25 306.25/150</td>
<td>62.5/25 306.25/150</td>
</tr>
<tr>
<td>" 4</td>
<td>62.5/25 322.5/150</td>
<td>87.5/25 322.5/150</td>
</tr>
<tr>
<td>" 5</td>
<td>87.5/25 322.5/150</td>
<td>112.5/25 322.5/150</td>
</tr>
<tr>
<td>" 6</td>
<td>100/25 355/150</td>
<td>116.25/25 355/150</td>
</tr>
<tr>
<td>" 7</td>
<td>91.25/25 362/150</td>
<td>108.5/25 362/150</td>
</tr>
<tr>
<td>" 8</td>
<td>82.25/25 377/150</td>
<td>98.75/25 377/150</td>
</tr>
<tr>
<td>" 9</td>
<td>73.75/25 383.5/150</td>
<td>90/25 383.5/150</td>
</tr>
<tr>
<td>" 10</td>
<td>65/25 410/150</td>
<td>77.5/25 410/150</td>
</tr>
<tr>
<td>" 11</td>
<td>45/25 450/150</td>
<td>70/25 450/150</td>
</tr>
<tr>
<td>" 12</td>
<td>53.75/25 442.5/150</td>
<td>98.75/25 442.5/150</td>
</tr>
<tr>
<td>" 13</td>
<td>62.5/25 455/150</td>
<td>87.5/25 455/150</td>
</tr>
</tbody>
</table>

From the above figures it was found that wheel 3, 10, 12, 13 satisfy the criterion.

With wheel 3 at the panel point the reaction is \[R = \]
\[R = \frac{13520}{150} = 90.13 \text{ kips} \text{ or } 90130 \text{ lbs.} \] and therefore the shear is equal \[V = 90.13 - 11.5 - 78.63 \text{ kips or, } 78630 \text{ lbs.} \]

With wheel 10 at the panel point the reaction is found to be \[R = \frac{20455 + 355x22 + 55x11}{150} = 192.46 \text{ kips} \text{ and the shear is} \]
\[V = 192.46 - 112.5 - 41.6 = 38.36 \text{ kips.} \]

With wheel 12 at the panel point the reaction is
\[R = \frac{20455 + 355x35 + 57.5x17.5}{150} = 229.4 \text{ kips} \text{ and the shear is therefore} \]
\[V = 229.4 - 161.25 - 25.11 - 43.04 = 37.15 \text{ kips.} \]

With wheel 13 at the panel point the reaction is found to be
\[R = \frac{20455 + 355x40 + 100x20}{150} = 244.36 \text{ kips} \text{ and the shear due to these loads is} \]
\[V = 244.36 - 177.5 - 24 = 42.86 \text{ kips.} \]

By comparing the above values it is found that wheel 3 produces the maximum shear in this panel and its value is equal to 78630 lbs.

Determination of maximum shear in 4th panel.

In a similar manner it was found that wheel 2 produces a maximum shear in this panel. The reaction is therefore \[R = \frac{5790 + 190x2}{150} = 41.13 \text{ kips, and the shear is found to be} \]
\[V = 41.13 - 4 = 37.13 \text{ kips or } 37130 \text{ lbs.} \]

It was also found that wheel 2 produces a maximum shear in 5th panel. The reaction is \[R = \frac{2050 + 128.75x1}{150} = 14.52 \text{ kips, and the shear is therefore} \]
\[V = 14.52 - 4 - 10.52 = 10520 \text{ lbs.} \]

Determination of maximum bending moment in 1st panel.

The maximum moment in any panel occurs when the average load upon the span is equal or just great than the average load in front of the panel point.
The wheel loads were placed at the panel point and tested for the criterion in the following manner.

<table>
<thead>
<tr>
<th>No. of wheel</th>
<th>Aver. load in front of panel span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try wheel 2</td>
<td>12.5/25</td>
<td>415/150</td>
<td>37.5/25</td>
<td>415/150</td>
</tr>
<tr>
<td>"</td>
<td>37.5/25</td>
<td>427.5/150</td>
<td>82.5/25</td>
<td>427.5/150</td>
</tr>
<tr>
<td>"</td>
<td>62.5/25</td>
<td>440/150</td>
<td>87.5/25</td>
<td>440/150</td>
</tr>
<tr>
<td>"</td>
<td>87.5/25</td>
<td>452.5/150</td>
<td>112.5/25</td>
<td>452.5/150</td>
</tr>
<tr>
<td>"</td>
<td>100/25</td>
<td>462.5/150</td>
<td>116.25/25</td>
<td>462.5/150</td>
</tr>
<tr>
<td>"</td>
<td>91.25/25</td>
<td>450/150</td>
<td>107.5/25</td>
<td>450/150</td>
</tr>
<tr>
<td>"</td>
<td>82.5/25</td>
<td>440/150</td>
<td>98.75/25</td>
<td>440/150</td>
</tr>
<tr>
<td>"</td>
<td>73.75/25</td>
<td>429.5/150</td>
<td>90/25</td>
<td>429.5/150</td>
</tr>
<tr>
<td>"</td>
<td>10/25</td>
<td>427.5/150</td>
<td>77/25</td>
<td>427.5/150</td>
</tr>
<tr>
<td>"</td>
<td>15/25</td>
<td>410/150</td>
<td>70/25</td>
<td>410/150</td>
</tr>
<tr>
<td>"</td>
<td>53.75/25</td>
<td>406.25/150</td>
<td>78.75/25</td>
<td>406.25/150</td>
</tr>
<tr>
<td>"</td>
<td>62.5/25</td>
<td>402.5/150</td>
<td>87.5/25</td>
<td>402.5/150</td>
</tr>
<tr>
<td>"</td>
<td>87.5/25</td>
<td>415/150</td>
<td>112.5/25</td>
<td>415/150</td>
</tr>
</tbody>
</table>

From the above table it was found that wheel 4, 10, 11, 12, 13 satisfy the criterion.

With wheel 4 at the panel point the reaction due to these loads is \[R = \frac{20455+355x34+85x17}{150} = 226.46 \text{ kips} \] and the maximum bending moment is therefore \[M = 226.46 \times 25 - 600 = 5061500 \text{ ft lbs.} \]

With wheel 10 at the panel point the reaction is \[R = \frac{9742.5+242.5x72+180x36}{150} = 224.55 \text{ kips} \] and the maximum bending moment is therefore \[M = 224.55 \times 25 - 845 = 4763750 \text{ ft lbs.} \]

With wheel 12 at the panel point the reaction is \[R = \frac{7321.25+210x80+200x40}{150} = 214.14 \text{ kips} \] The maximum bending moment is therefore \[M = 214.14 \times 25 - 701.25 = 4652527 \text{ ft lbs.} \]

With wheel 12 at the panel point the reaction is \[R = \frac{6248.75+193.75x85+212.5x42.5}{150} = 211.66 \text{ kips} \].
The maximum bending moment is therefore $M = 211.66 \times 25 - 628.75 = 4662750$ ft-lbs.

Finally with wheel 13 at the panel point the reaction was found to be $R = \frac{5257.5 + 177.5 \times 90 + 22.5 \times 45}{150} = 209.05 \text{ kips.}$

The maximum bending moment is therefore $M = 209.05 \times 25 - 600 = 4626250$ ft-lbs.

From the above mentioned it is seen that wheel 4 produces the largest bending moment and its amount equals 5061500 foot-lbs.

Determination of maximum bending moment in 2nd panel.

In this case the wheel load are also placed at the panel point and tested for the criterion in the following manner.

<table>
<thead>
<tr>
<th>Try wheel</th>
<th>2</th>
<th>12.5/50</th>
<th>355/150</th>
<th>37.5/50</th>
<th>355/150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>37.5/50</td>
<td>365/150</td>
<td>62.5/50</td>
<td>365/150</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>62.5/50</td>
<td>377.5/150</td>
<td>87.5/50</td>
<td>377.5/150</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>87.5/50</td>
<td>390/150</td>
<td>112.5/50</td>
<td>390/150</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>112.5/50</td>
<td>412.5/150</td>
<td>128.75/50</td>
<td>412.5/150</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>128.75/50</td>
<td>425/150</td>
<td>145/50</td>
<td>425/150</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>127.5/50</td>
<td>430/150</td>
<td>152.5/50</td>
<td>430/150</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>127.5/50</td>
<td>417.5/150</td>
<td>152.5/50</td>
<td>417.5/150</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>127.5/50</td>
<td>405/150</td>
<td>152.5/50</td>
<td>405/150</td>
</tr>
</tbody>
</table>

From the table it is seen that wheel 7, 11, 12 and 13 satisfy the criterion.

With wheel 7 at the panel point the reaction is $R = \frac{20455 + 355 \times 28 + 70 \times 14}{150} = 209.16 \text{ kips.}$ and the maximum bending moment is therefore $M = 208.16 \times 50 - 2683.75 = 7874250$ ft-lbs.

With wheel 11 at the panel point, the reaction is found to be $R = \frac{14127.5 + 292.5 \times 55 + 137.50 \times 27.5}{150} = 226.9 \text{ kips.}$

The maximum bending moment is therefore $M = 226.9 \times 50 - 3835 - 7510000$ ft-lbs.
With wheel 12 at the panel point, the reaction is
\[R = \frac{11892.5 \times 267.5 \times 60 + 150 \times 30}{150} = 216.28 \text{ kips}, \] and the maximum bending is
\[M = \frac{216.28 \times 50 - 3322.5}{150} = 749150 \text{ ft-lbs}. \]

Finally with wheel 13 at the panel point thereaction is
\[R = \frac{9742.5 \times 242.5 \times 65 + 162.5 \times 32.5}{150} = 205.3 \text{ kips}, \] and the maximum bending moment is
\[M = \frac{205.2 \times 50 - 2810}{150} = 7450000 \text{ ft-lbs}. \]

By comparing the above figures it is found that wheel 7 produces the largest bending moment and its amount equals 7874250 foot-lbs.

Determination of maximum bending moment in 3rd panel.

In this case the wheel loads are also placed at the panel point and tested for the criterion in the following manner.

<table>
<thead>
<tr>
<th>No. of wheel of panel point</th>
<th>With wheel on left in panel</th>
<th>With wheel on right of panel point on span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try wheel 2</td>
<td>12.5/75</td>
<td>290/150</td>
</tr>
<tr>
<td>"</td>
<td>3 37.5/75</td>
<td>306.25/150</td>
</tr>
<tr>
<td>"</td>
<td>4 62.5/75</td>
<td>322.25/150</td>
</tr>
<tr>
<td>"</td>
<td>5 87.5/75</td>
<td>322.25/150</td>
</tr>
<tr>
<td>"</td>
<td>11 127.5/75</td>
<td>367.5/150</td>
</tr>
<tr>
<td>"</td>
<td>12 127.5/75</td>
<td>355/150</td>
</tr>
<tr>
<td>"</td>
<td>13 127.5/75</td>
<td>342.5/150</td>
</tr>
<tr>
<td>"</td>
<td>14 152.5/75</td>
<td>355/150</td>
</tr>
</tbody>
</table>

From the table it is found that wheel 12 and 13 satisfy the criterion.

With wheel 12 at the panel point the reaction is
\[R = \frac{11892.5 \times 267.5 \times 35 + 37.5 \times 17.5}{150} = 151.9 \text{ kips}, \] and the bending moment is
\[M = \frac{151.9 \times 75 - 3322.5}{150} = 8070000 \text{ ft-lbs}. \]

With wheel 13 at the panel point the reaction is
\[R = \frac{3742.5 \times 242.5 \times 45 + 112.5 \times 22.5}{150} = 154.1 \text{ kips}, \] and the maximum bending moment is
\[M = \frac{154.1 \times 75 - 2810}{150} = 7450000 \text{ ft-lbs}. \]
moment is therefore \(M = 154.1 \times 75 - 3572.5 = 798500 \text{ ft-lbs} \).

By comparing the last figures it is found that wheel 12 produces the largest bending moment and its amount equals 8070000 foot-lbs.

After finding the shears and bending moment in all the panel, the stresses in web numbers and also in the chords are obtained in the following manner.

The stress in \(U_1 L_i = 202460 \text{ Sec } 39^\circ 40' = 253200 \text{ ft-lbs} \)

" " " \(U_1 L_j = 134350 \text{ Sec } 59^\circ 40' = 174650 \text{ ft-lbs} \)

" " " \(U_2 L_1 = 78630 \text{ Sec } 39^\circ 40' = 102200 \text{ ft-lbs} \)

" " " \(U_2 L_2 = 94550 \text{ ft-lbs} \)

" " " \(U_2 L_3 = 78630 \text{ ft-lbs} \)

" " " \(U_2 L_4 = 37130 \text{ ft-lbs} \)

" " " \(U_1 U_2 = 7874250/30 = 262475 \text{ ft-lbs} \)

" " " \(U_2 U_3 = 8070000/30 = 269000 \text{ ft-lbs} \)

" " " \(L_1 L_2 = 5061500/30 = 168720 \text{ ft-lbs} \)

" " " \(L_2 L_3 = 7874250/30 = 262475 \text{ ft-lbs} \)

The stress in the counter brace \(U_1 L_i \) is found by considering the live and dead load shear in the panel \(U_1 L_i \).

The live load shear in this panel is 37130, which evidently causes compression in \(U_1 L_i \). But the dead load shear in this panel is -16875 that produces tension in the above member. The resultant is 20255 which is the vertical component of \(U_1 L_i \) causing compression in \(U_1 L_i \) and therefore a counter brace is needed.

The stress in \(U_1 L_i \) is therefore 20255 Sec 39°40' = 26330 ft-lbs.

With regard to a counter stress in panel \(U_1 L_i \), the dead
and live shears were also considered.

The live load is \(-10520\) producing compression in \(U^L\), but the dead load shear is \(-55625\), causing tension in the above member. The resultant is \(-45105\), producing tension in the diagonal \(U^L\), and therefore no counter brace is needed in panel \(U^L\).

Determination of maximum shear and bending moment in a 25-0 stringer.

The maximum shear in a stringer occurs at the point of supports.

The wheel loads were placed at the end and the shears found in the following manner.

With wheel 1 at the end the reaction is found to be

\[
R = \frac{1037.5+112.5 \times 2}{25} = 50.5 \text{ kips or } 50500 \text{ lbs.}
\]

With wheel 2 at the end the reaction is

\[
R = \frac{1650+116.25 \times 1}{25} = 70.65 \text{ kips } 70650 \text{ lbs.}
\]

With wheel 3 at the end the reaction is therefore

\[
R = \frac{1506.25+107.5 \times 1}{25} = 64.5 \text{ kips } 64500 \text{ lbs.}
\]

Placing wheel 4 at the end the reaction is found to be

\[
R = \frac{1401.25}{25} = 56.05 \text{ kips } 56050 \text{ lbs.}
\]

Finally with wheel 5 at the end the reaction is

\[
R = \frac{1145}{25} = 45.8 \text{ kips } 45800 \text{ lbs.}
\]

The maximum shear therefore occurs under wheel 2 and its amount is 70650 lbs.

The condition for determining the maximum bending moment in a stringer is the same so that for a simple beam. The criterion is, that the wheel producing the maximum bending
The moment must be so far from the end, as the center of gravity of all the wheels is from the other end. For this purpose the wheel is placed at the center of the stringer and tested for the criterion in the following manner.

<table>
<thead>
<tr>
<th>No. of wheel</th>
<th>With wheel on left</th>
<th>With wheel on right</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>of panel point</td>
<td>of panel point</td>
</tr>
<tr>
<td></td>
<td>Aver. load in panel</td>
<td>Aver. load on span</td>
</tr>
<tr>
<td>Try wheel 2</td>
<td>12.5/12.5</td>
<td>37.5/12.5</td>
</tr>
<tr>
<td>" 3</td>
<td>25/125</td>
<td>50/12.5</td>
</tr>
<tr>
<td>" 4</td>
<td>50/12.5</td>
<td>75/12.5</td>
</tr>
<tr>
<td>" 5</td>
<td>50/12.5</td>
<td>91.25/25</td>
</tr>
</tbody>
</table>

From the above table it is found that wheel 3 and 4 satisfy the criterion.

With wheel 3 at the center, the reaction is found to be
\[R = \frac{750+100 \times 3.5}{25} = 44 \text{ Kips} = 44000 \text{ lbs.} \],
and the maximum bending moment is
\[M = 44000 \times 11.25 - 12500 = 370000 \text{ ft-lbs.} \]

With wheel 4 at the center the reaction is
\[R = \frac{750+100 \times 6.25}{25} = 55 \text{ Kips} = 55000 \text{ lbs.} \]

The maximum bending moment is therefore
\[M = 55000 \times 13.75 - 37500 = 381250 \text{ ft-lbs.} \]

From the last expression it is seen that wheel 4 produces the largest bending moment and its moment is 381250 foot-lbs.

Determination of maximum floor beam concentration.

The criterion for maximum floor beam reaction is that the average load in the panel on the left must be equal to or just greater than the average panel load upon the right including the wheel at the panel point. The wheel loads are placed at the panel point and tested for the criterion in the following manner.
With wheel on left	With wheel on right
No. of wheel | No. of wheel | Aver. load | Aver. load | Aver. load | Aver. load
try wheel 2 | 12.5/25 | 116.25/25 | 37.5/25 | 91.25/25
" " 3 | 37.5/25 | 107.5/25 | 62.5/25 | 82.5/25
" " 4 | 62.5/25 | 98.75/25 | 87.5/25 | 73.75/25
" " 5 | 87.5/25 | 90/25 | 112.5/25 | 65/25

From above figures it is found that wheel 4 and 5 produce the maximum floor beam reaction.

With wheel 5 at the center the maximum floor beam reaction is found to be
\[R = \frac{R_1 + R_2}{25} = \frac{114.5/25 + 975 + 87.5 \times 2}{25} = 91.8 \text{ Kips} = 91800 \text{ lbs.} \]

With wheel 4 at the center the reaction is
\[R = \frac{R_1 + R_2}{25} = \frac{1401.25 - 525 + 62.5 \times 7}{25} = 94.55 \text{ Kips} = 94550 \text{ lbs.} \]

Therefore wheel 4 produces the maximum floor beam reaction and its amount is 94550 lbs.

Determination of Stress in the top lateral bracing.

These laterals will be proportioned to resist a lateral force of 200 pounds for each linear foot of the span, thus making the panel load equal to 200 \times 25 = 5000 pounds. A sketch of the laterals is shown below and with the above loading the stresses are determined as follows.

The angle that the diagonals make with the vertical is 55°50'.
The stress in $U_2 U_3 \frac{5000}{2} \text{ Sec } 55^\circ 50' = 4500$ pounds.

" " " $U_2 U_2 \frac{3}{2} \times 5000 \text{ Sec } 55^\circ 50' = 13500$

" " " $U_2 U_2 = 2500$ pounds.

" " " $U_2 U_2 = 7500$

The bottom lateral bracing is proportioned to resist a lateral force of 600 pounds for each foot of the span; 450 pounds of this to be treated as a moving load, and as acting on a train of cars, at a line of 6 feet above base of rail.

A sketch is also given below and the stresses determined as follows:

Fixed load stresses.

In this case the fixed load stresses will be determined first. The fixed panel load is $150 \times 25 = 3750$ pounds. With this loading the stresses are figured in the following manner.

The stress in $L_1 L_1 = \frac{5}{2} \times 3750 = 9375$ pounds.

" " " $L_1 L_1 = 9375 \times 1.78 = 16800$

" " " $L_1 L_1 = \frac{3}{2} \times 3750 = 5620$

" " " $L_1 L_1 = 5620 \times 1.78 = 9960$

" " " $L_1 L_1 = 3750 \div 2 = 1875$

" " " $L_1 L_1 = 1875 \times 1.78 = 3380$

" " " $L_2 L_2 = \frac{3750 \times 150 \times 150}{8 \times 17} = 24880$ pounds.

" " " $L_2 L_2 = \frac{Ax 3750 \times 25}{17} = -22060$
The stress in $L_2, L_2 = \frac{5 \times 3750 \times 25}{2 \times 1.7} = 13760$ pounds.

" " " $L_2, L_2 = 22060 "$

" " " $L_2, L_2 = 13760 "$

Live load stresses.

The live load panel load is $450 \times 25 = 11250$ pounds.

The shear in panel $L_3, L_3 = 11250$ pounds.

The stress in $L_3, L_3 = 11250 \times 1.78 = 19980$ pounds.

The shear in panel $L_3, L_3 = 10/6 \times 11250 = 18760 "$

The stress in $L_3, L_3 = 18760 \times 1.78 = 33200 "$

The shear in panel $L_3, L_3 = 15/6 \times 11250 = 28120 "$

The stress in $L_3, L_3 = 28120 \times 1.78 = 49760 "$

Determination of Stresses in the Portal Bracing.

A sketch and dimensions of the Portal Bracing is given below and the stress are determined in the following manner.
The bracing was design to resist a lateral force of 150 pounds per linear foot of spans. The wind load per panel is therefore 150x25= 3750 pounds. The force applied at the top of the portal is 2x3750= 7500 pounds. With this loading and also with imaginary forces that are put in for convenient computation the stresses are figured as follows.

The reaction is found by taking moments about the base of the Portal, and R= \frac{7500x39.07}{17}= 17200 pounds.

Let the shear be divided equally between the two diagonals cut by any section parallel to the end post. The stress in each diagonal is 8600x1.41= 12040 pounds. The imaginary force at joint (2) is 12040 cos 4730= 8120 pounds.

Taking moments about joint (3), the imaginary force at (1) is found to be M=0=Px11+8120+3750x29.85, and P=-13920 pounds. Also taking moments about joint (2), the horizontal force at (3), is found to be M=0=Px5+3750x34.8=13920x3 P= 9550 pounds.

Taking out joint (3) by itself and solving horizontally we have, \Sigma y= 0=9550+FM0+4220; FM=13370 pounds also solving vertically it becomes \Sigma y= 0=AF+13370 \cdot 4220=17200, hence AF= 8240 pounds.

Taking out joint (2) by itself and solving horizontally, we have \Sigma x= 0=AH+12040 \cdot \sin 4730= 8240, hence AH=670 pounds.

By taking out joint (1) by itself and solving also vertically, we get \Sigma y= 0=AH-HTS=4730. Therefore HT=900 lbs.

By solving it horizontally, we have, O=DT=900 \cdot 8=4730+21420
Hence DT=22025 pounds.

Passing a section through SQ, QS, SM and taking moments
about joint (7), we have, \[M = 0 = DQ \times 6 - 1204 \times 6 \times \sin 45^\circ + 21420 \times 6 + 9550 \times 5 + 3750 \times 34.8 - 17200 \times 5.5. \]

Therefore \(DQ = -26930 \) pounds.

Next taking out joint (10) by itself and solving horizontally, we have, \[\Sigma x = 0 = -DQ + DN - 12040 \cos 45^\circ - 12040 \cos 45^\circ . \]

Hence \(D N = +22386 \) pounds.

Taking also joint 4 by itself and solving horizontally, we have \(\Sigma x = 0 = -DN - NL \cos 47.3^\circ \).

Therefore \(NL = -31340 \) pounds.

Next taking out joint 5 by itself and solving horizontally, we have \(\Sigma x = 0 = -LK + 12040 \cos 47.3^\circ \).

Hence \(LK = +16856 \) pounds.

Finally, taking out joint (8) by itself and solving horizontally, we have, \[\Sigma x = 0 = -MS + 12040 \cos 45^\circ + LK + MK \cos 4730^\circ - 8120. \]

Hence \(MS = +4150 \) pounds, and solving it vertically, we get \[\Sigma y = 0 = 12040 \cos 45^\circ - 31340 \cos 4730^\circ + MK \cos 4230^\circ . \]

Therefore \(MK = +16760 \) pounds.

3. Calculations of Sections and Weights.

Design of floor timbers.

The greatest stress in the cross-tie is produced by the loading of 25000 pounds placed on one axle. If the cross-ties be 8 inches wide and spaced 6 inches in the clear, three ties and spaces will cover a length of 3 1/2 feet. Assuming the total weight of the track as 450 pounds per linear foot, the weight for a length of 3 1/2 feet is 1575 pounds, and for each rail on each tie 8600 pounds. The dead load is relatively so small that it may be assumed to be also concentrated at the tie.
track rails, without appreciable error. The stringers are spaced 6 1/2 feet apart. The cross-tie is a beam with two concentrated loads, each of 8600 pounds, spaced 4 feet 11 1/2 inches apart and placed symmetrically with respect to the supports furnished by the stringers. The bending moment is therefore 8600x9.25 = 79550 inch-pounds. For a unit stress of 1000 pounds per square inch and a width of 8 inches, the required depth of the cross-tie is found to be 8 inches. The bearing value of timber is taken as 250 pounds per square inch. The bearing area required is then 8600/250 = 34 square inches and if the width of the base of the rail be 6 inches the breadth must be 7 inches which is safe enough within the value assumed.

Design of Track Stringers.

The span of the stringer equals the panel length of the truss, or 25 feet. Let the weight of the track carried by one stringer be assumed to be 5000 pounds, making the dead load 10500 pounds.

The maximum shear for a stringer of 25 feet was found to be 70650 pounds, while the dead load shear is 5250 pounds, making the total shear 75900 pounds.

Let the depth of the stringer be taken as 36 inches. A thickness of 7/16 allows for enough rivets to be deducted from the web. But this thickness, however, required stiffeners to be used, which may be avoided by increasing the thickness to 1/2.

The dead load bending moment is $10500 \times 25 = 33100 \text{ ft-lbs}.$
while the live load bending moment was found to be 381250 ft-lbs., thus making the total moment 381250+33100= 414350 foot-pounds.

Assuming the unit tensile stress as 10000 pounds, and the effective depth to be 32.5 inches, one half of flange is therefore $A=\frac{414350 \times 12}{32.5 \times 10000}$ square inches.

Let $21^\circ-6\times\frac{3}{4}$ be assumed, then the net area is $A= 2(8.44-.75)= 15.38$ square inches.

The actual effective depth is 32.44 inches, and the revised flange area is $A= \frac{414350 \times 12}{32.44 \times 10000}$ square inches, and therefore these angles will be used.

Let the rivet pitch in the flange be determined next. The maximum vertical shear at the end is 75900 pounds, and the increment of flange stress per linear inch is $\frac{15.32}{32.44} \times \frac{75900}{15.38}$ pounds.

The vertical load on the flange is $25600/42= 595$ pounds.

The resultant of these horizontal and vertical components is $R= \sqrt{2340^2 + 595.5^2}$ pounds.

The allowable bearing value of $7/8$ rivet in $1/2$ web plate is $8/10 \times 7/8 \times 1/2 \times 1500= 5280$ pounds, and hence the theoretic rivet pitch at the end is $5280/2410= 2.3$ inches.

Since the vertical angles which connect the end of the stringer to the web of the floor beam are to be straight, fillers whose thickness equals that of the flange angles are placed. The value of $7/8$ rivet in single shear at 7200 pounds per square inch is 4320 pounds.

The number of rivets required to transmit the shear
from the web of the stringer to the connection angles is $\frac{75900}{5250} = 15$.

The rivets connecting the other legs of these angles to the web of the floor beam are field rivets, and since they are in single shear the number required is $\frac{75900}{4320} = 18$ shop rivets or 28 field rivets.

The estimate of the weight of one stringer is as follows:

4 flange angles $6\times6\times\frac{3}{4}\times24'-11''$ @ $28.7^\#$ $2870^\#$
1 web plate $36\times1/2\times24'-11''$ @ $61.2^\#$ $1530^\#$
4 connection angles $6\times6\times1/2\times3\frac{3}{8}$ $19.6^\#$ $274.4^\#$
4 fillers $9\times1/2\times2'-0''$ @ $15.3^\#$ $122.4^\#$
250 pairs of rivet heads $0.369^\#$ $88.0^\#$

Total................................. $4884.8^\#$

a quantity nearly equal to the value assumed.

Design of Floor Beams.

For convenience in erection, bracket angles are riveted to the lower flange of the floor beam or to the web just above the flange, on which to support the stringers until their end connecting angles are riveted to the floor-beam webs.

Assuming that the vertical legs of the flange angles do not exceed 4 inches, it is found that a depth of 48 inches will bring the top of the cross-ties about 3 inches higher than the top of the floor beam.

The floor beam carries, in addition to its own weight, two concentrated loads $3'-3''$ from its center, each load consisting of the maximum sum of the adjacent reactions of the
stringers on both sides. This sum includes the weight of one stringer, and of the track which it supports, and the corresponding live load. The maximum floor beam reaction was found to be 94550 pounds, and assuming the weight of the floor beam to be 5000 pounds, the total maximum shear is therefore 94550 + 10500 + 2500 = 107550 pounds, where 10500 is the dead load reaction of one stringer.

The allowable unit stress is $\frac{8}{10} \times 9000 = 7200$, and the required net area of the web is $\frac{107550}{7200} = 14.93$ square inches.

Let the thickness of the web be taken as $\frac{7}{16}$, then the gross area is $48 \times \frac{7}{16} = 20.66$ square inches, which allows enough rivets to be deducted from the web free for the splice section. The length of the floor beam is 17 feet, and the dead load bending moment is $M = \frac{5000 \times 17}{8} = 10625$ foot-lbs. The live load bending moment was found to be 55152.5 foot-lbs., making the total bending moment 562137.5 foot-lbs.

Assuming the effective depth to be 46 inches, the area of one half of the flange is $A = \frac{562137.5 \times 12}{10000 \times 46} = 14.61$ square inches.

Let the following composition of the flange be taken, which furnishes a net area of 14.74 square inches. 2 angles, $5 \times 4 \times \frac{9}{16}$, $2(4.75 - 1.10) = 7.24$ square inches.

1 cover plate, $12 \times \frac{3}{4}$, $9 - 15 - 7.50$

Total net area.............14.74 square inches.

The center of gravity of the solid section of the upper flange is $\frac{7.24 \times 1.48}{14.74} = 0.73$ inches, below the backs of the angles, and that of the net section of the lower flange is
9.5x1.48/18.5 = 0.77 inches above the backs of the angles.
The effective depth is therefore 48-1.5 = 46.5 inches, and
the revised flange area is \(A = \frac{674,5650}{10,000 \times 46.5} = 14.59 \) square inches.

The above mentioned angles a plate mill therefore be used.
Let the rivet pitch of the flange angles be considered next.

The bearing value of \(\frac{7}{8} \) rivet in \(\frac{7}{16} \) web plate is
\(\frac{8}{10} \times 7/8 \times 7/16 \times 15000 = 4620 \).

The increment of flange stress per linear inch is
\(\frac{14.59 \times 107,550}{4620} = 2100 \), and the pitch is \(\frac{4620}{2100} = 2.15 \) inches.

In the space between the stringers the pitch is made 6 inches, the maximum allowed.

In figuring the number of rivets in the web splice the bearing value of rivets will be considered, since their value is less than that in double shear. The bearing value of \(\frac{7}{8} \) rivet in a \(\frac{7}{16} \) web plate is
\(\frac{8}{10} \times 7/8 \times 7/16 \times 15000 = 4520 \).

The number of rivets is therefore \(\frac{107,550}{4620} = 24 \) (shop rivets).

Since the rivets are field ones, their number will be increased by 50% and is therefore \(1.5 \times 24 = 36 \).

The estimate of the weight of one floor beam is as follows:

2 flange angles, 5x5x3/16x16'-1" @ 16.2" 523 pounds
2 flange angles, 5x4x3/6x14x4 16.2" 464 "
1 cover plate, 12x3/4x16-1" 30.6" 490 "
1 cover plate, 12x3/4x11-4" 30.6" 350 "
1 web plate, 48x7/16x11-1 1/2 71.44" 735 "
2 web plates, 22x7/16x7-5 1/2 34.24" 250 "
4 splice plates, 30x3/16x3-8 57.4" 175 "
4 filler plates, 27x1/2x2-10 45.9" 95 "
4 connection angles, 3 1/2x2 3 1/2x1/2x2-4 11.1" 25 "
Sections of Intermediate Posts.

Let be required to design the section of the post \(U_2 L_3 \). Neglecting the wind stresses, which are relatively too small to affect, the total stress to be considered is \(78630 + 16875/2 = 87060 \). Let 2-1/2 inch, 35° channels be tried. The radius of gyration is 4.17 inches and the allowable unit stress is \(P = 8500 - 45 \times 30 \times 12 = 3260 \) pounds. The required area is \(87060/3260 = 18.66 \) square inches. The area of the two channels is \(2 \times 10.29 = 20.58 \) square inches, and therefore they will be used. The distance back to back of channels, in order to make the radii of gyration equal is 9.59 inches.

In a similar manner it is found that two 12-inch 20.5 pounds channels are needed for the post \(U_3 L_2 \), the radius of gyration being 4.61 inches, the allowable unit compressive stress per square inch in \(P = 8500 - 45 \times 30 \times 12 = 3260 \). The required sectional area is \(37130/3260 = 11.4 \) square inches. The area of the two channels is \(2 \times 6.03 = 12.06 \) sq. inches and therefore they will be used. The distance back to back of channels is found to be 10.48 inches.

Sections of Diagonals and Suspender.

Connection angles, 3 1/2x3 1/2x 1/2x2-1	11.5 lbs	22 lbs
4 filler plates, 7x3/16x2-11	13.4 lbs	23 lbs
4 angles, 4x3 1/2x3/8x2-7 1/2	3.1 lbs	20 lbs
4 filler plates, 3 1/2x3/16x2-1	6.7 lbs	15 lbs
4 filler plates, 3 1/2x1/2x2-4	6.7 lbs	15 lbs
4 angles, 3 1/2x3 1/2x 3/8x3-3	8.5 lbs	111 lbs
4 bracket angles, 5x4x3/8x1-3	85 lbs	55 lbs
600 airs of rivet heads	0.369 lbs	225 lbs

Total: 4647 lbs
Since the stress in U, L_3 is a tension of 210800 pounds, it may be composed of one pair of eye-bars. The wind stress may be neglected in designing the member according to the specifications. For the unit tensile stress of 10000 pounds per square inch, the sectional area must be $210800/10000 = 21.08$ square inches. Two eye-bars, $8 \times 1 \frac{3}{8}$, provide an area of 22 square inches, and therefore they will be used.

The stress in $U_2 L_4$ was found to be 113170 pounds, and for a unit tensile stress of 10000 pounds per square inch the required sectional area is $113170/10000 = 11.315$ square inches.

Two eye-bars, $6 \times 1''$, provide an area of 12 square inches and therefore they will be used.

In a similar manner the counter brace is designed. The stress in $U_3 L_3$ is a tension of 26330 pounds. The required area is $26330/10000 = 2.63$ square inches. Therefore one eye-bar, $4 \times 3/4''$, which provides a sectional area of 3 square inches will be used.

The suspender, U, L_2 will be designed as a stiff member. It required net sectional area is $111320/8000 = 14.92$ square inches. Two 12-inch 35 pound channels will be selected, as they will furnish 15.5 square inches, after deducting two rivet holes in both the web and flanges of each channel.

Lower Chord Sections.

Since the wind stresses in these chords are less than 30 percent of the maximum strains due to the dead and live loads, they can be therefore neglected.
The equivalent live load is \(L, L_2 \) is 203870 pounds.

With a unit stress of 10000 pounds per square inch the required area is
\[\frac{203870}{10000} = 20.39 \text{ square inches}. \]

Let \(L, L_2 \) be composed of two web plates and four angles. Since the
eye-bar heads of the 8 inch eye-bars are 17 inches deep, let the web plates be made 18 inches deep so as to avoid cutting the angles in order to pass the eye-bar heads at \(L_3 \). Selecting 2 web plates 18\(\times \)1/2\(^{\prime} \) and 4 angles 3 1/2\(\times \)3 1/2\(\times \)5/8, the rivets in the end pin plates can be so arranged as not to deduct more than 3 rivet holes in each web plate and one in each angle, giving a net area of 20.46 square inches.

The area of 2 web plates, 18\(\times \)1/2\(^{\prime} \) is 18 square inches, while the area of 4 angles, 3 1/2\(\times \)3 1/2\(\times \)5/8 is 7.96 square inches, making the total gross area 25.96 square inches. The area of 4 rivet holes in the angles is 4\(\times \)5/8 = 2.5 square inches, while the area of 6 rivet holes in the webs is 6\(\times \)1/2\(^{\prime} \) = 3 square inches. The net area is therefore 25.96 - 2.5 - 3 = 20.46 square inches, and therefore this section will be used.

The member \(L_3, L_4 \) will consist of eye-bars. The stress in this member is 318725 pounds, and with an allowable unit stress of 10000 pounds per square inch, the required net area is
\[\frac{318725}{10000} = 31.87 \text{ square inches}. \]

Let 4 eye-bars, 8\(\times \)1\(^{\prime} \), be selected. The area of these eye-bars is 4\(\times \)8\(\times \)1\(^{\prime} \) = 32 square inches, and therefore they will be used.

Upper Chord Sections.

Let the chord \(U, U_2 \) be designed first.
The equivalent live load stress in this member is 318725 lbs.

Let the composition of the section be as follows:
1 cover plate, 26x3/89.75 square inches
4 angles, 3 1/2x3 1/2x3/89.92 " "
2 web plates, 18x7/1615.76 " "
2 flats, 5x3/16 5.60 " "
Total41.03

This section will now be investigated in order to determine if it fulfills the conditions, and does not give an excess or deficiency of area. The center of gravity is computed by taking moments about an axis through the center of the top plate and parallel to its width. It was best to arrange the principal quantities in tabular form, A representing the area of any part in square inches, and l its lever arm in inches with respect to the axis mentioned above.

<table>
<thead>
<tr>
<th>Piece</th>
<th>A</th>
<th>l</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>9.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 angles</td>
<td>4.96</td>
<td>1.2</td>
<td>5.95</td>
</tr>
<tr>
<td>2 angles</td>
<td>4.96</td>
<td>17.18</td>
<td>85.21</td>
</tr>
<tr>
<td>2 web plates</td>
<td>15.76</td>
<td>9.19</td>
<td>144.83</td>
</tr>
<tr>
<td>2 plates</td>
<td>5.60</td>
<td>18.47</td>
<td>103.43</td>
</tr>
<tr>
<td>Sums</td>
<td>41.03</td>
<td></td>
<td>339.42</td>
</tr>
</tbody>
</table>

Then the distance from center of cover plate to the center of gravity of section is \(g = \frac{Al}{A} = \frac{339.42}{41.03} = 8.3 \) inches, and the eccentricity of the section, or distance from center of webs to neutral axis is \(E = 9.18 - 8.3 = 0.88 \) inches. The moment of inertia of the section is now computed, neglecting the
moments of inertia of the plates about their own axis parallel to their width; thus

<table>
<thead>
<tr>
<th>Piece</th>
<th>A</th>
<th>I'</th>
<th>h</th>
<th>Ah²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>9.75</td>
<td>.20</td>
<td>9.19</td>
<td>823.39</td>
</tr>
<tr>
<td>4 angles</td>
<td>9.92</td>
<td>11.48</td>
<td>7.99</td>
<td>633.30</td>
</tr>
<tr>
<td>2 web plates</td>
<td>15.76</td>
<td>425.20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 flats</td>
<td>5.6</td>
<td>.40</td>
<td>9.25</td>
<td>479.13</td>
</tr>
<tr>
<td>Sums</td>
<td>41.03</td>
<td>437.28</td>
<td>1935.82</td>
<td></td>
</tr>
</tbody>
</table>

whence I = (I' - Ah²) = 2372.1 inches, and the radius of gyration of the section is

\[r = \left(\frac{2373.1}{41.03} \right)^{\frac{1}{2}} = 7.58 \text{ inches.} \]

Lastly, by the column formula of the Specifications.

\[P = 10000 - 45\times 30\times 12/7.58 = 7860 \text{ pounds, per square inch.} \]

As the stress in the chord is 318725 pounds, the area required is 318725/7860 = 40.5 square inches, and therefore the assumed section will be adopted.

The chord \(U_2 U_3 \) will be designed next.

The equivalent live load stress in this chord is 332290 pounds.

Let the composition of the section be as follows:

<table>
<thead>
<tr>
<th>Piece</th>
<th>Size</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>26(\times)(\frac{3}{8})</td>
<td>.9.75 square inches</td>
</tr>
<tr>
<td>4 angles</td>
<td>3 (1/2)(\times)(\frac{3}{8}) (1/2)(\times)(7/16)</td>
<td>11.48 " "</td>
</tr>
<tr>
<td>2 web plates</td>
<td>18(\times)(7/16)</td>
<td>15.76 " "</td>
</tr>
<tr>
<td>2 flats</td>
<td>5(\times)1(\times)(1/2)</td>
<td>5.00 " "</td>
</tr>
</tbody>
</table>

Total.........................41.99 square inches.

The center of gravity is computed by taking moments about an axis through the center of the top plate and parallel to its width. A table similar to the previous one will be arranged in which represents the area of any part in square inches, and 1 its lever arm in inches with respect to the axis mentioned
above.

<table>
<thead>
<tr>
<th>Piece</th>
<th>A</th>
<th>1</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>9.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 angles</td>
<td>5.74</td>
<td>1.15</td>
<td>6.60</td>
</tr>
<tr>
<td>2 angles</td>
<td>5.74</td>
<td>16.86</td>
<td>97.18</td>
</tr>
<tr>
<td>2 web plates</td>
<td>15.76</td>
<td>9.11</td>
<td>143.57</td>
</tr>
<tr>
<td>Ellipses</td>
<td>5.00</td>
<td>18.61</td>
<td>93.05</td>
</tr>
<tr>
<td>Sums</td>
<td>41.99</td>
<td>340.4</td>
<td></td>
</tr>
</tbody>
</table>

\[g = \frac{Al}{A} = \frac{340.4}{41.99} = 8.1 \text{ inches, and the eccentricity of the section is } e = 9.09 - 8.1 = 0.99 \text{ inches above the center of the web plate. The moment of inertia of the section is now computed, neglecting the moments of inertia of the plates about their own axis parallel to their width, thus} \]

<table>
<thead>
<tr>
<th>Piece</th>
<th>A</th>
<th>I'</th>
<th>h</th>
<th>Al²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>9.75</td>
<td>0.2</td>
<td>9.19</td>
<td>807.4</td>
</tr>
<tr>
<td>4 angles</td>
<td>11.48</td>
<td>13.0</td>
<td>8.08</td>
<td>750.4</td>
</tr>
<tr>
<td>2 web plates</td>
<td>15.76</td>
<td>425.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 flats</td>
<td>5.00</td>
<td>0.4</td>
<td>9.25</td>
<td>437.1</td>
</tr>
<tr>
<td>Sums</td>
<td>41.99</td>
<td>439.2</td>
<td></td>
<td>1994.9</td>
</tr>
</tbody>
</table>

whence \[I = \Sigma (I' + Ah^2) = 439.2 + 1994.9 = 2434.1 \text{ inches}^2, \text{ and the radius of gyration of the section is } r = \sqrt{\frac{2434.1}{41.99}} = 7.6 \text{ inches.} \]

Finally, by the column formula of the specifications, \[P = 10000 - 45 \times 30 \times 12 / 7.6 = 7870, \text{ and the required area is } 318720 / 7870 = 40.5 \text{ square inches, which shows that the assumed sectional area can be adopted.} \]

Inspection shows that moments of inertia around the neutral axis parallel to web plates are respectively greater than those computed for the sections of both chord members, and hence
the values of r determined above are the least radii of
gyration required in the column formula.

Section of Inclined End Post.

The length of the post is $30 \times \text{Sec } 39^\circ 40' = 30 \times 1.303 = 39,066$ feet. Let the composition of the section be as follows:

1 cover plate, $26'' \times 1/2''$ 13 square inches
4 angles, $3 \times 1/2'' \times 3 \times 1/2'' = 7/16''$ 11.48
2 web plates, $18'' / 16''$ 20.24
2 flats, $5'' \times 1/16''$ 10.00

Total 54.72 square inches.

This section will now be investigated in order to
determine if it fulfills the conditions, and does not give
an excess or deficiency of area. The center of gravity is
computed by taking moments about an axis through the center
of the top plate, and parallel to its width. It was best
to arrange the quantities in tabular form, A representing
the area of any part in square inches, and l its lever arm in
inches with respect to the axis above mentioned.

<table>
<thead>
<tr>
<th>Piece</th>
<th>A</th>
<th>l</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>13.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 angles</td>
<td>5.74</td>
<td>1.04</td>
<td>5.96</td>
</tr>
<tr>
<td>2 angles</td>
<td>5.74</td>
<td>17.13</td>
<td>98.61</td>
</tr>
<tr>
<td>2 web plates</td>
<td>20.24</td>
<td>9.22</td>
<td>186.61</td>
</tr>
<tr>
<td>2 flats</td>
<td>10.00</td>
<td>18.72</td>
<td>187.20</td>
</tr>
<tr>
<td>Sums</td>
<td>54.72</td>
<td></td>
<td>478.38</td>
</tr>
</tbody>
</table>
Then the distance from center of cover plate to the center of gravity of section is \(g = \frac{A_1}{A} = \frac{478.38}{54.72} = 8.74 \) inches, and the eccentricity of the section is \(e = 9.22 - 8.74 = 0.68 \) inches. The moment of inertia of the section is now computed, neglecting the moments of inertia of the plates about their own axis parallel to their width; thus

<table>
<thead>
<tr>
<th>Piece</th>
<th>(A)</th>
<th>(I)</th>
<th>(h)</th>
<th>(Ah^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cover plate</td>
<td>13.00</td>
<td>0.2</td>
<td>9.345</td>
<td>1124.06</td>
</tr>
<tr>
<td>4 angles</td>
<td>11.48</td>
<td>13.0</td>
<td>8.035</td>
<td>750.4</td>
</tr>
<tr>
<td>2 web plates</td>
<td>20.24</td>
<td>546.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 flats</td>
<td>10.00</td>
<td>0.8</td>
<td>9.75</td>
<td>926.4</td>
</tr>
<tr>
<td>Sums</td>
<td>54.72</td>
<td>560.7</td>
<td></td>
<td>2800.9</td>
</tr>
</tbody>
</table>

whence \(I = 560.7 + 2800.9 = 3361.6 \) inches, and the radius of gyration of the section is \(r = \left(\frac{33616}{54.72} \right)^{\frac{1}{2}} = 7.82 \) inches.

Lastly by the column formula of the specifications, \(P = 8500 - 45 \times 469.8 / 7.32 = 5790 \). The maximum equivalent live load stress in the end post is 313000 pounds, and the required sectional area is \(313000 / 5790 = 54.06 \) square inches. The above mentioned section will therefore be adopted.

The wind stresses are not large enough to affect the area required to resist deflection in the plane of the truss, but they will be considered in computing the stresses due to transverse deflection.

The end posts form a part of the portal which resists the wind pressure carried by the upper lateral system to the portal strut. The end posts bend in the plane containing their center lines.

In this case the inclined distance from the lower pin
of the end post to the bottom of the portal strut is assumed to be 35 feet or 420 inches. The point of inflection is at the middle of this length. The horizontal forces applied at the reactions of the portal are found to be 3750 pounds, according to the above computations. The moment due this force is

\[M = \frac{3750 \times 420}{2} = 78750 \text{ inch-pounds}. \]

Referred to the above axis the section can stand a live load moment of

\[M = \frac{F l}{Y} = \frac{10000 \times 3361.6}{8.76} = 3830000 \text{ inch-pounds}. \]

Since the moment due to the wind is less than 30 percent of the allowable live load bending moment, it need not be therefore considered.

CENTER LINE OF PINS.

The pins will be placed at such a distance below the center of gravity that the direct stress acting along the neutral axis will produce a moment neutralizing the moment due to the weight of the member itself. Let this distance be denoted by \(p \), let \(W \) be the total weight of the member in pounds, \(l \) the length in inches, and \(P \) the total stress in the member, which in this case is the sum of the dead and live load stresses. Then \(Pp = \frac{Wl}{8} \), or \(p = \frac{1}{8} \frac{Wl}{P} \).

Let \(d \) be the distance of center line of pins above the center of web plates. Then \(d = 1 - p \).

To determine the weight per linear foot of a member, the weight of material in the section is taken and 20 percent added for the weight of Catten plates, lattice bars, rivet heads, and pin plates. For example, for the end post U, L, the weight per linear foot is,
2 web plates, 18x3/16- 68.88 pounds ,
1 cover plate, 26x7/16- 38.68 "
4 angles, 3 1/2x7/16- 39.20 "
2 flats 5x1- 34.00 "

and the sum of these plus 20 percent is 226 pounds nearly.
Here the component which causes bending is 226/1.302 or 174 pounds, and the total weight W is 174x39.06= 6786 pounds.
The distance p is p= 12x6786x39.06/8x31300= 1.26 inches,
and hence d= 0.68-1.26= 0.58 inch is the correct distance
of the center line of pins below the center line of web
plates. In like manner are found p= 0.4 and d= 0.44 inches
for U, U₂

Design of Pins.

Where there are a number of bars on one pin and the forces
are acting in different directions, it is necessary to resolve
these forces into forces in two planes at right angles to each
other and after finding the bending moment in each of these
planes the resultant of these two moments at any point is to
be taken as the total moment on the pin at that point. The
resultant being equal to the square moments in the two planes.

Following are the methods for figuring the moments on
the pins.

To determine the maximum bending moment on the pin at the
joint L₄ the moment is figured with a maximum stress on the
diagonal U₂L₄ also with a maximum stress on chord L₃L₄. The
bending moment is figured for each of the above conditions.
Maximum stress in U₂L₄ occurs when wheel 3 is at L₄. With
this loading the stresses in members on pin \(I_2 \) are shown in sketch and moments are given below.

Thus the horizontal bending moments are found as follows:

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_3 L_4)</td>
<td>65679</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(L_4 L_5)</td>
<td>79660</td>
<td>65679</td>
<td>1.125</td>
<td>73584</td>
<td>73584</td>
</tr>
<tr>
<td>(L_3 L_4)</td>
<td>65679</td>
<td>13981</td>
<td>1.125</td>
<td>15658</td>
<td>57926</td>
</tr>
<tr>
<td>(L_4 L_5)</td>
<td>79660</td>
<td>51698</td>
<td>1.125</td>
<td>57904</td>
<td>115830</td>
</tr>
<tr>
<td>(U_4 L_4)</td>
<td>12800</td>
<td>27962</td>
<td>1.125</td>
<td>31560</td>
<td>84470</td>
</tr>
<tr>
<td>(U_2 L_4)</td>
<td>40762</td>
<td>40762</td>
<td>.82</td>
<td>32616</td>
<td>51854</td>
</tr>
<tr>
<td>(U_1 L_4)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

while the vertical bending moments are:

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_2 L_4)</td>
<td>14800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_2 L_4)</td>
<td>31190</td>
<td>14800</td>
<td>1.125</td>
<td>16650</td>
<td>16650</td>
</tr>
<tr>
<td>(U_3 L_4)</td>
<td>45990</td>
<td>45990</td>
<td>.82</td>
<td>36800</td>
<td>53450</td>
</tr>
</tbody>
</table>

The resultant bending moment is \(M = (115830 + 53450) = 127500 \) pounds-inches, and referring to tables of manufacturers hand back it is found that a 4 1/2 inch pin resists a bending moment of 134200 pound-inches.
In order to provide adequate having area for the eye-bars, the pin cannot be less than $\frac{210800}{2 \times 12500 \times 1.3/8} = 6.3$ inches for 8-inch eye-bars. Therefore a 6 1/2 inch pin will be required at this point.

The maximum stress in the chord $L_2 L_4$ occurs when wheel 7 is at L_7.

With this loading the stresses on members connecting on L_4 are as shown below.

- **Horizontal Moments.**

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_2 L_4$</td>
<td>93744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_4 L_4$</td>
<td>99755</td>
<td>93744</td>
<td>1.125</td>
<td>117180</td>
<td>117190</td>
</tr>
<tr>
<td>$L_4 L_7$</td>
<td>93744</td>
<td>6011</td>
<td>1.125</td>
<td>6734</td>
<td>110446</td>
</tr>
<tr>
<td>$L_4 U_4$</td>
<td>99755</td>
<td>87733</td>
<td>1.125</td>
<td>114052</td>
<td>3606</td>
</tr>
<tr>
<td>$U_2 L_4$</td>
<td>22000</td>
<td>12022</td>
<td>1.125</td>
<td>156286</td>
<td>159822</td>
</tr>
<tr>
<td>$U_3 L_4$</td>
<td>34022</td>
<td>34080</td>
<td>.82</td>
<td>27270</td>
<td>187162</td>
</tr>
<tr>
<td>$U_3 L_7$</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Vertical Moments.**

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_4 L_4$</td>
<td>5838</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_2 L_4$</td>
<td>25440</td>
<td>5838</td>
<td>1.125</td>
<td>7590</td>
<td>7590</td>
</tr>
<tr>
<td>$U_3 L_4$</td>
<td>31278</td>
<td>31278</td>
<td>.82</td>
<td>25648</td>
<td>33238</td>
</tr>
</tbody>
</table>

The resultant moment is $M = (187162 + 33238)^{1/2} = 190000$ pound-
inches. A pin of \(\frac{5}{8} \) inch in diameter will resist a bending moment of 198200 pound-inches, and therefore it can be used. Since the bearing at this point requires a pin of 6.4 inches in diameter, a 6 1/2 pin will therefore be adopted.

Design of pin at the point \(L_3 \).

In a similar manner the bending moments on this pin is figured with the maximum stress in \(L_2 L_3 \) and also with the maximum stress in \(U_1 L_3 \).

The maximum stress in \(L_2 L_3 \) occurs when wheel 4 is at \(L_3 \). With this loading the stresses in the members are shown in sketch and moments are given below.

![Sketch of pin design](image)

Horizontal Moments

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_3 L_4)</td>
<td>92749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_2 L_3)</td>
<td>119150</td>
<td>92749</td>
<td>1.25</td>
<td>115940</td>
<td>115940</td>
</tr>
<tr>
<td>(L_3 L_4)</td>
<td>92749</td>
<td>26401</td>
<td>2.75</td>
<td>722660</td>
<td>43280</td>
</tr>
<tr>
<td>(U_1 L_3)</td>
<td>66348</td>
<td>66348</td>
<td>1.20</td>
<td>79618</td>
<td>122898</td>
</tr>
<tr>
<td>(U_2 L_3)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Moments

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_1 L_3)</td>
<td>7428</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U_2 L_3)</td>
<td>7428</td>
<td>74280</td>
<td>1</td>
<td>74280</td>
<td>74280</td>
</tr>
</tbody>
</table>

and the resultant moment is \(M = \left(\frac{122898 + 74280}{2} \right) \times 1/2 = 142300 \) pound-inches.
The maximum stress in diagonal U_1, L_3 occurs when wheel 4 is at L_3.

The stresses due to this loading are shown in the sketch and the moments are represented in tabular form as follows:

- **Horizontal Moments.**

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_2, L_4</td>
<td>89311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_2, L_3</td>
<td>101650</td>
<td>89311</td>
<td>1.125</td>
<td>111625</td>
<td>111625</td>
</tr>
<tr>
<td>L_3, L_4</td>
<td>89311</td>
<td>12339</td>
<td>2.75</td>
<td>339350</td>
<td>227725</td>
</tr>
<tr>
<td>U_1, L_3</td>
<td>76972</td>
<td>76972</td>
<td>1.20</td>
<td>92280</td>
<td>135445</td>
</tr>
<tr>
<td>U_2, L_2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Vertical Moments.**

<table>
<thead>
<tr>
<th>Member</th>
<th>Stress</th>
<th>V</th>
<th>X</th>
<th>VX</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_1, L_3</td>
<td>93680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_2, L_3</td>
<td>93680</td>
<td>93680</td>
<td>1</td>
<td>93680</td>
<td>93680</td>
</tr>
</tbody>
</table>

The resultant moment is $M = (227725 - 93680)\ 1/2 = 245400$ pound-inches. It is therefore found that with the maximum stress in the diagonal U_1, L_3 the pin will have a larger bending moment. A 5 5/8 inch pin will resist a bending moment of 262100 pound-inches and therefore may be used.

But the bearing on 8 inch eye-bar requires a pin of 6.4 inches, therefore a 6 1/2 pin will in this case also be used.
Since the bending moments on the other pins are less than those of the above mentioned, a uniform size of pins will be adopted and therefore a 6 1/2 inch pin for all joints will be used.

Lateral Bracing.

Since the stresses in the top lateral are very small, they will not be designed, but minimum allowable angles will be used. With regard to the bottom laterals they will be designed in the following manner.

The live stress in the diagonal L_1L_2 is 49760 pounds, while the dead load stress is 16800 pounds. The net area for the live load stress is $\frac{49760}{12000}= 4.15$ square inches. The net area required for the dead load is $\frac{16800}{18000}= 0.93$ square inches. The total net area required is 5.08 inches. Let 2 angles, 3 1/2" x 3 1/2x1/2" be tried. Deducting two rivet holes for each angle thenet area obtained is $2 \times 3.25-1.00= 5.5$ square inches and therefore they will be used. The value of rivets in single shear per square inch is $1.5 \times 9000=13500$ pounds. The value of 7/8 inch rivet in single shear is $.601 \times 13500= 8100$ pounds. The number of rivets required is therefore $66500/8100= 9$. Since the rivets are field ones, their number will be therefore $1.5 \times 9= 14$.

In a similar manner it was found that 2 angles, 3 1/2x3 1/2 x5/16 ought to be adopted for the diagonal L_2L_3 and the number of field rivets required to connect them to the plate must not be less than 20.

In the same way it was found that only 1 angle is re-
quired for the diagonal \(L_2 L_4 \) and the number of field rivets required is 8.

Design of Portal Bracing.

Since the horizontal angles in the upper and lower flange of the portal will consist of the same size, the maximum tension or compression of the member will be used. The largest compressive stress occurs in member \(D_6 \). The length of the member is 72 inches. The allowable unit compressive stress is
\[
P = 13000 - 60 \frac{l}{r} = 13000 - 60 \times 72 / r.
\]
Let angles, 3 1/2\(\times \) 3 1/2\(\times \)5/16 be tried. The radius of gyration of this angle is 1.08 and the unit compressive stress is therefore
\[
P = 13000 - 60 \times 72 / 1.08 = 9000 \text{ pounds.}
\]
The area required is
\[
\frac{26930}{9000} = 2.99 \text{ square inches.}
\]
The area of two angles is
\[
2 \times 2.09 = 4.18 \text{ square inches, which gives an excessive area. But these angles are the minimum allowable and therefore they will be used.}
\]
The value of 7/8 rivet in single shear at 13500 pounds per square inch is 8100 pounds. The number of rivets required for connection of the angles to the plate is
\[
\frac{26900}{8100} = 4.
\]
In the same manner it was found that the angles of the lower flange of the portal will be of the minimum allowable ones and therefore the same as above will be used. The tension in the middle diagonal is 12040 pounds, while the compressive stress in the other interested diagonal is also 12040 pounds. Let 1 angle, 3 1/2\(\times \) 3 1/2\(\times \)5/16 be tried. The required area for tension is
\[
\frac{12040}{12000} = 1.003 \text{ square inches, while the area required for compression is}
\]
\[
\frac{12040}{9000} = 1.34 \text{ square inches. Therefore the above mentioned angle will be used.}
In the same manner it was found that a minimum allowable angle will satisfy the conditions of the other members and therefore it will be used.

Design of Pin Plates.

The maximum pin bearing at the bottom of the post $U_2 L_3$ equals the maximum vertical component in the diagonal U_L, which is $210800 \sin 50^\circ \approx 156000$ pounds. As the diameter of the pin is 6 1/2 inches, the bearing area required on each side of the post is $156000/2 \times 6.5 \times 12500 = 6.975$ inches. The thickness of the channel web is 0.636 inches, and hence one pin plate whose thickness is 3/8 will be required.

The full bearing value taken by the pin plate is $0.375 \times 6.5 \times 12500 = 30000$ pounds.

The shearing value of a 7/8" rivet in single shear at 9000 pounds per square inch is 5400 pounds. The number of rivets required is then $30000/5400 = 6$. Additional rivets are placed below the pin to keep the parts in contact.

At the upper panel point the maximum bearing value on the pin is the stress in the post $U_2 L_3$, which is 87118 pounds. The bearing area required is $87118/2 \times 6.5 \times 12500 = 0.544$ inches. Since the thickness of the channel web is 0.636 inch, no pin plate is therefore needed.

Since the suspender U_L is a tension member, its net sectional area at the pin hole must be 40 percent in excess of the net area in its main body. The area for each side is therefore $14.92 \times 1.4/2 = 10.44$ square inches. The simplest arrangement is to use one pin of 10.5 square inches. The net
area of the pin plate is 10.5-6.5x.875 = 4.8 square inches, and its full tensile stress is 10000x4.8 = 48000 pounds. The shearing value of 7/8 rivet at 9000 pounds per square inch is 5400 pounds. The number of rivet required is 48000/5400 = 9. The distance beyond the pin is 10.5x.70 = 4.9 inches.

The net area at the pin holes in the lower chord L₂L₃ must not be less than 20.39x1.4/2 = 14.28 square inches.

One pin plate, 17"x7/8", will be used, whose gross area is 14.8 square inches. The net area of the pin plate is 14.8-6.5x.875 = 9.19 square inches. The full tensile stress of the pin plate is 9.19x10000 = 91900 pounds. The shearing value of a 7/8 rivet in single shear is 5400 pounds.

The number of rivets required is 91900/5400 = 18, and the distance beyond the pin is therefore 0.70x14.8/ = 7 5/8 inches.

The pin bearing at panel point U₂ in the upper chord is to be designed to take the horizontal component of the stress in the diagonal U₂L₂ or 71190 pounds. The linear bearing on each side is 71190/2x6.5x12500 = 0.44 inches and hence a pin plate of minimum thickness will be used. The share of stress taken by the pin plate is 6/13x71190/2 = 16400 pounds and the number of rivets required is 16400/5400 = 4.

The pin bearing at panel point U₁ in the upper chord takes the stress of the chord U₁U₂ which is 318725 pounds. The linear bearing on each side is 318725/2x6.5x12500 = 1.991 inches. The thickness of the web plate is 437 inch, and thickness of pin plates must not be less than 1.991-0.437 = 1.55 inches.

Two pin plates, each of 13/16 will be selected. The
stress taken by the pin plates is $1.624 \times 6.5 \times 12500 = 128000$ pounds. Since the rivets are in double shear, the bearing value of rivet will be considered. The bearing value of $7/8$ inch rivet in a $7/16$ inch plate at 15000 pounds per square inch is 5800 pounds. The number of rivets is therefore $128000 / 5800 = 23$.

Finally, the pin bearing at panel point U, in the end post takes the equivalent live load stress of the end post which in this case is 313000 pounds. The linear bearing on each side is $313000 / 2 \times 6.5 \times 2500 = 1.96$ inches.

The thickness of the pin plates must not be less than $1.96 - .562 = 1.398$ inches. Two pin plate, each of $3/4$ in thickness will be selected. The full bearing stress of the pins is $1.5 \times 6.5 \times 12500 = 120000$ pounds. The bearing value of $7/8$ inch rivet in a $9/16$ inch plate is 7350 pounds. The number of rivets is therefore $120000 / 7350 = 17$.

End Bearings.

The maximum reaction is equal to 3 times the dead panel load divided by 2, plus the maximum live load reaction when the bridge is fully loaded. The maximum reaction is therefore $3 \times 33750 / 2 + 226450 = 282075$ pounds.

The design of the pedestals for the fixed end will be made first. The bearing area required is $282075 / 12500 = 22.56$ square inches, and $1/6.5 \times 22.56 = 3.5$ inches is the width of the bearing area on a 6 1/2 inch pin. Four vertical bearing plates each $7/8$ inch thick will be used. The inside connection angles will be $5\times6\times7/8$, and the outer ones will be $6\times6\times7/8$.
The allowable bearing value of massury per square inch was taken as 250 pounds. The bearing area required is $282075/250 = 1128$ square inches.

If the width of the massury plate be taken at 30 inches, the length therefore must not be less than 38 inches. The bearing plate will be the same area and thickness. Both bearing and masonry plates will be ordered $13/16$ inch thick and finished on one side to $3/4$ inch. The pedestal will be anchored to the masonry by 1 1/2 inch anchor bolts securely fast-bolted in the masonry to a depth of 12 inches.

The design of the pedestal and roller next for the free end is as follows: The vertical plates and connections angles will be the same as the fixed end. The width cannot be less than 22.5 inches. The allowable load for rollers per square inch is $300d$. Here d is $4.7/8 + 0.5 = 5.375$ inches, which makes the load per linear inch equal to 1612.5 pounds. Hence, $282075/1612.5 = 174.9$ linear inches are required. If each roller be 30 inches long, six will be needed. The bearing and masonry plates will be ordered $13/16$ inches thick and finished on one face to $3/4$ inch. The dimensions of the bearing plate will be the same as the masonry plate.

Analysis of Weight.
Intermediate posts:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$U_2 U_7$</td>
<td>4340</td>
</tr>
<tr>
<td>2</td>
<td>$U_2 L_7$</td>
<td>4340</td>
</tr>
<tr>
<td>1</td>
<td>$U_2 L_8$</td>
<td>2540</td>
</tr>
</tbody>
</table>

11220 pounds

Diagonals:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$U_2 L_4$</td>
<td>5900</td>
</tr>
<tr>
<td>2</td>
<td>$U_2 L_4$</td>
<td>3220</td>
</tr>
<tr>
<td>2</td>
<td>$U_2 L_8$</td>
<td>1610</td>
</tr>
</tbody>
</table>

10730 pounds.
Lower chords:

4- L, L₂ - 4x2x26.5x57.2 - 12120
2- L₁, L₃ - 2x4x26.5x272.2 - 5770 17890 pounds

Upper chords:

2- U, U₂ - 2x2x26x69.95 - 7280
2- U₂, U₃ - 2x2x26x72.88 - 7580 14860 pounds

End posts:

2- U, L - 2x2x39.5x81.86 - 12940 pounds

Pins:

12- 6 1/2 inch pins - 12x2x112.8 - 2680 pounds

Top lateral bracing:

6 angles, 3 1/2x3 1/2x3/8x25.5x8.5 - 216.75
4 angles, 3 1/2x3 1/2x3/8x15.5x8.5 - 131.75 348.5 pounds

Bottom lateral bracing:

4 angles, 3 1/2x3 1/2x1/2x25.5x8.5 - 216.75
2 angles, 3 1/2x3 1/2x5/16x25.5x12.4 316.25 523 pounds

Portal bracing:

2 angles, 3 1/2x3 1/2x5/16x7.5x8.5 - 63.75
2 angles, 3 1/2x3 1/2x5/16x8x8.5 - 70.
2 angles, 3 1/2x3 1/2x5/10x6x12.4 - 75.
2 angles, 3 1/2x3 1/2x5/16x8.5x8.5 - 64.25
1 angle, 3 1/2x3 1/2x5/16x8x8.5 - 70. 283 pounds

Sway bracing:

2 angles, 3 1/2x3 1/2x3/8x7.75x8.5 - 69.5
2 angles, 3 1/2x3 1/3x3/8x7x8.5 - 59.5
3 angles, 3 1/2x3 1/2x3/8x8.5x8.5 - 64. 193 pounds
End bearings.

<table>
<thead>
<tr>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Plate</td>
<td>30 1/2x1 1/8x2-8x114.55-</td>
</tr>
<tr>
<td>1 plate</td>
<td>30 1/2x1 1/4x3-8x127.5-</td>
</tr>
<tr>
<td>2 angles</td>
<td>6x6x7/8x2-8x31-</td>
</tr>
<tr>
<td>2 angles</td>
<td>6x6x7/8x2-8x31-</td>
</tr>
<tr>
<td>1 plate</td>
<td>10 1/4x5/8x1x13-</td>
</tr>
<tr>
<td>2 plates</td>
<td>19 1/2x1/2x2-6x32-</td>
</tr>
<tr>
<td>6 Plates</td>
<td>17x5/8x2-6x36-</td>
</tr>
</tbody>
</table>

Since there are 2 shoe bearings on each truss the amount is 2x1187- 2374 pounds

Minor details:

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin plates</td>
<td>1500</td>
</tr>
<tr>
<td>Tie plates and lacing</td>
<td>2500</td>
</tr>
<tr>
<td>Connections, splices and etc.</td>
<td>2400</td>
</tr>
</tbody>
</table>

Floor system:

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 stringers at 5000</td>
<td>30000</td>
</tr>
<tr>
<td>3 1/2 floor beams at 4600</td>
<td>16100</td>
</tr>
</tbody>
</table>

The total weight of one truss is 126550

The total weight of the superstructure is therefore 8x126550.................................1012400 pounds.

4. DESIGN OF PIERS AND ABUTMENTS.

Since the design of one of the piers was briefly outlined above under the head of the selection of design, it will not be farther regarded. Owing to the lack of actual data the design of all the other piers will be the same. The design of one of the abutments will be considered next. The height of the abutment will be assumed to be 15 feet. A sketch of it is given below and the abutment is computed in the following manner.
The filling behind the wall consist of sand. The weight of a cubic foot of sand was assumed to be 100 pounds, and the angle of repose of the material to be 30 degrees. If \(p \) be the unit intensity of the vertical pressure of the earth and \(g \) the horizontal thrust, then for equilibrium the formula will be
\[
\frac{p}{g} = \frac{1 - \sin \theta}{1 + \sqrt{3}} = 1/3
\]
Considering the section of the wall to be one foot in length the average horizontal pressure is \(g = 100 \times \frac{5}{3} \times 2 = 1500/6 \) pounds and the total pressure applied at \(1/3 \) of the height from the base is found to be \(1500 \times \frac{15}{6} = 3750 \) pounds. By taking moments about the base the overturning moment due to this pressure is \(3750 \times 5 = 18750 \) foot-lbs or 225000 inch-pounds. The top and bottom dimensions of the section are also given in the sketch. The centre of gravity of section will be found next, by taking moments about BG and the equation becomes \(70x = 5 \times 5 + 45 \times 2.25 + 205(4.5-4/3) \), and hence \(X = 3.15 \) feet, i.e. the distance of the center of gravity of the section from the point \(G \) is 3.15 feet.

The volume of the wall for 1 foot of length was found to be
117.6 cubic feet and assuming the weight of one cubic foot of concrete to be 150 pounds, the weight of the wall is 150x117.6 = 17640 pounds.

The tangent of angle that the resultant of the horizontal and vertical pressure makes with the vertical is $3750/17640 \approx 0.21$; and the angle is 115°, which shows that it is safe enough with the middle third. Sliding cannot place if the weight of the wall times the coefficient of friction is equal or more than the horizontal pressure. In this case it is safe enough for sliding.

In order to test the abutment for overturning the center of moments will be taken about the outer edge. The overturning moment due to the horizontal pressure is $3750 \times 5 = 18750$ foot-lbs., while the resisting moment of the wall is $17640 \times 5 = 88200$ foot-lbs.

The wall is therefore safe enough for overturning. The determination of the bearing area will be considered next. In this case it is necessary to take into account the live load reaction. The portion of the wall resisting this force is 11.25 feet. The reaction can be considered as uniformly distributed over that portion. The total vertical force acting on the foundation is $17640 + \frac{282000}{11.25} = 44260$ pounds.

The bearing value of sand per square foot was taken as 6000 pounds. Therefore the required bearing area is $44260/6000 = 7.38$ square feet. The area of the wall at the foundation is 8.5x1= 8.5 square feet, and therefore no piling for the abutment is required.
5. COST.

The cost of one pound of metal is taken as 4 cents, and the total cost of superstructure is therefore \(0.04 \times 1012400 = 40496\) dollars. By looking through the cost of different railroad bridges it was found, that an average value of \$2.00\) can be taken for a ton of metal to be painted. Therefore the cost of painting is \(2 \times 1012400 / 2000 = 1012\) dollars. The cost of erecting pin connected bridges is also a nearly constant quantity and it varies from 0.7-1.2 cents per pound. A value of 0.75 cents per pound will be selected in this design.

The cost of erection is therefore

\[0.0075 \times 1012400 = 7593\] dollars.

The volume of concrete of one abutment including two wing walls and parapet wall was found to be 222.2 cubic yards, and assuming the cost of a cubic yard of concrete and its laying to be \$6.80, the total cost of one abutment is \(6.80 \times 222.2 = 1510\) dollars. The cost of two land abutments is therefore \(2 \times 1510 = 3020\) dollars. The cost of three piers was found to be \$10934. The total cost of substructure is therefore \$13954.

Cost of Substructure...............................\$13954
" " Superstructure.............................. 40496
" " Erection................................. 7593
" " Painting.................................... 1012
Total cost of structure........................\$63055
SPECIFICATIONS FOR SUBSTRUCTURE.

General Description

1. The work to be done under these specifications comprises the building of three piers and two abutments.

2. All the piers shall be founded on solid rock. The elevations given in the plans are approximate only. The Engineer may, as the work proceeds, require the foundations to be placed either at higher or at lower elevations than named herein.

Materials.

3. Timbers for caissons or cofferdams shall be either long or short leaf pine, sawed accurately, free from rot, splits, shakes or other imperfections which in the opinion of the engineer may impair its strength or durability.

4. Steel for rods and drift bolts shall be of soft steel and shall be subject to the specifications of soft steel for superstructure.

5. The cement will be furnished by the Bridge Company, but the contractor will be held responsible for all waste after it is delivered to him from the company's warehouse.

6. Sand for concrete shall be clean, sharp, coarse river sand, or other sand of equal quality in the judgment of the Engineer.

7. Broken stone shall be of hard sound, clean limestone. It shall be broken by machine and screened in a rotary screen which shall remove all dust and fragments which will pass
through holes three-eighth inch in diameter and prices exceeding one and one-half inches in diameter.

8. In proportioning material for concrete one volume of cement shall be taken to mean 380 pounds net, one volume of sand or broken stone shall be taken to mean 3 1/2 cubic feet packed or shaken down.

9. Measurements of sand and broken stone shall be made in barrels or boxes.

10. In preparing mortar the specified amounts of cement and sand shall first be mixed dry to a uniform color. The water shall then be added in such a manner as not to cause any washing of the cement, and the mixing proceeded with until the mortar is thoroughly mixed and uniform in appearance.

11. Wherever possible concrete shall be mixed with a machine approved by the Engineer. Preference will be given to a machine which will mix concrete in catches, the cement, sand and broken stone, measured as specified above.

12. Concrete shall be deposited in the work in such a manner as not to cause the partial separation of the mortar and stones. It shall be spread in horizontal layers from six to twelve inches in thickness and thoroughly rammed. The rammers shall weigh at least twenty pounds.

13. The consistency of the concrete shall be as required by the Engineer from time to time, but will generally be such that the concrete will quake under hard ramming.

14. No mortar or concrete shall be used after it has
begun to set; when setting commences the material inquired shall be immediately wasted.

15. All concrete in the piers shall be in the proportion of one volume of cement to two and one-half volumes of sand and six volumes of broken stone.

16. The concrete in the copings shall be in proportion of one volume of cement to two volumes of sand and four volumes of broken stone.

17. A facing of mortar shall be put in next to the molds of all concrete work for all piers and abutments.
SPECIFICATION FOR PORTLAND CEMENT.

1. The cement used in the substructure will be Portland Cement, manufactured at works which have been in successful operation for at least two years.

2. The cement shall be manufactured from a mixture of calcareous and clayey earths or rocks and shall contain no furnace slag, gray limestone, hydraulic lime or trass.

3. The average weight of a barrel of cement shall be at least 380 pounds, net.

4. Samples of cement for testing will be taken from the interior of the packages in such manner and in such number as the Engineer may direct. The test will be made on the individual samples without intermixing.

5. The cement shall not contain more than two percent of sulphuric acid or more than three per cent of magnesia.

6. The cement shall be so finely ground that at least 97 percent by weight will pass through a standard sieve having ten thousand openings per square inch.

7. The time required for setting will be determined with mortars in which the weigh of the water shall be 20 percent of the weight of the cement mixed to a plastic condition, formed in suitable moulds and kept at a temperature of from 65 to 70 F. Mortar will be considered to have taken its initial set when it will sustain a wire 1/12 inch in diameter loaded to 1/4 pound without breaking the surface of the mortar; it will be considered to have taken its final set when it will
sustain a wire 1/24 inch in diameter loaded to one pound without breaking the surface of the mortar. The initial set shall not be taken in less than thirty minutes; the final set shall be taken in eight hours or less.

3. The test of constancy of volume shall be made on a similar mortar formed on glass into a cake about 3 inches in diameter and 1/2 inch thick at the center, worked down to a think edge all around. It shall be subjected to one of the following tests:
 (a) the cake shall be left in air until it takes the final set and shall then be placed in water maintained at a temperature of 60 to 80 F. for a period of 28 days, or
 (b) the cake as soon as formed shall be placed on a rock in the upper part of a covered vessel partly filled with water, which shall be maintained at the temperature of 110 to 115 F., so that the mortar will be in warm, moist air while setting. After having been thus exposed for 6 hours the cake shall be immersed being maintained. The test (a) shall be applied when sufficient time is available for its completion. If sufficient time for test (a) is not available, test (b) shall be used.

9. The test for tensile strength will be made on a mortar containing one part of cement to three parts of standard crushed quartz sand by weight. The quarz shall be of such fineness that all of it will pass through a standard sieve having 400 openings per square inch. Enough water shall be used to form a stiff mortar. The mortar shall be formed into a briquette having a minimum section at the center of one
square inch. It shall be left under a damp cloth for 24 hours and then immersed in water maintained at a temperature of 60 to 80 F. At the age of 28 days it shall be removed from the water and immediately broken by tensile strain. If the average strength of the brignettes from any shipment is less than 240 pounds the cement will be rejected. If any number of brignettes less than 1/5 break at 200 pounds or less the packages from which these brignettes were made will be again tested, and if any brignettes fail to sustain a tensile strain of 200 pounds the entire lot will be rejected.

10. The tests above specified will be made by the agents of the Bridge Company, under the direction of the Engineer.

11. Rejected cement shall be removed from the warehouse by the Contractor within five days or receipt from the Engineer of notification of rejection, and at the Contractor's sole expense.
SPECIFICATIONS FOR SUPERSTRUCTURE.

1. General Description.

1. The superstructure is divided into four equal spans. The distance between centers of end pins of each span is 150 feet. The depth of these spans is also equal and is 30 feet between the centers of pins.

2. The trusses will be spaced 17 feet apart between centers. Each span is divided into six panels. The length of each panel is 25 feet.

3. The wooden floors will consist of transverse ties or floor timbers. They shall be spaced with openings not exceeding six inches, and shall be notched down 1/2 inch and be occured to the supporting girders by 3/4 inch bolts at distances not over six feet apart. There shall be guard timbers on each side of each track and notched one inch over every floor timber with a half-and-half joint of six inches lap. Each guard timber shall be fastened to every third floor timber and at each splice with a 3/4 inch bolt. The guard and floor timbers must be continuous and properly supported over all piers and abutments.

4. The estimated approximate weight of the superstructure is 507 tons.

Plans.

5. Full detail plans showing all dimensions will be furnished by the engineer. The work shall be built in all respects accordingly to the plans. The contractor, however,
will be expected to verify the correctness of the plans and will be required to make any changes in the work which are necessitated by errors in the plans, without extra charge, where such errors could be discovered by an inspection of the plans.

II. Material.

6. All parts, except nuts, swivels, elevises and wall pedestal plates, will be of steel. The nuts, swivels and elevises may be of wrought iron. The pedestal plates will be of cast iron.

7. All material shall be subject to inspection at all times during its manufacture, and the engineer and his inspectors shall be allowed free access to any work in which any portion of the material is made. Timely notice shall be given to the engineer so that inspectors may be on hand.

Steel.

8. Steel will be divided into three classes: first, High Grade Steel, which shall be used in all the principal truss members; second, Medium Steel, which shall be used in the floor system, laterals, portals, transverse bracing and the lacing of the truss members; third, Soft Steel, which shall be used only for rivets and at the option of the contractor where wrought iron is permitted.

9. All steel must be uniform in character for each specified kind.

The finished bars, plates and shapes must be free from
injurious seams, orflows, cracks on the faces or corners.

11. The tensile strength, elastic limit and ductility shall be determined by samples cut from the finished material after rolling. The samples to be at least 12 inches long, and to have a uniform sectional area not less than 1/2 square inch.

12. The elongation shall be measured on an original length of 8 inches. At least two test pieces shall be taken from each melt or blow of finished material, one for tension and one for bending.

13. A piece of each sample bar shall be bent 180 degree and closed up against itself without showing any crack or flow on the outside of the bent portion.

14. Every melt which does not conform with the requirements shall be rejected.

15. A full report of the laboratory test shall be furnished certified by an inspector accepted by the Chief Engineer.

16. The broken and bent specimens shall be preserved subject to the orders of the Chief Engineer.

17. Analysis shall be made by the manufacturer of every melt, showing amount of phosphorus, carbon, silicon and manganese.

18. The cross-section shall never differ more than two percent from the ordered cross-sections as shown by the dimensions on the plans.

19. All sheared edges shall be planed off so that no rough or sheared surface shall ever be left on the metal.
20. Steel for pins shall be sound and entirely free from piping. All pins in the main trusses shall be drilled through the axis.

III. Manufacture.

21. The work shall be done in all respects according to the detail plans furnished by the chief Engineer.

22. All surfaces in contact shall be cleaned and painted before they are put together.

23. All work shall be finished in the shop and ample time given for inspection.

24. No material shall be loaded on cars until accepted by the inspector.

25. The finishing of work after loading will not be permitted.

Solid Drilled Work.

26. All riveted members which are made of High Grade Steel and all other pieces connecting with such members shall be solid drilled, no punching whatever being allowed, excepting lacing bars which may be punched and reamed.

27. The size of rivets shown on the plates is the size of the cold rivet before heating.

28. The diameter of the finished hole shall never be more than 1/16 of an inch greater than the diameter of the cold rivet. It is intended that the heated rivet shall not drop into a hole, but require a blow from a hammer to force it in it. If it found that the rivets will drop easily into the holes, the inspector will condemn those rivets and a larger size.
29. The riveted connections of the portals, cross-frames and floor beams with the post and chords shall be drilled with the several parts fitted together.

30. The field rivets shall be driven by power wherever this is possible.

31. All rivets shall be eegulated in shape, with hemispherical heads concentric with the axis and absolutely tight. Tightening by calking or recupping will not be allowed. This applies to both power driven and hand driven rivets.

32. All pin holes shall be drilled after all other work is completed.

33. All chord sections shall be stamped at each end on the outside with letters and numbers designating the joints in accordance with the diagram plan furnished by the Chief Engineer.

34. The same rule shall apply to the marking of the posts.

35. Pin holes in the posts shall be truly parallel with one another and shall be at right angles to the axis of the post.

36. Measurements shall be made from an iron standard of the same temperature as the member measured.

Forged Work.

37. The heads of eye bars shall be formed by upsetting and forging into shape by a process acceptable to the Chief Engineer. No welds will be allowed.

38. After the work is completed the bars shall be
annealed in a suitable annealing furnace by heating them to a uniform dark red heat and allowing them to cool slowly.

39. The form of the heads of the steel eye bars may be modified by the contractor to suit the process in use at their works, but the thickness of the head shall not be more than 1/16 inch greater than that of the body of the bar, and the heads shall be of sufficient strength to break the body of the bar.

40. Nuts, swivels and clevises, if made of steel, shall be forged without welds, whether made of steel or wrought iron, one of each size shall be tested and be of sufficient strength to break the bars to which they are attached.

41. Eye bars shall be bored truly and at exact distances, the pin holes to be exactly on the axis of the bar, and at exactly right angles to the plane of the flat surfaces.

42. Pin holes shall be bared with a sharp tool that will make a clean smooth cut. Two cuts shall always be taken, the finishing cut never to be more than 1/8 inch. Roughness in pin holes will be sufficient reason for rejecting bars.

Machine Work.

43. All bearing surfaces shall be faced truly.

44. Chord sections shall be faced after they are riveted up complete. The end of the stringers and of floor beams shall be squared in a facer.

45. All surfaces so designated on the plans shall be plane.

46. All sheared edges shall be planed off, and all punched holes shall be drilled or reamed out.
47. The plabs show the distances between centers of pin holes. Shop measurements, however, shall be made between the bearing edges of the pin holes, that is, between the inside edge of compression members and the outside of tension members, with a proper allowance for the diameter of the pin.

48. The rollers shall have the hollow sides planed and the bearing surfaces turned to a perfectly true cylinder and polished.

49. The rods passing through the rollers shall fit the holes with a play not exceeding 1/32 of an inch.

Miscellaneous.

50. All material shall be cleaned, and, if necessary, scraped and given one heavy coat of Cleveland iron-clad paint, purple brand, put on with boiled linseed oil, before shipment. This applies to everything except machine finished surfaces.

51. The same paint shall be used wherever painting is required.

52. All small bolts, all pins, the expansion rollers and everything with special work on it, shall be carefully boxed before shipment.

53. The contractor will be required to furnish the field rivets for erection, furnishing 20 percent in excess of each size over and above the number actually required, but this excess will not be estimated, but considered as taking the place of the work which is not done on these rivets.
IV. Inspection.

54. The mill inspection shall be performed at the expense of the contractor, by an inspector accepted by the Chief Engineer.

55. This inspector will be required to furnish the certificates and notices in the manner specified above.

56. The mill inspector shall from time to time check the manufacturer's analyses by analyses made by an independent chemist.

57. The acceptance of material by such inspector will not be considered final, but the right is reserved to reject material which may prove defective or objectionable at any time before the completion of the contract.

58. The inspection at the shops will be under the charge of an inspector appointed by the Chief Engineer, with such assistance as may be required.

59. Such inspector will be considered at all times the representative of the Chief Engineer, and his instructions shall be followed in the same manner as if given by the Chief Engineer.

Test of Eye-Bars.

60. In the case of bars too long for the machine, the bars shall be cut in two, each half reheaded, and both halves tested in the machine, the two tests, however, to count as a single test bar.

61. If the capacity of the machine is reached before the bar is broken, the bar shall be taken out of the machine
and the edges shall be planed off for a length of 10 feet
at the center until the section is reduced to the equivalent
of 16 square inches of section of the original bar. The
bar shall then be placed in the machine and broken; when this
is done the elongation shall be measured on a length of 8 feet
and an ultimate strength of, 6000 pounds computed on the 16
inches of the original section will be considered satisfactory.

62. The failure of a bar to break in the body shall not be considered sufficient reason for rejection, provided the
required elongation is obtained and not more than one-third of
the bars break in the head.

V. Terms.

63. The work will be paid by the pound of finished
work loaded on card.

64. No material will be paid for which does not form
a part of the finished superstructure.

65. All expenses of testing shall be borne by the
contractor.

VI. Erection.

66. The contractor will be expected to receive all
material as it arrives on the cars, to unload this material
and store it in a material yard until ready for erection.

67. The contractor will be required to keep all the
material in good condition, and in case of its becoming
dirty or rusty, will be expected to clean it before erecting.

68. The contractor will be required to paint all
surfaces which will be inaccessible for painting after erection,
the paint being furnished by the Bridge Company.
69. The contractor will be required to remove all work which he may put in the river so that there will be nothing left either to interfere with navigation or to catch drift.

70. The contractor will be required to erect the superstructure complete in every respect including riveting.

71. The expansion end of the span shall be adjusted so that the axis of the rollers will be exactly vertical at a temperature of 70 degrees F.. This adjustment shall be made at a time where there has been no sun on the steel work for ten continuous hours, and when there has been no sudden change of temperature.