Development of a high-dielectric-constant material

IPRO 327 – Spring 2002
Test Fixture Team
Ginny Brock (MMAE)
Jason Brudniki (EE)
Hristiyan Kourtev (EE & CPE)
Ahmed Tolba (MMAE)
Sameer Verma (CPE & CS)

Materials Team
Minh Evans (CPE)
Beth Grzenia (BCPS)
Julien Julius (MMAE)
Joe Stainbrook (MMAE)

Student team leader: Joe Stainbrook (MMAE)
Faculty Advisors: Judith Todd (MMAE) and Thomas Wong (ECE)
Sponsor Advisors: Brett Rickett and Gus Panella
Introduction

• Molex – the second largest manufacturer of electronic, electrical and fiber optic interconnects

• Capacitor properties:
 - stores energy
 - can be used as a filter for DC current

• Basic capacitor structure:
 - parallel conducting plates
 - dielectric material
 - qualitative analysis and the dielectric constant
Goals

• Dielectric Constant: > 100
• Operating Frequency: 100 MHz to 9 GHz
• Compressible: 50% thickness reduction at < 9 psi
• Flexible: > 0.25” deflection over 3” length under its own weight
• Operating Temperature: 0ºC to 120ºC
• Thermal Shock Durability: -50ºC to 105ºC
• Thickness of 0.008” with minimum lateral dimensions of 3” x 3”
• Cost: < $7.00 / ft²
Strategy

• Identify research areas:
 - materials and their properties
 - material design
 - dielectric testing techniques

• Divide the group in two teams for greater efficiency:
 - materials team
 - test fixture team

• Research, Research, Research

• Build a test fixture

• Test materials and compare results to goals
Research Goals

• Relate the properties of dielectric materials to molecular structure

• Investigate feasibility of various material classes
 - ceramics
 - liquids
 - polymers
 - composites
Findings

• Molecular structure of dielectrics and their properties
 - dielectric constant directly related to polarizability
 - types of polarizability
 a) dipole – polar molecules
 b) ionic – shifting of bonds
 c) electronic – relative displacement of electron cloud

• Ceramics
 - high dielectric constants
 - unlikely to meet flexibility and compression

• Liquids
 - highly polar (i.e. high dielectric constants)
 - suitable oscillations over a wide range of frequencies
 - packaging concerns
Findings

• Polymers
 - Closer to desired mechanical properties
 - Unlikely to meet the desired dielectric constant

• Composites
 - Focus on epoxy matrix / ceramic particulate composites
 - New materials could facilitate proper electrical behavior
 - Epoxy matrices unlikely to result in proper mechanical properties
 - Other matrix materials may be better suited
Research Goals

- Research the feasibility of various dielectric constant measurement techniques
 - transmission method
 - reflection method
 - cavity resonance method

- Select the best method for our purposes

- Build a test fixture to be used with materials suggested by the materials group
Findings

• Transmission method
 - easy to implement
 - allows measurement over wide range of frequencies

• Reflection method (most appropriate)
 - same benefits as with the transmission method
 - less error prone than transmission method due to the symmetry of the transmission line
 - equations simpler than with the transmission method

• Cavity resonance method
 - provides very accurate measurements
 - very difficult to construct
 - measurements limited to resonance frequencies only
The Old Fixture

- Produced by Molex
- Employs the transmission measurement method
- Accurate for measuring dielectric constants at kHz and MHz frequencies only
- Transmitted signal measured using a network analyzer
The New Fixture

• Uses Molex’s existing fixture as a base
• Employs the reflection measurement method
• Should be capable of measuring dielectric constants at kHz, MHz and GHz frequencies (not yet tested)
• Reflected signal measured using a network analyzer
Issues

• Materials Team
 - Key information difficult to locate
 a) dielectric response vs. frequency
 b) mechanical properties
 - Inability to test materials on-site

• Test Fixture Team
 - Concepts of high-frequency dielectric measurements were complicated and difficult to grasp
 - Test fixture development delayed by:
 a) uncertainty in the design
 b) impedance matching the transmission line was harder than expected by the team
Conclusions

• Intellectual challenge higher than expected
• Lectures by Molex advisors and IIT faculty were extremely helpful
• Website could have been better utilized
• On-site analysis of experimental materials may become necessary, in the future
Suggestions

• Liquid research is still an option which should be pursued
• Composites with matrices other than epoxies should be considered
• Group meetings should be encouraged
• The new test fixture has to be run through a thorough test program to determine its capabilities and limitations
Thank You!