Wastewater Reclamation

IPRO 304-C

Danielle Burkes Masami Komatsu
George Derrick Kelly Morken
Christy Dillard Anna Patel
Ashanti A. Griffin Brian Sherman
Katie Gwozdz Greg Stachurski
Project Outline

• Statement of Problem
• Background
• Design Constraints
• Regulations
• Treatment Plant Design
 – Assumptions
 – Unit Operations
 – Storage Reservoir
• Future of the Project
• Conclusions
Problem

• Water shortages
• Past Solutions
• Type of treatment
• Solution?
• Economics
Background

• Water reclamation is important in the US
 – Plants are used all over the nation especially in dry and overpopulated areas

• Two categories of recycled water
 – Planned
 – Unplanned

• Reclaimed water is used for non-potable uses
 – Irrigation of parks, golf courses, creation of artificial lakes
 – Industrial uses as in cooling of factories, dust control, concrete mixing

• Environmental benefits
 – Provides additional source of water
 – Reduces and prevents pollution
Design Constraints

- Social
- Economic
- Weather
- Environmental
Regulations

- Legal issues: Federal, state, and local statutes.
- Federal laws
- State Legal Issues:
 - State Water rights
 - Appropriative Rights System
 - Riparian Rights System
 - Reuse Water Rights
- State Liability Laws
- Reuse ordinances
Elements of Design

- **Primary Treatment**
 - Screening
 - Grit chamber
 - Primary clarifier

- **Secondary Treatment**
 - Recycle of Biosolids
 - Aeration Basin
 - Secondary Clarifier

- **Tertiary Treatment**
 - Chlorination
 - Dechlorination

- **Distribution System**
- **Storage Reservoir**
Design Assumptions

- Residential Community
- Daily water usage = 70 GPD
- Peak daily water usage = 90 GPD
- Organic Content = 365 mg/L
Design Parameters

- **Flow Rate**

 \[
 \text{Flow}_{\text{avg}} = (70 \text{ gal/ day \cdot person}) \cdot (20000 \text{ people}) = 1.4 \text{ MGD}
 \]

 \[
 \text{Flow}_{\text{peak}} = (90 \text{ gal/ day \cdot person}) \cdot (20000 \text{ people}) = 1.8 \text{ MGD}
 \]

 - Design for 2.0 MGD

- **Organic Content (OC)**

 \[
 \text{OC}_{\text{avg}} = (365 \text{ mg/ L}) \cdot (3.785 \text{ L/gal}) \cdot (1.4 \text{ MGD}) = 1.34 \text{ kg/ min}
 \]

 \[
 \text{OC}_{\text{peak}} = (365 \text{ mg/ L}) \cdot (3.785 \text{ L/gal}) \cdot (1.8 \text{ MGD \text{ gal/ day}) = 1.73 \text{ kg/ min}}
 \]
Primary Treatment
Screening

- **Solids Removal Methods**
 - Bar Racks
 - Rotary Disks
 - Screens
 - Centrifugal

- **Types of Bar Racks**
 - Chain Operated
 - Reciprocating Rake
 - Catenary
 - Cable Type
Grit Chamber

- **Three Types**
 - Horizontal-flow type
 - Aerated Type
 - Spiral-flow type
Primary Clarifier

• **Design requirements**
 – Evenly distributed flow
 – Promote flocculation
 – Dissipate influent energy
 – Minimize sludge blanket disturbance

• **Choose circular tank**
 – Dimensions: diameter and side wall depth
Primary Clarifier

- Diam = 50 ft
- Depth = 12 ft
Secondary Treatment
Recycle of Biosolids

\[R = \text{design _ flow _ rate} \cdot \text{Recycle _ Ratio} \]

\[R = \left(1.0 \times 10^6 \text{ gal/day}\right) \cdot (1.0) = 1.0 \times 10^6 \text{ gal/day} \]

flow = \(Q + R = 1.0 \times 10^6 \text{ gal/day} + 1.0 \times 10^6 \text{ gal/day} \)

flow = 2.0 \times 10^6 \text{ gal/day}
Choosing an Aeration Basin

• **Important characteristics**
 - Retention time
 - Food-to-microbe ratio

• **Basic design choices**
 - circular
 - rectangular
 - rectangular with baffles

• **Choice: Extended Aeration Basin**
Extended Aeration Basin

- Selection reasons
 - Built in safety factor
 - Small amount of solids produced
 - Endogenous respiration phase
Secondary Clarifier

- Diam = 80 ft
- Depth = 13 ft
Tertiary Treatment
Disinfection

- What is Disinfection?
 - The point of disinfection
 - Important factors
 - Types of disinfectants
Method of Disinfection

- Chlorination
 - Types of Chlorine compounds
 - Chlorinator
 - Injector
 - Reactions with Chlorine in water
 - Contact Chamber
Other Aspects of Chlorination

- **Dechlorination**
 - Purpose
 - Types

- Reactions with Sulfur Dioxide in Water

- Effluent Discharge to Distribution
Storage Reservoir

Winter Storage Lagoon

50' sliding hill composed of excess excavated earth. Slope perpendicular to long axis is 12.

Cost estimate: $6 million
Future Work

- Water Distribution System
 - Meets with regulations
 - Contaminant concentrations
 - Maximum loading allowances
 - Economical
 - Recharges groundwater
 - Develop general design procedures
 - Adaptable to any location
Conclusions

- Wastewater Reclamation
 - Possible solution to groundwater depletion
 - Cost prohibitive to rework existing systems
 - Recommended for new plant construction