Design of a Modern Olefins Production Facility

IPRO 304-d
http://www.iit.edu/~olefin
Objectives

• To model and analyze a modern ethylene production process
• To understand the economic aspects of building and running a facility and the worldwide market of feedstocks, products, and product derivatives
• To identify environmental and safety concerns and develop sustainability
Approach

• Team arranged in four groups
 – Production Process Team
 – Economic Analysis Team
 – Environmental Responsibility Team
 – Web Site Team

• Obtaining information
 – Work regularly with Faculty Advisors
 – Use experience and resources from other coursework
 – Learn to search for information in new ways
Process Overview

IPRO 304-d

Design of a Modern
Furnace and TLE

Diagram showing the flow of Initial Feed through the Furnace and Transfer Line Exchanger.
Quench Tower

IPRO 304-d Design of a Modern
Compressor Train
Design of a Modern Olefins Production Facility
Refrigeration Train
Design of a Modern Olefins Production Facility
Recovery Train

IPRO 304-d Design of a Modern...
World Ethylene Feedstock

- Naphtha
- NGL
- Refinery Gas
- Gas Oil
- Others
World Ethylene Feedstock Demand - 2000

- **North America**: Naphtha (146.5 MTPY), NGL (36.9 MTPY), Others (4.1 MTPY)
- **Middle East**: Naphtha (5.92 MTPY), NGL (5.56 MTPY), Others (0.04 MTPY)
- **FSU**: Naphtha (0.22 MTPY), NGL (0.03 MTPY), Others (0.02 MTPY)
- **Europe**: Naphtha (69.1 MTPY), NGL (1.43 MTPY), Others (0.05 MTPY)
- **Asia-Pacific**: Naphtha (50.77 MTPY), NGL (3.82 MTPY), Others (0.08 MTPY)
- **Africa**: Naphtha (0.08 MTPY), NGL (0.01 MTPY), Others (0.01 MTPY)

Million Tons Per Year
IPRO 304-d

Design of a Modern Olefins Production Facility

US vs World Ethylene Feedstock Demand - 2000

- **World**
 - Natural Gas Liquid (NGL): 29.87%
 - Refinery Gas: 6.65%
 - Naphtha: 59.83%
 - Gas Oil: 8.5%
 - Others: 0.9%

- **US**
 - Natural Gas Liquid (NGL): 66.65%
 - Refinery Gas: 2.93%
 - Naphtha: 24.45%
 - Gas Oil: 5.69%
 - Others: 0.0%
Ethylene Capacity & Demand: 2001

- Asia-Pacific: Moderate demand, significant capacity additions.
- Europe: High demand, moderate capacity, with announced and speculative additions.
- Middle East: Lower demand, moderate capacity.
- South & Central America: Low demand and capacity.
- FSU: Low demand and capacity.
- Africa: Very low demand and capacity.
Global Ethylene Demand By Region, 2000

- US: 27%
- Canada: 4%
- Latin America: 5%
- Eastern Europe: 4%
- Western Europe: 20%
- Middle East: 8%
- Africa: 1%
- Japan: 1%
- East Asia: 7%
- Oceania: 1%

Design of a Modern Olefins Production Facility
Global Ethylene Production

<table>
<thead>
<tr>
<th>Region</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>25043</td>
<td>24848</td>
<td>25271</td>
</tr>
<tr>
<td>Canada</td>
<td>3308</td>
<td>3586</td>
<td>4350</td>
</tr>
<tr>
<td>Latin America</td>
<td>4333</td>
<td>4767</td>
<td>5043</td>
</tr>
<tr>
<td>Western Europe</td>
<td>19400</td>
<td>19486</td>
<td>20773</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>3472</td>
<td>3564</td>
<td>3653</td>
</tr>
<tr>
<td>Middle East</td>
<td>5438</td>
<td>6419</td>
<td>7799</td>
</tr>
<tr>
<td>Africa</td>
<td>863</td>
<td>906</td>
<td>1134</td>
</tr>
<tr>
<td>Japan</td>
<td>7688</td>
<td>7610</td>
<td>7382</td>
</tr>
<tr>
<td>East Asia</td>
<td>15106</td>
<td>16964</td>
<td>18198</td>
</tr>
<tr>
<td>Oceania</td>
<td>430</td>
<td>445</td>
<td>451</td>
</tr>
</tbody>
</table>

Thousand Metric Tons Per Year
Design of a Modern Olefins Production Facility

Derivatives Commercially Produced From Ethylene

- Ethylene
 - Polyethylene
 - Ethylene dibromide
 - Ethylene Cyanohydrin
 - Acrylonitrile
 - Ethylene Glycol
 - Ethanolamine
 - Acetaldehyde
 - Acetic Acid
 - Vinyl Acetate
 - Ethylene Oxide
 - Ethyl Alcohol
 - Acetic Anhydride

- Ethyl Benzene
 - Ethyl Chloride
 - Ethylene dichloride
 - n-Alpha Olefin
 - Diethyl Ether
 - Styrene
 - Vinyl Chloride
 - Polyvinyl Chloride
 - TEL
 - Ethyl Cellulose
Ethylene Derivatives Demand: 1995-2005

- Low Density Polyethylene
- Linear Low-Density Polyethylene
- High Density Polyethylene
- Polyvinyl Chloride
- Ethylene Dichloride
- Ethylene Glycol
- Ethylene Oxide

Million Tons Per Year

2005:
- Low Density Polyethylene: 16.1
- Linear Low-Density Polyethylene: 11.5
- High Density Polyethylene: 25.5
- Polyvinyl Chloride: 35.3
- Ethylene Dichloride: 55.4
- Ethylene Glycol: 14.2
- Ethylene Oxide: 15.3

2000:
- Low Density Polyethylene: 15.3
- Linear Low-Density Polyethylene: 12
- High Density Polyethylene: 20.6
- Polyvinyl Chloride: 27.1
- Ethylene Dichloride: 42.9
- Ethylene Glycol: 10.8
- Ethylene Oxide: 12.1

1995:
- Low Density Polyethylene: 14.1
- Linear Low-Density Polyethylene: 8.2
- High Density Polyethylene: 16.7
- Polyvinyl Chloride: 20.9
- Ethylene Dichloride: 33.3
- Ethylene Glycol: 3.3
- Ethylene Oxide: 10.2
Costs Analysis

Capital Costs
ISBL Fixed Capital = 202.02 $MM
OSBL Fixed Capital = 50.50 $MM
Total Fixed Capital = 252.52 $MM

Startup Costs
Thirty Days of Variable Costs – Fresh Feed and Utilities = 37.0 $MM
Fixit Costs at 5% of Total Fixed Capital = 13.0 $MM
Total Startup Costs = 49.0 $MM

Working Capital
Product Inventory : 30 Days Storage = 59.0 $MM
Raw Material Inventory : 30 Days Storage = 35.0 $MM
Cash, Stores, Accounts Payable 1% TFC = 3.0 $MM
Total Working Capital = 97.0 $MM
Variable Operating Costs
Fresh Feed 305.0 MLbs / Hr At 16.0 Cents / Lb = 406.0 $MM / Yr
Utilities 900.0 MMBtu/Hr At 2.50 $ / MMBtu = 19.0 $MM / Yr
Total Variable Operating Costs = 425.0 $MM / Yr

Fixed Operating Costs
Fixed Costs At 30% of Total Fixed Capital = 76.0 $MM / Yr

Production Schedule
Ethylene 195983.0 Lbs / Hr At 34.0 Cents / Lb = 555.0 $MM / Yr
Propylene 59214.0 Lbs / Hr At 26.0 Cents / Lb = 128.0 $MM / Yr
Fuel 383.0 MMBtu / Hr At 2.50 $ / MMBtu = 8.0 $MM / Yr
Total Revenue = 691.0 $MM / Yr

Salvage Value
Salvage Value = 25.0 $MM

Discounted Cash Flow Profitability Index = 25.0
Optimization

<table>
<thead>
<tr>
<th>High Ethane - Propane Conversion</th>
<th>Low Ethane - Propane Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Recycle of Ethane - Propane</td>
<td>High Recycle of Ethane - Propane</td>
</tr>
<tr>
<td>Reduced Equipment Size</td>
<td>Increased Equipment Size</td>
</tr>
<tr>
<td>Reduced Capital & Operating Costs</td>
<td>Increased Capital & Operating Costs</td>
</tr>
<tr>
<td>Reduced Yield of Ethylene & Propylene</td>
<td>Increased Yield of Ethylene & Propylene</td>
</tr>
</tbody>
</table>

Operating Control Variable

<table>
<thead>
<tr>
<th>Furnace Coil Outlet Temperature (Deg F)</th>
<th>Conversions Per Cent</th>
<th>Yields Per Cent</th>
<th>Process Profitability Index Per Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethane</td>
<td>Propane</td>
<td>Ethylene</td>
</tr>
<tr>
<td>1400</td>
<td>15.5</td>
<td>32.3</td>
<td>79.5</td>
</tr>
<tr>
<td>1450</td>
<td>31.1</td>
<td>51.1</td>
<td>79.2</td>
</tr>
<tr>
<td>1500</td>
<td>56.5</td>
<td>73.6</td>
<td>79.1</td>
</tr>
<tr>
<td>1550</td>
<td>81.9</td>
<td>90.0</td>
<td>77.0</td>
</tr>
<tr>
<td>1600</td>
<td>87.9</td>
<td>98.3</td>
<td>76.7</td>
</tr>
<tr>
<td>1650</td>
<td>99.9</td>
<td>99.9</td>
<td>74.5</td>
</tr>
</tbody>
</table>
Environmental Responsibility

• Energy and Materials Efficiency
• Emissions Management
• Uses for By-products
• Health and Safety
• Sustainable Development
Efficiency

- Increased Energy Efficiency (Shell)
- Energy conserved in process
- No alternative energy sources currently feasible
Emissions Management

• Reduce greenhouse gases by:
 – Natural solutions (carbon sinks)
 – Reduce to 90% emissions by 2010
 – Kyoto Protocol’s Emissions Trading Scheme
By-products: 1,3-Butadiene

- 39% Styrene-butadiene rubber comonomer
- 23% Monomer for polystyrenes
- 11% Adiponitrile
- 9% Styrene-butadiene latexes
- 7% Neoprene elastomers
- 5% Acrylonitrile-butadiene-styrene resins
- 3% Nitrile rubber comonomer
- 2% Other polymer and copolymer uses
By-products: Benzene

- Benzene
- Styrene
- Cyclohexane
- Polystyrene
- Caprolactam
- Nylon
- Clothing
- Paint
- Plastics
- Everyday Products

IPRO 304-d
By-products: Raffinate 1

- 4-carbon paraffins and olefins without butadiene
- Feedstock for:
 - Polyisobutenes (PIB)
 - Methyl tertiary butyl ether (MTBE)
 - Butyl rubber
 - Adhesives and sealants
Health and Safety

• Employee Training:
 – Emergency procedures
 – Safe handling of toxic substances
 – On-site safety

• Company Responsibilities:
 – Provide adequate training for personnel
 – Risk Management and Crisis Management
 – Comply with federal safety standards
 – Workman’s Compensation
Sustainable Development

• Environmental, economic, and social responsibility

• Responsible care:
 – Focus on global environment
 – Resource management
 – Recognizing impact of plant operations on global issues

• UN 10 Priorities:
 • Changing unsustainable patterns of consumption and production
 • Promoting health through sustainable development
 • Providing access to energy and energy efficiency
 • Managing ecosystems and biodiversity in a sustainable way
 • Providing financial and technology transfer
Conclusion

• We have learned that our facility:
 – Has a competitive and efficient modern design
 – Is economically profitable and can be optimized
 – Can achieve sustainability and responsibility

• Our approach enabled us to:
 – Analyze and understand all important aspects of the project
 – Achieve a rewarding experience together
 – Share our results in a meaningful way
Special Thanks To:

- Ellen Keith
 - Interim Associate Dean for Public Services/Instruction Coordinator
 - Paul V. Galvin Library
 - Information Expert

- JohnPaul Kusz
 - Acting Director, Center for Sustainable Enterprise at Stuart Graduate School of Business

IPRO 304-d
Design of a Modern Olefins Production Facility
Special Thanks To:

• Aaron “Charlie” Wallestad
 – Olefins Expert, Team Member
• Professor H. Lindahl
 – Faculty Advisor
• Professor J. Abbasian
 – Faculty Advisor
Thank You!
Discussion

Visit our Web Site!
http://www.iit.edu/~olefin